1. Delayed Systemic Treatment with Cannabinoid Receptor 2 Agonist Mitigates Spinal Cord Injury-Induced Osteoporosis More Than Acute Treatment Directly after Injury
- Author
-
Michelle A. Tucci, Yilianys Pride, Suzanne Strickland, Susanna M. Salazar Marocho, Ramon J. Jackson, Joshua R. Jefferson, Alejandro R. Chade, Raymond J. Grill, and Bernadette E. Grayson
- Subjects
cannabinoid receptor ,osteoporosis ,spinal cord injury ,Medical emergencies. Critical care. Intensive care. First aid ,RC86-88.9 - Abstract
Nearly all persons with spinal cord injury (SCI) will develop osteoporosis following injury, and further, up to 50% of all persons with SCI will sustain a fracture during their lives. The unique mechanisms driving osteoporosis following SCI remain unknown. The cannabinoid system modulation of bone metabolism through cannabinoid 1/2 (CB1/2) has been of increasing interest for the preservation of bone mass and density in models of osteoporosis. Using a thoracic vertebral level 8 (T8) complete transection in a mouse model, we performed daily treatment with a selective CB2 receptor agonist, HU308, compared with SCI-vehicle-treated and na?ve control animals either immediately after injury for 40 days, or in a delayed paradigm, following 3 months after injury. The goal was to prevent or potentially reverse SCI-induced osteoporosis. In the acute phase, administration of the CB2 agonist was not able to preserve the rapid loss of cancellous bone. In the delayed-treatment paradigm, in cortical bone, HU308 increased cortical-area to total-area ratio and periosteal perimeter in the femur, and improved bone density in the distal femur and proximal tibia. Further, we report changes to the metaphyseal periosteum with increased presence of adipocyte and fat mass in the periosteum of SCI animals, which was not present in na?ve animals. The layer of fat increased markedly in HU308-treated animals compared with SCI-vehicle-treated animals. Overall, these data show that CB2 agonism targets a number of cell types that can influence overall bone quality.
- Published
- 2021
- Full Text
- View/download PDF