38,103 results on '"Ravindran, A."'
Search Results
2. Measurement of the inclusive branching fractions for $B_s^0$ decays into $D$ mesons via hadronic tagging
- Author
-
Belle, Collaborations, Belle II, Adachi, I., Aggarwal, L., Ahmed, H., Aihara, H., Akopov, N., Aloisio, A., Said, S. Al, Althubiti, N., Ky, N. Anh, Asner, D. M., Atmacan, H., Aushev, T., Aushev, V., Aversano, M., Ayad, R., Babu, V., Bae, H., Baghel, N. K., Bahinipati, S., Bambade, P., Banerjee, Sw., Bansal, S., Barrett, M., Bartl, M., Baudot, J., Baur, A., Beaubien, A., Becherer, F., Becker, J., Belous, K., Bennett, J. V., Bernlochner, F. U., Bertacchi, V., Bertemes, M., Bertholet, E., Bessner, M., Bettarini, S., Bhardwaj, V., Bhuyan, B., Bianchi, F., Bierwirth, L., Bilka, T., Biswas, D., Bobrov, A., Bodrov, D., Bolz, A., Bondar, A., Borah, J., Boschetti, A., Bozek, A., Bračko, M., Branchini, P., Briere, R. A., Browder, T. E., Budano, A., Bussino, S., Campagna, Q., Campajola, M., Cao, L., Casarosa, G., Cecchi, C., Cerasoli, J., Chang, M. -C., Chang, P., Cheaib, R., Cheema, P., Cheon, B. G., Chilikin, K., Chirapatpimol, K., Cho, H. -E., Cho, K., Cho, S. -J., Choi, S. -K., Choudhury, S., Cochran, J., Corona, L., Cui, J. X., Dattola, F., De La Cruz-Burelo, E., De La Motte, S. A., De Nardo, G., De Nuccio, M., De Pietro, G., de Sangro, R., Destefanis, M., Dey, S., Dhamija, R., Di Canto, A., Di Capua, F., Dingfelder, J., Doležal, Z., Jiménez, I. Domínguez, Dong, T. V., Dorner, D., Dort, K., Dossett, D., Dreyer, S., Dubey, S., Dugic, K., Dujany, G., Ecker, P., Eliachevitch, M., Epifanov, D., Feichtinger, P., Ferber, T., Fillinger, T., Finck, C., Finocchiaro, G., Fodor, A., Forti, F., Frey, A., Fulsom, B. G., Gabrielli, A., Ganiev, E., Garcia-Hernandez, M., Garg, R., Gaudino, G., Gaur, V., Gellrich, A., Ghevondyan, G., Ghosh, D., Ghumaryan, H., Giakoustidis, G., Giordano, R., Giri, A., Gironell, P. Gironella, Glazov, A., Gobbo, B., Godang, R., Goldenzweig, P., Graziani, E., Greenwald, D., Gruberová, Z., Gu, T., Guan, Y., Gudkova, K., Haide, I., Halder, S., Han, Y., Hara, T., Harris, C., Hayasaka, K., Hayashii, H., Hazra, S., Hedges, M. T., Heidelbach, A., de la Cruz, I. Heredia, Villanueva, M. Hernández, Higuchi, T., Hoek, M., Hohmann, M., Hoppe, R., Horak, P., Hsu, C. -L., Humair, T., Iijima, T., Inami, K., Ipsita, N., Ishikawa, A., Itoh, R., Iwasaki, M., Jackson, P., Jacobs, W. W., Jang, E. -J., Ji, Q. P., Jia, S., Jin, Y., Johnson, A., Joo, K. K., Junkerkalefeld, H., Kaleta, M., Kalita, D., Kaliyar, A. B., Kandra, J., Kang, K. H., Kang, S., Karyan, G., Kawasaki, T., Keil, F., Ketter, C., Kiesling, C., Kim, C. -H., Kim, D. Y., Kim, J. -Y., Kim, K. -H., Kim, Y. -K., Kim, Y. J., Kindo, H., Kinoshita, K., Kodyš, P., Koga, T., Kohani, S., Kojima, K., Korobov, A., Korpar, S., Kovalenko, E., Križan, P., Krokovny, P., Kuhr, T., Kulii, Y., Kumar, D., Kumar, J., Kumar, M., Kumar, R., Kumara, K., Kunigo, T., Kuzmin, A., Kwon, Y. -J., Lacaprara, S., Lalwani, K., Lam, T., Lanceri, L., Lange, J. S., Lau, T. S., Laurenza, M., Lautenbach, K., Leboucher, R., Diberder, F. R. Le, Lee, M. J., Lemettais, C., Leo, P., Levit, D., Lewis, P. M., Li, L. K., Li, Q. M., Li, S. X., Li, W. Z., Li, Y., Li, Y. B., Liao, Y. P., Libby, J., Lin, J., Liptak, Z., Liu, M. H., Liu, Q. Y., Liu, Y., Liu, Z. Q., Liventsev, D., Longo, S., Lueck, T., Lyu, C., Ma, Y., Madaan, C., Maggiora, M., Maharana, S. P., Maiti, R., Maity, S., Mancinelli, G., Manfredi, R., Manoni, E., Mantovano, M., Marcantonio, D., Marcello, S., Marinas, C., Martellini, C., Martens, A., Martini, A., Martinov, T., Massaccesi, L., Masuda, M., Matvienko, D., Maurya, S. K., Maushart, M., McKenna, J. A., Meier, F., Merola, M., Metzner, F., Miller, C., Mirra, M., Mitra, S., Miyabayashi, K., Mizuk, R., Mohanty, G. B., Mondal, S., Moneta, S., Moser, H. -G., Mrvar, M., Mussa, R., Nakamura, I., Nakao, M., Nakazawa, Y., Naruki, M., Natkaniec, Z., Natochii, A., Nayak, M., Nazaryan, G., Neu, M., Niebuhr, C., Niiyama, M., Nishida, S., Ogawa, S., Onishchuk, Y., Ono, H., Onuki, Y., Otani, F., Pakhlov, P., Pakhlova, G., Paoloni, E., Pardi, S., Parham, K., Park, H., Park, J., Park, K., Park, S. -H., Paschen, B., Passeri, A., Patra, S., Paul, S., Pedlar, T. K., Peschke, R., Pestotnik, R., Piccolo, M., Piilonen, L. E., Angioni, G. Pinna, Podesta-Lerma, P. L. M., Podobnik, T., Pokharel, S., Praz, C., Prell, S., Prencipe, E., Prim, M. T., Prudiiev, I., Purwar, H., Rados, P., Raeuber, G., Raiz, S., Rauls, N., Ravindran, K., Rehman, J. U., Reif, M., Reiter, S., Remnev, M., Reuter, L., Herrmann, D. Ricalde, Ripp-Baudot, I., Rizzo, G., Roehrken, M., Roney, J. M., Rostomyan, A., Rout, N., Sanders, D. A., Sandilya, S., Santelj, L., Sato, Y., Savinov, V., Scavino, B., Schmitt, C., Schneider, S., Schnell, G., Schnepf, M., Schwanda, C., Schwartz, A. J., Seino, Y., Selce, A., Senyo, K., Serrano, J., Sevior, M. E., Sfienti, C., Shan, W., Sharma, C., Shen, C. P., Shi, X. D., Shillington, T., Shimasaki, T., Shiu, J. -G., Shtol, D., Sibidanov, A., Simon, F., Singh, J. B., Skorupa, J., Sobotzik, M., Soffer, A., Sokolov, A., Solovieva, E., Song, W., Spataro, S., Spruck, B., Starič, M., Stavroulakis, P., Stefkova, S., Stroili, R., Strube, J., Sue, Y., Sumihama, M., Sumisawa, K., Sutcliffe, W., Suwonjandee, N., Svidras, H., Takahashi, M., Takizawa, M., Tamponi, U., Tanaka, S., Tanida, K., Tenchini, F., Thaller, A., Tittel, O., Tiwary, R., Torassa, E., Trabelsi, K., Tsaklidis, I., Ueda, I., Uglov, T., Unger, K., Unno, Y., Uno, K., Uno, S., Urquijo, P., Ushiroda, Y., Vahsen, S. E., van Tonder, R., Varvell, K. E., Veronesi, M., Vinokurova, A., Vismaya, V. S., Vitale, L., Vobbilisetti, V., Volpe, R., Vossen, A., Wach, B., Wakai, M., Wallner, S., Wang, B., Wang, E., Wang, M. -Z., Wang, X. L., Wang, Z., Warburton, A., Watanabe, M., Watanuki, S., Wessel, C., Wiechczynski, J., Won, E., Xu, X. P., Yabsley, B. D., Yamada, S., Yang, S. B., Yasaveev, M., Yelton, J., Yin, J. H., Yook, Y. M., Yoshihara, K., Yuan, C. Z., Yuan, J., Yusa, Y., Zani, L., Zeng, F., Zhang, B., Zhilich, V., Zhou, J. S., Zhou, Q. D., Zhukova, V. I., and Žlebčík, R.
- Subjects
High Energy Physics - Experiment - Abstract
We report measurements of the absolute branching fractions $\mathcal{B}(B_s^0 \to D_s^{\pm} X)$, $\mathcal{B}(B_s^0 \to D^0/\bar{D}^0 X)$, and $\mathcal{B}(B_s^0 \to D^{\pm} X)$, where the latter is measured for the first time. The results are based on a 121.4\,fb$^{-1}$ data sample collected at the $\Upsilon(10860)$ resonance by the Belle detector at the KEKB asymmetric-energy $e^+ e^-$ collider. We reconstruct one $B_s^0$ meson in $e^+e^- \to \Upsilon(10860) \to B_s^{*} \bar{B}_s^{*}$ events and measure yields of $D_s^+$, $D^0$, and $D^+$ mesons in the rest of the event. We obtain $\mathcal{B}(B_s^0 \to D_s^{\pm} X) = (68.6 \pm 7.2 \pm 4.0)\%$, $\mathcal{B}(B_s^0 \to D^0/\bar{D}^0 X) = (21.5 \pm 6.1 \pm 1.8)\%$, and $\mathcal{B}(B_s^0 \to D^{\pm} X) = (12.6 \pm 4.6 \pm 1.3)\%$, where the first uncertainty is statistical and the second is systematic. Averaging with previous Belle measurements gives $\mathcal{B}(B_s^0 \to D_s^{\pm} X) = (63.4 \pm 4.5 \pm 2.2)\%$ and $\mathcal{B}(B_s^0 \to D^0/\bar{D}^0 X) = (23.9 \pm 4.1 \pm 1.8)\%$. For the $B_s^0$ production fraction at the $\Upsilon(10860)$, we find $f_s = (21.4^{+1.5}_{-1.7})\%$., Comment: 23 pages, 9 figures, submitted to JHEP
- Published
- 2024
3. Intelligent Pooling: Proactive Resource Provisioning in Large-scale Cloud Service
- Author
-
Ravikumar, Deepak, Yeo, Alex, Zhu, Yiwen, Lakra, Aditya, Nagulapalli, Harsha, Ravindran, Santhosh Kumar, Suh, Steve, Dutta, Niharika, Fogarty, Andrew, Park, Yoonjae, Khushalani, Sumeet, Tarafdar, Arijit, Parekh, Kunal, and Krishnan, Subru
- Subjects
Computer Science - Databases - Abstract
The proliferation of big data and analytic workloads has driven the need for cloud compute and cluster-based job processing. With Apache Spark, users can process terabytes of data at ease with hundreds of parallel executors. At Microsoft, we aim at providing a fast and succinct interface for users to run Spark applications, such as through creating simple notebook "sessions" by abstracting the underlying complexity of the cloud. Providing low latency access to Spark clusters and sessions is a challenging problem due to the large overheads of cluster creation and session startup. In this paper, we introduce Intelligent Pooling, a system for proactively provisioning compute resources to combat the aforementioned overheads. To reduce the COGS (cost-of-goods-sold), our system (1) predicts usage patterns using an innovative hybrid Machine Learning (ML) model with low latency and high accuracy; and (2) optimizes the pool size dynamically to meet customer demand while reducing extraneous COGS. The proposed system auto-tunes its hyper-parameters to balance between performance and operational cost with minimal to no engineering input. Evaluated using large-scale production data, Intelligent Pooling achieves up to 43% reduction in cluster idle time compared to static pooling when targeting 99% pool hit rate. Currently deployed in production, Intelligent Pooling is on track to save tens of million dollars in COGS per year as compared to traditional pre-provisioned pools.
- Published
- 2024
- Full Text
- View/download PDF
4. Measurement of $B \to K{}^{*}(892)\gamma$ decays at Belle II
- Author
-
Belle II Collaboration, Adachi, I., Aggarwal, L., Ahmed, H., Aihara, H., Akopov, N., Aloisio, A., Althubiti, N., Ky, N. Anh, Asner, D. M., Atmacan, H., Aushev, T., Aushev, V., Aversano, M., Ayad, R., Babu, V., Bae, H., Baghel, N. K., Bahinipati, S., Bambade, P., Banerjee, Sw., Bansal, S., Barrett, M., Bartl, M., Baudot, J., Baur, A., Beaubien, A., Becherer, F., Becker, J., Bennett, J. V., Bernlochner, F. U., Bertacchi, V., Bertemes, M., Bertholet, E., Bessner, M., Bettarini, S., Bhardwaj, V., Bhuyan, B., Bianchi, F., Bierwirth, L., Bilka, T., Biswas, D., Bobrov, A., Bodrov, D., Bolz, A., Bondar, A., Borah, J., Boschetti, A., Bozek, A., Bračko, M., Branchini, P., Briere, R. A., Browder, T. E., Budano, A., Bussino, S., Campagna, Q., Campajola, M., Cao, L., Casarosa, G., Cecchi, C., Cerasoli, J., Chang, M. -C., Chang, P., Cheaib, R., Cheema, P., Chen, C., Cheon, B. G., Chilikin, K., Chirapatpimol, K., Cho, H. -E., Cho, K., Cho, S. -J., Choi, S. -K., Choudhury, S., Cochran, J., Corona, L., Cui, J. X., Dattola, F., De La Cruz-Burelo, E., De La Motte, S. A., de Marino, G., De Nardo, G., De Pietro, G., de Sangro, R., Destefanis, M., Dey, S., Dhamija, R., Di Canto, A., Di Capua, F., Dingfelder, J., Doležal, Z., Jiménez, I. Domínguez, Dong, T. V., Dorigo, M., Dort, K., Dossett, D., Dubey, S., Dugic, K., Dujany, G., Ecker, P., Eliachevitch, M., Feichtinger, P., Ferber, T., Fillinger, T., Finck, C., Finocchiaro, G., Fodor, A., Forti, F., Frey, A., Fulsom, B. G., Gabrielli, A., Ganiev, E., Garcia-Hernandez, M., Garg, R., Gaudino, G., Gaur, V., Gaz, A., Gellrich, A., Ghevondyan, G., Ghosh, D., Ghumaryan, H., Giakoustidis, G., Giordano, R., Giri, A., Gironell, P. Gironella, Glazov, A., Gobbo, B., Godang, R., Gogota, O., Goldenzweig, P., Gradl, W., Graziani, E., Greenwald, D., Gruberová, Z., Gu, T., Guan, Y., Gudkova, K., Haide, I., Halder, S., Han, Y., Hara, T., Harris, C., Hayasaka, K., Hayashii, H., Hazra, S., Hearty, C., Hedges, M. T., Heidelbach, A., de la Cruz, I. Heredia, Villanueva, M. Hernández, Higuchi, T., Hoek, M., Hohmann, M., Hoppe, R., Horak, P., Hsu, C. -L., Humair, T., Iijima, T., Inami, K., Ipsita, N., Ishikawa, A., Itoh, R., Iwasaki, M., Jackson, P., Jacobs, W. W., Jang, E. -J., Jia, S., Jin, Y., Johnson, A., Joo, K. K., Junkerkalefeld, H., Kaleta, M., Kalita, D., Kaliyar, A. B., Kandra, J., Kang, K. H., Kang, S., Karyan, G., Kawasaki, T., Keil, F., Ketter, C., Kiesling, C., Kim, C. -H., Kim, D. Y., Kim, J. -Y., Kim, K. -H., Kim, Y. -K., Kim, Y. J., Kindo, H., Kinoshita, K., Kodyš, P., Koga, T., Kohani, S., Kojima, K., Korobov, A., Korpar, S., Kovalenko, E., Kowalewski, R., Križan, P., Krokovny, P., Kuhr, T., Kulii, Y., Kumar, D., Kumar, M., Kumara, K., Kunigo, T., Kuzmin, A., Kwon, Y. -J., Lacaprara, S., Lai, Y. -T., Lalwani, K., Lam, T., Lanceri, L., Lange, J. S., Lau, T. S., Laurenza, M., Leboucher, R., Diberder, F. R. Le, Lee, M. J., Lemettais, C., Leo, P., Levit, D., Lewis, P. M., Li, C., Li, L. K., Li, Q. M., Li, S. X., Li, W. Z., Li, Y., Li, Y. B., Liao, Y. P., Libby, J., Lin, J., Liptak, Z., Liu, M. H., Liu, Q. Y., Liu, Y., Liu, Z. Q., Liventsev, D., Longo, S., Lyu, C., Ma, Y., Madaan, C., Maggiora, M., Maharana, S. P., Maiti, R., Maity, S., Mancinelli, G., Manfredi, R., Manoni, E., Mantovano, M., Marcantonio, D., Marcello, S., Marinas, C., Martellini, C., Martens, A., Martini, A., Martinov, T., Massaccesi, L., Masuda, M., Matsuda, T., Matsuoka, K., Matvienko, D., Maurya, S. K., Maushart, M., McKenna, J. A., Mehta, R., Meier, F., Merola, M., Metzner, F., Miller, C., Mirra, M., Mitra, S., Miyabayashi, K., Mizuk, R., Mohanty, G. B., Mondal, S., Moneta, S., Moser, H. -G., Mrvar, M., Mussa, R., Nakamura, I., Nakao, M., Nakazawa, Y., Naruki, M., Natkaniec, Z., Natochii, A., Nayak, M., Nazaryan, G., Neu, M., Niebuhr, C., Niiyama, M., Nishida, S., Ogawa, S., Onishchuk, Y., Ono, H., Onuki, Y., Otani, F., Pakhlov, P., Pakhlova, G., Paoloni, E., Pardi, S., Parham, K., Park, H., Park, J., Park, K., Park, S. -H., Paschen, B., Passeri, A., Patra, S., Paul, S., Pedlar, T. K., Peruzzi, I., Peschke, R., Pestotnik, R., Piccolo, M., Piilonen, L. E., Angioni, G. Pinna, Podesta-Lerma, P. L. M., Podobnik, T., Pokharel, S., Praz, C., Prell, S., Prencipe, E., Prim, M. T., Prudiiev, I., Purwar, H., Rados, P., Raeuber, G., Raiz, S., Rauls, N., Ravindran, K., Rehman, J. U., Reif, M., Reiter, S., Remnev, M., Reuter, L., Herrmann, D. Ricalde, Ripp-Baudot, I., Rizzo, G., Robertson, S. H., Roehrken, M., Roney, J. M., Rostomyan, A., Rout, N., Sanders, D. A., Sandilya, S., Santelj, L., Sato, Y., Savinov, V., Scavino, B., Schmitt, C., Schneider, S., Schnepf, M., Schwanda, C., Schwartz, A. J., Seino, Y., Selce, A., Senyo, K., Serrano, J., Sevior, M. E., Sfienti, C., Shan, W., Sharma, C., Shen, C. P., Shi, X. D., Shillington, T., Shimasaki, T., Shiu, J. -G., Shtol, D., Shwartz, B., Sibidanov, A., Simon, F., Singh, J. B., Skorupa, J., Sobie, R. J., Sobotzik, M., Soffer, A., Sokolov, A., Solovieva, E., Song, W., Spataro, S., Spruck, B., Starič, M., Stavroulakis, P., Stefkova, S., Stroili, R., Strube, J., Sue, Y., Sumihama, M., Sumisawa, K., Sutcliffe, W., Suwonjandee, N., Svidras, H., Takahashi, M., Takizawa, M., Tamponi, U., Tanida, K., Tenchini, F., Thaller, A., Tittel, O., Tiwary, R., Torassa, E., Trabelsi, K., Tsaklidis, I., Ueda, I., Uglov, T., Unger, K., Unno, Y., Uno, K., Uno, S., Urquijo, P., Ushiroda, Y., Vahsen, S. E., van Tonder, R., Varvell, K. E., Veronesi, M., Vinokurova, A., Vismaya, V. S., Vitale, L., Vobbilisetti, V., Volpe, R., Vossen, A., Wach, B., Wakai, M., Wallner, S., Wang, E., Wang, M. -Z., Wang, X. L., Wang, Z., Warburton, A., Watanabe, M., Watanuki, S., Wessel, C., Won, E., Xu, X. P., Yabsley, B. D., Yamada, S., Yan, W., Yang, S. B., Yelton, J., Yin, J. H., Yook, Y. M., Yoshihara, K., Yuan, C. Z., Yuan, J., Zani, L., Zeng, F., Zhang, B., Zhilich, V., Zhou, J. S., Zhou, Q. D., Zhukova, V. I., and Žlebčík, R.
- Subjects
High Energy Physics - Experiment - Abstract
We present measurements of $B \to K{}^{*}(892)\gamma$ decays using $365\,{\rm fb}^{-1}$ of data collected from 2019 to 2022 by the Belle~II experiment at the SuperKEKB asymmetric-energy $e^+e^-$ collider. The data sample contains $(387 \pm 6) \times 10^6$ $B\overline{B}$ events. We measure branching fractions ($\mathcal{B}$) and $C\!P$ asymmetries ($\mathcal{A}_{C\!P}$) for both $B^{0}\to K{}^{*0}\gamma$ and $B^{+}\to K{}^{*+}\gamma$ decays. The difference in $C\!P$ asymmetries ($\Delta \mathcal{A}_{C\!P}$) and the isospin asymmetry ($\Delta_{0+}$) between these neutral and charged channels are also measured. We obtain the following branching fractions and $C\!P$ asymmetries: $\mathcal{B} (B^{0} \to K{}^{*0}\gamma) = (4.14 \pm 0.10 \pm 0.11 ) \times 10^{-5}$, $\mathcal{B} (B^{+} \to K{}^{*+}\gamma) = (4.02 \pm 0.13 \pm 0.13 )\times 10^{-5}$, $\mathcal{A}_{C\!P} (B^{0} \to K{}^{*0}\gamma) = (-3.3 \pm 2.3 \pm 0.4 )\%$, and $\mathcal{A}_{C\!P} (B^{+} \to K{}^{*+}\gamma) = (-0.7 \pm 2.9 \pm 0.6 )\%$. The measured difference in $C\!P$ asymmetries is $\Delta \mathcal{A}_{C\!P} = (+2.6 \pm 3.8 \pm 0.7 )\%$, and the measured isospin asymmetry is $\Delta_{0+} = (+5.0 \pm 2.0 \pm 1.5 )\%$. The first uncertainties listed are statistical and the second are systematic. These results are consistent with world-average values and theory predictions.
- Published
- 2024
5. Neutrinoless Double Beta Decay Sensitivity of the XLZD Rare Event Observatory
- Author
-
XLZD Collaboration, Aalbers, J., Abe, K., Adrover, M., Maouloud, S. Ahmed, Akerib, D. S., Musalhi, A. K. Al, Alder, F., Althueser, L., Amaral, D. W. P., Amarasinghe, C. S., Ames, A., Andrieu, B., Angelides, N., Angelino, E., Antunovic, B., Aprile, E., Araújo, H. M., Armstrong, J. E., Arthurs, M., Babicz, M., Bajpai, D., Baker, A., Balzer, M., Bang, J., Barberio, E., Bargemann, J. W., Barillier, E., Basharina-Freshville, A., Baudis, L., Bauer, D., Bazyk, M., Beattie, K., Beaupere, N., Bell, N. F., Bellagamba, L., Benson, T., Bhatti, A., Biesiadzinski, T. P., Biondi, R., Biondi, Y., Birch, H. J., Bishop, E., Bismark, A., Boehm, C., Boese, K., Bolotnikov, A., Brás, P., Braun, R., Breskin, A., Brew, C. A. J., Brommer, S., Brown, A., Bruni, G., Budnik, R., Burdin, S., Cai, C., Capelli, C., Carini, G., Carmona-Benitez, M. C., Carter, M., Chauvin, A., Chawla, A., Chen, H., Cherwinka, J. J., Chin, Y. T., Chott, N. I., Chavez, A. P. Cimental, Clark, K., Colijn, A. P., Colling, D. J., Conrad, J., Converse, M. V., Coronel, R., Costanzo, D., Cottle, A., Cox, G., Cuenca-García, J. J., Curran, D., Cussans, D., D'Andrea, V., Garcia, L. C. Daniel, Darlington, I., Dave, S., David, A., Davies, G. J., Decowski, M. P., Deisting, A., Delgaudio, J., Dey, S., Di Donato, C., Di Felice, L., Di Gangi, P., Diglio, S., Ding, C., Dobson, J. E. Y., Doerenkamp, M., Drexlin, G., Druszkiewicz, E., Dunbar, C. L., Eitel, K., Elykov, A., Engel, R., Eriksen, S. R., Fayer, S., Fearon, N. M., Ferella, A. D., Ferrari, C., Fieldhouse, N., Fischer, H., Flaecher, H., Flehmke, T., Flierman, M., Fraser, E. D., Fruth, T. M. A., Fujikawa, K., Fulgione, W., Fuselli, C., Gaemers, P., Gaior, R., Gaitskell, R. J., Gallice, N., Galloway, M., Gao, F., Garroum, N., Geffre, A., Genovesi, J., Ghag, C., Ghosh, S., Giacomobono, R., Gibbons, R., Girard, F., Glade-Beucke, R., Glück, F., Gokhale, S., Grandi, L., Green, J., Grigat, J., van der Grinten, M. G. D., Größle, R., Guan, H., Guida, M., Gyorgy, P., Haiston, J. J., Hall, C. R., Hall, T., Hammann, R., Hannen, V., Hansmann-Menzemer, S., Hargittai, N., Hartigan-O'Connor, E., Haselschwardt, S. J., Hernandez, M., Hertel, S. A., Higuera, A., Hils, C., Hiraoka, K., Hoetzsch, L., Hoferichter, M., Homenides, G. J., Hood, N. F., Horn, M., Huang, D. Q., Hughes, S., Hunt, D., Iacovacci, M., Itow, Y., Jacquet, E., Jakob, J., James, R. S., Joerg, F., Jones, S., Kaboth, A. C., Kahlert, F., Kamaha, A. C., Kaminaga, Y., Kara, M., Kavrigin, P., Kazama, S., Keller, M., Kemp-Russell, P., Khaitan, D., Kharbanda, P., Kilminster, B., Kim, J., Kirk, R., Kleifges, M., Klute, M., Kobayashi, M., Kodroff, D., Koke, D., Kopec, A., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., von Krosigk, B., Kudryavtsev, V. A., Kuger, F., Kurita, N., Landsman, H., Lang, R. F., Lawes, C., Lee, J., Lehnert, B., Leonard, D. S., Lesko, K. T., Levinson, L., Li, A., Li, I., Li, S., Liang, S., Liang, Z., Lin, J., Lin, Y. -T., Lindemann, S., Linden, S., Lindner, M., Lindote, A., Lippincott, W. H., Liu, K., Loizeau, J., Lombardi, F., Lopes, J. A. M., Lopes, M. I., Lorenzon, W., Loutit, M., Lu, C., Lucchetti, G. M., Luce, T., Luitz, S., Ma, Y., Macolino, C., Mahlstedt, J., Maier, B., Majewski, P. A., Manalaysay, A., Mancuso, A., Manenti, L., Mannino, R. L., Marignetti, F., Marley, T., Undagoitia, T. Marrodán, Martens, K., Masbou, J., Masson, E., Mastroianni, S., Maupin, C., McCabe, C., McCarthy, M. E., McKinsey, D. N., McLaughlin, J. B., Melchiorre, A., Menéndez, J., Messina, M., Miller, E. H., Milosovic, B., Milutinovic, S., Miuchi, K., Miyata, R., Mizrachi, E., Molinario, A., Monteiro, C. M. B., Monzani, M. E., Morå, K., Moriyama, S., Morrison, E., Morteau, E., Mosbacher, Y., Mount, B. J., Müller, J., Murdy, M., Murphy, A. St. J., Murra, M., Naylor, A., Nelson, H. N., Neves, F., Newstead, J. L., Nguyen, A., Ni, K., O'Hare, C., Oberlack, U., Obradovic, M., Olcina, I., Oliver-Mallory, K. C., Gann, G. D. Orebi, Orpwood, J., Ostrowskiy, I., Ouahada, S., Oyulmaz, K., Paetsch, B., Palladino, K. J., Palmer, J., Pan, Y., Pandurovic, M., Pannifer, N. J., Paramesvaran, S., Patton, S. J., Pellegrini, Q., Penning, B., Pereira, G., Peres, R., Perry, E., Pershing, T., Piastra, F., Pienaar, J., Piepke, A., Pierre, M., Plante, G., Pollmann, T. R., Principe, L., Qi, J., Qiao, K., Qie, Y., Qin, J., Radeka, S., Radeka, V., Rajado, M., García, D. Ramírez, Ravindran, A., Razeto, A., Reichenbacher, J., Rhyne, C. A., Richards, A., Rischbieter, G. R. C., Riyat, H. S., Rosero, R., Roy, A., Rushton, T., Rynders, D., Saakyan, R., Sanchez, L., Sanchez-Lucas, P., Santone, D., Santos, J. M. F. dos, Sartorelli, G., Sazzad, A. B. M. R., Scaffidi, A., Schnee, R. W., Schreiner, J., Schulte, P., Schulze, H., Eißing, Schumann, M., Schwenck, A., Schwenk, A., Lavina, L. Scotto, Selvi, M., Semeria, F., Shagin, P., Sharma, S., Shaw, S., Shen, W., Sherman, L., Shi, S., Shi, S. Y., Shimada, T., Shutt, T., Silk, J. J., Silva, C., Simgen, H., Sinev, G., Singh, R., Siniscalco, J., Solmaz, M., Solovov, V. N., Song, Z., Sorensen, P., Soria, J., Stanley, O., Steidl, M., Stenhouse, T., Stevens, A., Stifter, K., Sumner, T. J., Takeda, A., Tan, P. -L., Taylor, D. J., Taylor, W. C., Thers, D., Thümmler, T., Tiedt, D. R., Tönnies, F., Tong, Z., Toschi, F., Tovey, D. R., Tranter, J., Trask, M., Trinchero, G., Tripathi, M., Tronstad, D. R., Trotta, R., Tunnell, C. D., Urquijo, P., Usón, A., Utoyama, M., Vaitkus, A. C., Valentino, O., Valerius, K., Vecchi, S., Velan, V., Vetter, S., de Viveiros, L., Volta, G., Vorkapic, D., Wang, A., Wang, J. J., Wang, W., Wang, Y., Waters, D., Weerman, K. M., Weinheimer, C., Weiss, M., Wenz, D., Whitis, T. J., Wild, K., Williams, M., Wilson, M., Wilson, S. T., Wittweg, C., Wolf, J., Wolfs, F. L. H., Woodford, S., Woodward, D., Worcester, M., Wright, C. J., Wu, V. H. S., üstling, S. W, Wurm, M., Xia, Q., Xing, Y., Xu, D., Xu, J., Xu, Y., Xu, Z., Yamashita, M., Yang, L., Ye, J., Yeh, M., Yu, B., Zavattini, G., Zha, W., Zhong, M., and Zuber, K.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment ,Nuclear Experiment - Abstract
The XLZD collaboration is developing a two-phase xenon time projection chamber with an active mass of 60 to 80 t capable of probing the remaining WIMP-nucleon interaction parameter space down to the so-called neutrino fog. In this work we show that, based on the performance of currently operating detectors using the same technology and a realistic reduction of radioactivity in detector materials, such an experiment will also be able to competitively search for neutrinoless double beta decay in $^{136}$Xe using a natural-abundance xenon target. XLZD can reach a 3$\sigma$ discovery potential half-life of 5.7$\times$10$^{27}$ yr (and a 90% CL exclusion of 1.3$\times$10$^{28}$ yr) with 10 years of data taking, corresponding to a Majorana mass range of 7.3-31.3 meV (4.8-20.5 meV). XLZD will thus exclude the inverted neutrino mass ordering parameter space and will start to probe the normal ordering region for most of the nuclear matrix elements commonly considered by the community., Comment: 29 pages, 7 figures
- Published
- 2024
6. The XLZD Design Book: Towards the Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics
- Author
-
XLZD Collaboration, Aalbers, J., Abe, K., Adrover, M., Maouloud, S. Ahmed, Akerib, D. S., Musalhi, A. K. Al, Alder, F., Althueser, L., Amaral, D. W. P., Amarasinghe, C. S., Ames, A., Andrieu, B., Angelides, N., Angelino, E., Antunovic, B., Aprile, E., Araújo, H. M., Armstrong, J. E., Arthurs, M., Babicz, M., Bajpai, D., Baker, A., Balzer, M., Bang, J., Barberio, E., Bargemann, J. W., Barillier, E., Basharina-Freshville, A., Baudis, L., Bauer, D., Bazyk, M., Beattie, K., Beaupere, N., Bell, N. F., Bellagamba, L., Benson, T., Bhatti, A., Biesiadzinski, T. P., Biondi, R., Biondi, Y., Birch, H. J., Bishop, E., Bismark, A., Boehm, C., Boese, K., Bolotnikov, A., Brás, P., Braun, R., Breskin, A., Brew, C. A. J., Brommer, S., Brown, A., Bruni, G., Budnik, R., Burdin, S., Cai, C., Capelli, C., Carini, G., Carmona-Benitez, M. C., Carter, M., Chauvin, A., Chawla, A., Chen, H., Cherwinka, J. J., Chin, Y. T., Chott, N. I., Chavez, A. P. Cimental, Clark, K., Colijn, A. P., Colling, D. J., Conrad, J., Converse, M. V., Coronel, R., Costanzo, D., Cottle, A., Cox, G., Cuenca-García, J. J., Curran, D., Cussans, D., D'Andrea, V., Garcia, L. C. Daniel, Darlington, I., Dave, S., David, A., Davies, G. J., Decowski, M. P., Deisting, A., Delgaudio, J., Dey, S., Di Donato, C., Di Felice, L., Di Gangi, P., Diglio, S., Ding, C., Dobson, J. E. Y., Doerenkamp, M., Drexlin, G., Druszkiewicz, E., Dunbar, C. L., Eitel, K., Elykov, A., Engel, R., Eriksen, S. R., Fayer, S., Fearon, N. M., Ferella, A. D., Ferrari, C., Fieldhouse, N., Fischer, H., Flaecher, H., Flehmke, T., Flierman, M., Fraser, E. D., Fruth, T. M. A., Fujikawa, K., Fulgione, W., Fuselli, C., Gaemers, P., Gaior, R., Gaitskell, R. J., Gallice, N., Galloway, M., Gao, F., Garroum, N., Geffre, A., Genovesi, J., Ghag, C., Ghosh, S., Giacomobono, R., Gibbons, R., Girard, F., Glade-Beucke, R., Glück, F., Gokhale, S., Grandi, L., Green, J., Grigat, J., van der Grinten, M. G. D., Größle, R., Guan, H., Guida, M., Gyorgy, P., Haiston, J. J., Hall, C. R., Hall, T., Hammann, R., Hannen, V., Hansmann-Menzemer, S., Hargittai, N., Hartigan-O'Connor, E., Haselschwardt, S. J., Hernandez, M., Hertel, S. A., Higuera, A., Hils, C., Hiraoka, K., Hoetzsch, L., Hoferichter, M., Homenides, G. J., Hood, N. F., Horn, M., Huang, D. Q., Hughes, S., Hunt, D., Iacovacci, M., Itow, Y., Jacquet, E., Jakob, J., James, R. S., Joerg, F., Jones, S., Kaboth, A. C., Kahlert, F., Kamaha, A. C., Kaminaga, Y., Kara, M., Kavrigin, P., Kazama, S., Keller, M., Kemp-Russell, P., Khaitan, D., Kharbanda, P., Kilminster, B., Kim, J., Kirk, R., Kleifges, M., Klute, M., Kobayashi, M., Kodroff, D., Koke, D., Kopec, A., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., von Krosigk, B., Kudryavtsev, V. A., Kuger, F., Kurita, N., Landsman, H., Lang, R. F., Lawes, C., Lee, J., Lehnert, B., Leonard, D. S., Lesko, K. T., Levinson, L., Li, A., Li, I., Li, S., Liang, S., Liang, Z., Lin, J., Lin, Y. -T., Lindemann, S., Linden, S., Lindner, M., Lindote, A., Lippincott, W. H., Liu, K., Loizeau, J., Lombardi, F., Lopes, J. A. M., Lopes, M. I., Lorenzon, W., Loutit, M., Lu, C., Lucchetti, G. M., Luce, T., Luitz, S., Ma, Y., Macolino, C., Mahlstedt, J., Maier, B., Majewski, P. A., Manalaysay, A., Mancuso, A., Manenti, L., Mannino, R. L., Marignetti, F., Marley, T., Undagoitia, T. Marrodán, Martens, K., Masbou, J., Masson, E., Mastroianni, S., Maupin, C., McCabe, C., McCarthy, M. E., McKinsey, D. N., McLaughlin, J. B., Melchiorre, A., Menéndez, J., Messina, M., Miller, E. H., Milosovic, B., Milutinovic, S., Miuchi, K., Miyata, R., Mizrachi, E., Molinario, A., Monteiro, C. M. B., Monzani, M. E., Morå, K., Moriyama, S., Morrison, E., Morteau, E., Mosbacher, Y., Mount, B. J., Müller, J., Murdy, M., Murphy, A. St. J., Murra, M., Naylor, A., Nelson, H. N., Neves, F., Newstead, J. L., Nguyen, A., Ni, K., O'Hare, C., Oberlack, U., Obradovic, M., Olcina, I., Oliver-Mallory, K. C., Gann, G. D. Orebi, Orpwood, J., Ostrowskiy, I., Ouahada, S., Oyulmaz, K., Paetsch, B., Palladino, K. J., Palmer, J., Pan, Y., Pandurovic, M., Pannifer, N. J., Paramesvaran, S., Patton, S. J., Pellegrini, Q., Penning, B., Pereira, G., Peres, R., Perry, E., Pershing, T., Piastra, F., Pienaar, J., Piepke, A., Pierre, M., Plante, G., Pollmann, T. R., Principe, L., Qi, J., Qiao, K., Qie, Y., Qin, J., Radeka, S., Radeka, V., Rajado, M., García, D. Ramírez, Ravindran, A., Razeto, A., Reichenbacher, J., Rhyne, C. A., Richards, A., Rischbieter, G. R. C., Riyat, H. S., Rosero, R., Roy, A., Rushton, T., Rynders, D., Saakyan, R., Sanchez, L., Sanchez-Lucas, P., Santone, D., Santos, J. M. F. dos, Sartorelli, G., Sazzad, A. B. M. R., Scaffidi, A., Schnee, R. W., Schreiner, J., Schulte, P., Schulze, H., Eißing, Schumann, M., Schwenck, A., Schwenk, A., Lavina, L. Scotto, Selvi, M., Semeria, F., Shagin, P., Sharma, S., Shaw, S., Shen, W., Sherman, L., Shi, S., Shi, S. Y., Shimada, T., Shutt, T., Silk, J. J., Silva, C., Simgen, H., Sinev, G., Singh, R., Siniscalco, J., Solmaz, M., Solovov, V. N., Song, Z., Sorensen, P., Soria, J., Stanley, O., Steidl, M., Stenhouse, T., Stevens, A., Stifter, K., Sumner, T. J., Takeda, A., Tan, P. -L., Taylor, D. J., Taylor, W. C., Thers, D., Thümmler, T., Tiedt, D. R., Tönnies, F., Tong, Z., Toschi, F., Tovey, D. R., Tranter, J., Trask, M., Trinchero, G., Tripathi, M., Tronstad, D. R., Trotta, R., Tunnell, C. D., Urquijo, P., Usón, A., Utoyama, M., Vaitkus, A. C., Valentino, O., Valerius, K., Vecchi, S., Velan, V., Vetter, S., de Viveiros, L., Volta, G., Vorkapic, D., Wang, A., Wang, J. J., Wang, W., Wang, Y., Waters, D., Weerman, K. M., Weinheimer, C., Weiss, M., Wenz, D., Whitis, T. J., Wild, K., Williams, M., Wilson, M., Wilson, S. T., Wittweg, C., Wolf, J., Wolfs, F. L. H., Woodford, S., Woodward, D., Worcester, M., Wright, C. J., Wu, V. H. S., üstling, S. W, Wurm, M., Xia, Q., Xing, Y., Xu, D., Xu, J., Xu, Y., Xu, Z., Yamashita, M., Yang, L., Ye, J., Yeh, M., Yu, B., Zavattini, G., Zha, W., Zhong, M., and Zuber, K.
- Subjects
High Energy Physics - Experiment ,High Energy Physics - Phenomenology ,Physics - Instrumentation and Detectors - Abstract
This report describes the experimental strategy and technologies for a next-generation xenon observatory sensitive to dark matter and neutrino physics. The detector will have an active liquid xenon target mass of 60-80 tonnes and is proposed by the XENON-LUX-ZEPLIN-DARWIN (XLZD) collaboration. The design is based on the mature liquid xenon time projection chamber technology of the current-generation experiments, LZ and XENONnT. A baseline design and opportunities for further optimization of the individual detector components are discussed. The experiment envisaged here has the capability to explore parameter space for Weakly Interacting Massive Particle (WIMP) dark matter down to the neutrino fog, with a 3$\sigma$ evidence potential for the spin-independent WIMP-nucleon cross sections as low as $3\times10^{-49}\rm cm^2$ (at 40 GeV/c$^2$ WIMP mass). The observatory is also projected to have a 3$\sigma$ observation potential of neutrinoless double-beta decay of $^{136}$Xe at a half-life of up to $5.7\times 10^{27}$ years. Additionally, it is sensitive to astrophysical neutrinos from the atmosphere, sun, and galactic supernovae., Comment: 32 pages, 14 figures
- Published
- 2024
7. LevAttention: Time, Space, and Streaming Efficient Algorithm for Heavy Attentions
- Author
-
Kannan, Ravindran, Bhattacharyya, Chiranjib, Kacham, Praneeth, and Woodruff, David P.
- Subjects
Computer Science - Machine Learning ,Computer Science - Data Structures and Algorithms - Abstract
A central problem related to transformers can be stated as follows: given two $n \times d$ matrices $Q$ and $K$, and a non-negative function $f$, define the matrix $A$ as follows: (1) apply the function $f$ to each entry of the $n \times n$ matrix $Q K^T$, and then (2) normalize each of the row sums of $A$ to be equal to $1$. The matrix $A$ can be computed in $O(n^2 d)$ time assuming $f$ can be applied to a number in constant time, but the quadratic dependence on $n$ is prohibitive in applications where it corresponds to long context lengths. For a large class of functions $f$, we show how to find all the ``large attention scores", i.e., entries of $A$ which are at least a positive value $\varepsilon$, in time with linear dependence on $n$ (i.e., $n \cdot \textrm{poly}(d/\varepsilon)$) for a positive parameter $\varepsilon > 0$. Our class of functions include all functions $f$ of the form $f(x) = |x|^p$, as explored recently in transformer models. Using recently developed tools from randomized numerical linear algebra, we prove that for any $K$, there is a ``universal set" $U \subset [n]$ of size independent of $n$, such that for any $Q$ and any row $i$, the large attention scores $A_{i,j}$ in row $i$ of $A$ all have $j \in U$. We also find $U$ in $n \cdot \textrm{poly}(d/\varepsilon)$ time. Notably, we (1) make no assumptions on the data, (2) our workspace does not grow with $n$, and (3) our algorithms can be computed in streaming and parallel settings. We call the attention mechanism that uses only the subset of keys in the universal set as LevAttention since our algorithm to identify the universal set $U$ is based on leverage scores. We empirically show the benefits of our scheme for vision transformers, showing how to train new models that use our universal set while training as well, showing that our model is able to consistently select ``important keys'' during training.
- Published
- 2024
8. Training Over a Distribution of Hyperparameters for Enhanced Performance and Adaptability on Imbalanced Classification
- Author
-
Lieberman, Kelsey, Ravindran, Swarna Kamlam, Yuan, Shuai, and Tomasi, Carlo
- Subjects
Computer Science - Machine Learning - Abstract
Although binary classification is a well-studied problem, training reliable classifiers under severe class imbalance remains a challenge. Recent techniques mitigate the ill effects of imbalance on training by modifying the loss functions or optimization methods. We observe that different hyperparameter values on these loss functions perform better at different recall values. We propose to exploit this fact by training one model over a distribution of hyperparameter values--instead of a single value--via Loss Conditional Training (LCT). Experiments show that training over a distribution of hyperparameters not only approximates the performance of several models but actually improves the overall performance of models on both CIFAR and real medical imaging applications, such as melanoma and diabetic retinopathy detection. Furthermore, training models with LCT is more efficient because some hyperparameter tuning can be conducted after training to meet individual needs without needing to retrain from scratch.
- Published
- 2024
9. Model-independent searches of new physics in DARWIN with a semi-supervised deep learning pipeline
- Author
-
Aalbers, J., Abe, K., Adrover, M., Maouloud, S. Ahmed, Althueser, L., Amaral, D. W. P., Andrieu, B., Angelino, E., Martin, D. Antón, Antunovic, B., Aprile, E., Babicz, M., Bajpai, D., Balzer, M., Barberio, E., Baudis, L., Bazyk, M., Bell, N. F., Bellagamba, L., Biondi, R., Biondi, Y., Bismark, A., Boehm, C., Boese, K., Braun, R., Breskin, A., Brommer, S., Brown, A., Bruni, G., Budnik, R., Cai, C., Capelli, C., Chauvin, A., Chavez, A. P. Cimental, Colijn, A. P., Conrad, J., Cuenca-García, J. J., D'Andrea, V., Garcia, L. C. Daniel, Decowski, M. P., Deisting, A., Di Donato, C., Di Gangi, P., Diglio, S., Doerenkamp, M., Drexlin, G., Eitel, K., Elykov, A., Engel, R., Ferella, A. D., Ferrari, C., Fischer, H., Flehmke, T., Flierman, M., Fujikawa, K., Fulgione, W., Fuselli, C., Gaemers, P., Gaior, R., Galloway, M., Gao, F., Garroum, N., Giacomobono, R., Girard, F., Glade-Beucke, R., Glück, F., Grandi, L., Grigat, J., Größle, R., Guan, H., Guida, M., Gyorgy, P., Hammann, R., Hannen, V., Hansmann-Menzemer, S., Hargittai, N., Higuera, A., Hils, C., Hiraoka, K., Hoetzsch, L., Hoferichter, M., Hood, N. F., Iacovacci, M., Itow, Y., Jakob, J., James, R. S., Joerg, F., Kahlert, F., Kaminaga, Y., Kara, M., Kavrigin, P., Kazama, S., Keller, M., Kharbanda, P., Kilminster, B., Kleifges, M., Klute, M., Kobayashi, M., Koke, D., Kopec, A., von Krosigk, B., Kuger, F., LaCascio, L., Landsman, H., Lang, R. F., Levinson, L., Li, I., Li, A., Li, S., Liang, S., Liang, Z., Lin, Y. -T., Lindemann, S., Lindner, M., Liu, K., Loizeau, J., Lombardi, F., Long, J., Lopes, J. A. M., Lucchetti, G. M., Luce, T., Ma, Y., Macolino, C., Mahlstedt, J., Maier, B., Mancuso, A., Manenti, L., Marignetti, F., Undagoitia, T. Marrodán, Martens, K., Masbou, J., Masson, E., Mastroianni, S., Melchiorre, A., Menéndez, J., Messina, M., Milosovic, B., Milutinovic, S., Miuchi, K., Miyata, R., Molinario, A., Monteiro, C. M. B., Morå, K., Moriyama, S., Morteau, E., Mosbacher, Y., Müller, J., Murra, M., Newstead, J. L., Ni, K., O'Hare, C., Oberlack, U., Obradovic, M., Ostrowskiy, I., Ouahada, S., Paetsch, B., Pan, Y., Pandurovic, M., Pellegrini, Q., Peres, R., Piastra, F., Pienaar, J., Pierre, M., Plante, G., Pollmann, T. R., Principe, L., Qi, J., Qiao, K., Qin, J., Rajado, M., García, D. Ramírez, Ravindran, A., Razeto, A., Sanchez, L., Sanchez-Lucas, P., Sartorelli, G., Scaffidi, A., Schreiner, J., Schulte, P., Eißing, H. Schulze, Schumann, M., Schwenck, A., Schwenk, A., Lavina, L. Scotto, Selvi, M., Semeria, F., Shagin, P., Sharma, S., Shen, W., Shi, S. Y., Shimada, T., Simgen, H., Singh, R., Solmaz, M., Stanley, O., Steidl, M., Stevens, A., Takeda, A., Tan, P. -L., Thers, D., Thümmler, T., Tönnies, F., Toschi, F., Trinchero, G., Trotta, R., Tunnell, C. D., Urquijo, P., Utoyama, M., Valerius, K., Vecchi, S., Vetter, S., Volta, G., Vorkapic, D., Wang, W., Weerman, K. M., Weinheimer, C., Weiss, M., Wenz, D., Wilson, M., Wittweg, C., Wolf, J., Wu, V. H. S., Wüstling, S., Wurm, M., Xing, Y., Xu, D., Xu, Z., Yamashita, M., Yang, L., Ye, J., Yuan, L., Zavattini, G., Zhong, M., and Zuber, K.
- Subjects
Physics - Instrumentation and Detectors - Abstract
We present a novel deep learning pipeline to perform a model-independent, likelihood-free search for anomalous (i.e., non-background) events in the proposed next generation multi-ton scale liquid Xenon-based direct detection experiment, DARWIN. We train an anomaly detector comprising a variational autoencoder and a classifier on extensive, high-dimensional simulated detector response data and construct a one-dimensional anomaly score optimised to reject the background only hypothesis in the presence of an excess of non-background-like events. We benchmark the procedure with a sensitivity study that determines its power to reject the background-only hypothesis in the presence of an injected WIMP dark matter signal, outperforming the classical, likelihood-based background rejection test. We show that our neural networks learn relevant energy features of the events from low-level, high-dimensional detector outputs, without the need to compress this data into lower-dimensional observables, thus reducing computational effort and information loss. For the future, our approach lays the foundation for an efficient end-to-end pipeline that eliminates the need for many of the corrections and cuts that are traditionally part of the analysis chain, with the potential of achieving higher accuracy and significant reduction of analysis time., Comment: 10 Figures, 3 Tables, 23 Pages (incl. references)
- Published
- 2024
10. Local Exchange-Correlation Potentials by Density Inversion in Solids
- Author
-
Ravindran, Visagan, Gidopoulos, Nikitas I., and Clark, Stewart J.
- Subjects
Physics - Chemical Physics ,Condensed Matter - Strongly Correlated Electrons ,Physics - Computational Physics - Abstract
Following Hollins et al. [J. Phys.: Condens. Matter 29, 04LT01 (2017)], we invert the electronic ground state densities for various semiconducting and insulating solids calculated using several density functional approximations within the generalised Kohn-Sham (GKS) scheme, Hartree-Fock (HF) theory and the LDA+$U$ method, and benchmark against standard (semi-)local functionals. The band structures from the resulting local exchange-correlation (LXC) Kohn-Sham potential for these densities are then compared with the band structures of the original GKS method. We find the LXC potential obtained from the HF density systematically predicts band gaps in good agreement with experiment, even in strongly correlated transition metal monoxides (TMOs). Furthermore, we find that the HSE06 and PBE0 hybrid functionals yield similar densities and LXC potentials, and in weakly correlated systems, these potentials are similar to PBE. For LDA+$U$ densities, the LXC potential effectively reverses the flattening of bands caused by over-localisation by a large Hubbard-$U$ value, while for meta-GGAs, we find only small differences between the GKS and LXC results demonstrating that the non-locality of meta-GGAs is weak., Comment: 26 pages, 17 figures, 4 tables
- Published
- 2024
11. Duality via Sequential Quantum Circuit in the Topological Holography Formalism
- Author
-
Vanhove, Robijn, Ravindran, Vibhu, Stephen, David T., Wen, Xiao-Gang, and Chen, Xie
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Quantum Physics - Abstract
Two quantum theories which look different but are secretly describing the same low-energy physics are said to be dual to each other. When realized in the Topological Holography formalism, duality corresponds to changing the gapped boundary condition on the top boundary of a topological field theory, which determines the symmetry of the system, while not affecting the bottom boundary where all the dynamics take place. In this paper, we show that duality in the Topological Holography formalism can be realized with a Sequential Quantum Circuit applied to the top boundary. As a consequence, the Hamiltonians before and after the duality mapping have exactly the same spectrum in the corresponding symmetry sectors, and the entanglement in the corresponding low-energy eigenstates differs by at most an area law term., Comment: 22 pages, 10 figures, 5 tables
- Published
- 2024
12. Kinetic control of ferroelectricity in ultrathin epitaxial Barium Titanate capacitors
- Author
-
Kumarasubramanian, Harish, Ravindran, Prasanna Venkat, Liu, Ting-Ran, Song, Taeyoung, Surendran, Mythili, Chen, Huandong, Buragohain, Pratyush, Tung, I-Cheng, Gupta, Arnab Sen, Steinhardt, Rachel, Young, Ian A., Shao, Yu-Tsun, Khan, Asif Islam, and Ravichandran, Jayakanth
- Subjects
Physics - Applied Physics ,Condensed Matter - Materials Science - Abstract
Ferroelectricity is characterized by the presence of spontaneous and switchable macroscopic polarization. Scaling limits of ferroelectricity have been of both fundamental and technological importance, but the probes of ferroelectricity have often been indirect due to confounding factors such as leakage in the direct electrical measurements. Recent interest in low-voltage switching electronic devices squarely puts the focus on ultrathin limits of ferroelectricity in an electronic device form, specifically on the robustness of ferroelectric characteristics such as retention and endurance for practical applications. Here, we illustrate how manipulating the kinetic energy of the plasma plume during pulsed laser deposition can yield ultrathin ferroelectric capacitor heterostructures with high bulk and interface quality, significantly low leakage currents and a broad "growth window". These heterostructures venture into previously unexplored aspects of ferroelectric properties, showcasing ultralow switching voltages ($<$0.3 V), long retention times ($>$10$^{4}$s), and high endurance ($>$10$^{11}$cycles) in 20 nm films of the prototypical perovskite ferroelectric, BaTiO$_{3}$. Our work demonstrates that materials engineering can push the envelope of performance for ferroelectric materials and devices at the ultrathin limit and opens a direct, reliable and scalable pathway to practical applications of ferroelectrics in ultralow voltage switches for logic and memory technologies.
- Published
- 2024
13. Measurement of $CP$ asymmetries in $B^0 \to K^0_S \pi^0 \gamma$ decays at Belle II
- Author
-
Belle II Collaboration, Adachi, I., Aggarwal, L., Ahmed, H., Aihara, H., Akopov, N., Aloisio, A., Ky, N. Anh, Asner, D. M., Atmacan, H., Aushev, T., Aushev, V., Aversano, M., Ayad, R., Babu, V., Bae, H., Bahinipati, S., Bambade, P., Banerjee, Sw., Bansal, S., Barrett, M., Baudot, J., Baur, A., Beaubien, A., Becherer, F., Becker, J., Bennett, J. V., Bernlochner, F. U., Bertacchi, V., Bertemes, M., Bertholet, E., Bessner, M., Bettarini, S., Bhuyan, B., Bianchi, F., Bierwirth, L., Bilka, T., Bilokin, S., Biswas, D., Bodrov, D., Bolz, A., Bondar, A., Borah, J., Boschetti, A., Bozek, A., Bračko, M., Branchini, P., Briere, R. A., Browder, T. E., Budano, A., Bussino, S., Campajola, M., Cao, L., Casarosa, G., Cecchi, C., Cerasoli, J., Chang, M. -C., Chang, P., Cheaib, R., Cheema, P., Chen, C., Cheon, B. G., Chilikin, K., Chirapatpimol, K., Cho, H. -E., Cho, K., Cho, S. -J., Choi, S. -K., Choudhury, S., Cochran, J., Corona, L., Cui, J. X., Das, S., Dattola, F., De La Cruz-Burelo, E., De La Motte, S. A., De Nardo, G., De Nuccio, M., De Pietro, G., de Sangro, R., Destefanis, M., Dey, S., Dhamija, R., Di Canto, A., Di Capua, F., Dingfelder, J., Doležal, Z., Jiménez, I. Domínguez, Dong, T. V., Dorigo, M., Dorner, D., Dort, K., Dossett, D., Dreyer, S., Dubey, S., Dugic, K., Dujany, G., Ecker, P., Eliachevitch, M., Feichtinger, P., Ferber, T., Ferlewicz, D., Fillinger, T., Finck, C., Finocchiaro, G., Fodor, A., Forti, F., Frey, A., Fulsom, B. G., Gabrielli, A., Ganiev, E., Garcia-Hernandez, M., Garg, R., Gaudino, G., Gaur, V., Gaz, A., Gellrich, A., Ghevondyan, G., Ghosh, D., Ghumaryan, H., Giakoustidis, G., Giordano, R., Giri, A., Glazov, A., Gobbo, B., Godang, R., Gogota, O., Goldenzweig, P., Gradl, W., Grammatico, T., Graziani, E., Greenwald, D., Gruberová, Z., Gu, T., Guan, Y., Gudkova, K., Halder, S., Han, Y., Hara, K., Hara, T., Hayasaka, K., Hayashii, H., Hazra, S., Hearty, C., Hedges, M. T., Heidelbach, A., de la Cruz, I. Heredia, Villanueva, M. Hernández, Higuchi, T., Hoek, M., Hohmann, M., Horak, P., Hsu, C. -L., Humair, T., Iijima, T., Inami, K., Ipsita, N., Ishikawa, A., Itoh, R., Iwasaki, M., Jackson, P., Jacobs, W. W., Jaffe, D. E., Jang, E. -J., Ji, Q. P., Jia, S., Jin, Y., Joo, K. K., Junkerkalefeld, H., Kaleta, M., Kalita, D., Kaliyar, A. B., Kandra, J., Kang, K. H., Kang, S., Karyan, G., Kawasaki, T., Keil, F., Kiesling, C., Kim, C. -H., Kim, D. Y., Kim, K. -H., Kim, Y. -K., Kindo, H., Kinoshita, K., Kodyš, P., Koga, T., Kohani, S., Kojima, K., Korobov, A., Korpar, S., Kovalenko, E., Kowalewski, R., Kraetzschmar, T. M. G., Križan, P., Krokovny, P., Kuhr, T., Kulii, Y., Kumar, J., Kumar, M., Kumara, K., Kunigo, T., Kuzmin, A., Kwon, Y. -J., Lacaprara, S., Lai, Y. -T., Lam, T., Lanceri, L., Lange, J. S., Laurenza, M., Leboucher, R., Diberder, F. R. Le, Lee, M. J., Leo, P., Levit, D., Li, C., Li, L. K., Li, S. X., Li, Y., Li, Y. B., Libby, J., Lin, Y. -R., Liu, M. H., Liu, Q. Y., Liu, Z. Q., Liventsev, D., Longo, S., Lueck, T., Luo, T., Lyu, C., Ma, Y., Maggiora, M., Maharana, S. P., Maiti, R., Maity, S., Mancinelli, G., Manfredi, R., Manoni, E., Mantovano, M., Marcantonio, D., Marcello, S., Marinas, C., Martel, L., Martellini, C., Martini, A., Martinov, T., Massaccesi, L., Masuda, M., Matsuoka, K., Matvienko, D., Maurya, S. K., McKenna, J. A., Mehta, R., Meier, F., Merola, M., Metzner, F., Miller, C., Mirra, M., Mitra, S., Miyabayashi, K., Miyake, H., Mizuk, R., Mohanty, G. B., Molina-Gonzalez, N., Mondal, S., Moneta, S., Moser, H. -G., Mrvar, M., Mussa, R., Nakamura, I., Nakamura, K. R., Nakao, M., Nakazawa, H., Nakazawa, Y., Charan, A. Narimani, Naruki, M., Narwal, D., Natkaniec, Z., Natochii, A., Nayak, L., Nayak, M., Nazaryan, G., Neu, M., Niebuhr, C., Nishida, S., Ogawa, S., Onishchuk, Y., Ono, H., Onuki, Y., Oskin, P., Otani, F., Pakhlov, P., Pakhlova, G., Panta, A., Pardi, S., Parham, K., Park, H., Park, S. -H., Paschen, B., Passeri, A., Patra, S., Paul, S., Pedlar, T. K., Peschke, R., Pestotnik, R., Piccolo, M., Piilonen, L. E., Angioni, G. Pinna, Podesta-Lerma, P. L. M., Podobnik, T., Pokharel, S., Praz, C., Prell, S., Prencipe, E., Prim, M. T., Prudiiev, I., Purwar, H., Rados, P., Raeuber, G., Raiz, S., Rauls, N., Ravindran, K., Reif, M., Reiter, S., Remnev, M., Ripp-Baudot, I., Rizzo, G., Robertson, S. H., Roehrken, M., Roney, J. M., Rostomyan, A., Rout, N., Russo, G., Sanders, D. A., Sandilya, S., Sangal, A., Santelj, L., Sato, Y., Savinov, V., Scavino, B., Schmitt, C., Schwanda, C., Schwartz, A. J., Schwickardi, M., Seino, Y., Selce, A., Senyo, K., Serrano, J., Sevior, M. E., Sfienti, C., Shan, W., Shi, X. D., Shillington, T., Shimasaki, T., Shiu, J. -G., Shtol, D., Shwartz, B., Sibidanov, A., Simon, F., Singh, J. B., Skorupa, J., Sobie, R. J., Sobotzik, M., Soffer, A., Sokolov, A., Solovieva, E., Spataro, S., Spruck, B., Starič, M., Stavroulakis, P., Stefkova, S., Stroili, R., Sumihama, M., Sumisawa, K., Sutcliffe, W., Svidras, H., Takahashi, M., Takizawa, M., Tamponi, U., Tanaka, S., Tanida, K., Tenchini, F., Thaller, A., Tittel, O., Tiwary, R., Tonelli, D., Torassa, E., Trabelsi, K., Tsaklidis, I., Uchida, M., Ueda, I., Uematsu, Y., Uglov, T., Unger, K., Unno, Y., Uno, K., Uno, S., Urquijo, P., Ushiroda, Y., Vahsen, S. E., van Tonder, R., Varvell, K. E., Veronesi, M., Vinokurova, A., Vismaya, V. S., Vitale, L., Vobbilisetti, V., Volpe, R., Wach, B., Wakai, M., Wallner, S., Wang, E., Wang, M. -Z., Wang, X. L., Wang, Z., Warburton, A., Watanabe, M., Watanuki, S., Wessel, C., Won, E., Xie, Y., Xu, X. P., Yabsley, B. D., Yamada, S., Yang, S. B., Yelton, J., Yin, J. H., Yoshihara, K., Yuan, C. Z., Yusa, Y., Zani, L., Zeng, F., Zhang, B., Zhang, Y., Zhilich, V., Zhou, Q. D., Zhou, X. Y., Zhukova, V. I., and Žlebčík, R.
- Subjects
High Energy Physics - Experiment - Abstract
We report measurements of time-dependent $CP$ asymmetries in $B^0 \to K^0_S \pi^0 \gamma$ decays based on a data sample of $(388\pm6)\times10^6$ $B\bar{B}$ events collected at the $\Upsilon(4S)$ resonance with the Belle II detector. The Belle II experiment operates at the SuperKEKB asymmetric-energy $e^+e^-$ collider. We measure decay-time distributions to determine $CP$-violating parameters $S$ and $C$. We determine these parameters for two ranges of $K^0_S \pi^0$ invariant mass: $m(K^0_S \pi^0)\in (0.8, 1.0)$ $GeV/c^2$, which is dominated by $B^0 \to K^{*0} (\to K^0_S \pi^0) \gamma$ decays, and a complementary region $m(K^0_S \pi^0)\in (0.6, 0.8)\cup(1.0, 1.8)$ $GeV/c^2$. Our results have improved precision as compared to previous measurements and are consistent with theory predictions., Comment: 10 pages, 4 figures
- Published
- 2024
14. Facile engineering of aptamer-coupled silk fibroin encapsulated myogenic gold nanocomposites: investigation of antiproliferative activity and apoptosis induction
- Author
-
Elayappan, Poorni Kaliyappan, Kandasamy, Kavitha, Sasikumar, Vadivukkarasi, Bharathi, Muruganantham, Hirad, Abdurahman Hajinur, Alarfaj, Abdullah A., Arulselvan, Palanisamy, Jaganathan, Ravindran, Ravindran, Rajeswari, Suriyaprakash, Jagadeesh, and Thangavelu, Indumathi
- Published
- 2024
- Full Text
- View/download PDF
15. Understanding activity and physiology at scale: The Apple Heart & Movement Study.
- Author
-
Truslow, James, Spillane, Angela, Lin, Huiming, Cyr, Katherine, Ullal, Adeeti, Arnold, Edith, Huang, Ron, Rhodes, Laura, Block, Jennifer, Stark, Jamie, Kretlow, James, Beatty, Alexis, Werdich, Andreas, Bankar, Deepali, Bianchi, Matt, Shapiro, Ian, Villalpando, Jaime, Ravindran, Sharon, Mance, Irida, Phillips, Adam, Earl, John, Deo, Rahul, Desai, Sumbul, and MacRae, Calum
- Abstract
Physical activity or structured exercise is beneficial in a wide range of circumstances. Nevertheless, individual-level data on differential responses to various types of activity are not yet sufficient in scale, duration or level of annotation to understand the mechanisms of discrete outcomes nor to support personalized recommendations. The Apple Heart & Movement Study was designed to passively collect the dense physiologic data accessible on Apple Watch and iPhone from a large real-world cohort distributed across the US in order to address these knowledge gaps.
- Published
- 2024
16. Observation of the Electromagnetic Dalitz Transition $h_c \rightarrow e^+e^-\eta_c$
- Author
-
BESIII Collaboration, Ablikim, M., Achasov, M. N., Adlarson, P., Ahmed, S., Albrecht, M., Aliberti, R., Amoroso, A., An, M. R., An, Q., Bai, X. H., Bai, Y., Bakina, O., Ferroli, R. Baldini, Balossino, I., Ban, Y., Begzsuren, K., Berger, N., Bertani, M., Bettoni, D., Bianchi, F., Bloms, J., Bortone, A., Boyko, I., Briere, R. A., Cai, H., Cai, X., Calcaterra, A., Cao, G. F., Cao, N., Cetin, S. A., Chang, J. F., Chang, W. L., Chelkov, G., Chen, D. Y., Chen, G., Chen, H. S., Chen, M. L., Chen, S. J., Chen, X. R., Chen, Y. B., Chen, Z. J, Cheng, W. S., Cibinetto, G., Cossio, F., Cui, X. F., Dai, H. L., Dai, X. C., Dbeyssi, A., de Boer, R. E., Dedovich, D., Deng, Z. Y., Denig, A., Denysenko, I., Destefanis, M., De Mori, F., Ding, Y., Dong, C., Dong, J., Dong, L. Y., Dong, M. Y., Dong, X., Du, S. X., Fan, Y. L., Fang, J., Fang, S. S., Fang, Y., Farinelli, R., Fava, L., Feldbauer, F., Felici, G., Feng, C. Q., Feng, J. H., Fritsch, M., Fu, C. D., Gao, Y., Gao, Y. G., Garzia, I., Ge, P. T., Geng, C., Gersabeck, E. M., Gilman, A, Goetzen, K., Gong, L., Gong, W. X., Gradl, W., Greco, M., Gu, L. M., Gu, M. H., Gu, S., Gu, Y. T., Guan, C. Y, Guo, A. Q., Guo, L. B., Guo, R. P., Guo, Y. P., Guskov, A., Han, T. T., Han, W. Y., Hao, X. Q., Harris, F. A., Hüsken, N, He, K. L., Heinsius, F. H., Heinz, C. H., Held, T., Heng, Y. K., Herold, C., Himmelreich, M., Holtmann, T., Hou, Y. R., Hou, Z. L., Hu, H. M., Hu, J. F., Hu, T., Hu, Y., Huang, G. S., Huang, L. Q., Huang, X. T., Huang, Y. P., Huang, Z., Hussain, T., Andersson, W. Ikegami, Imoehl, W., Irshad, M., Jaeger, S., Janchiv, S., Ji, Q., Ji, Q. P., Ji, X. B., Ji, X. L., Ji, Y. Y., Jiang, H. B., Jiang, X. S., Jiao, J. B., Jiao, Z., Jin, S., Jin, Y., Johansson, T., Kalantar-Nayestanaki, N., Kang, X. S., Kappert, R., Kavatsyuk, M., Ke, B. C., Keshk, I. K., Khoukaz, A., Kiese, P., Kiuchi, R., Kliemt, R., Koch, L., Kolcu, O. B., Kopf, B., Kuemmel, M., Kuessner, M., Kupsc, A., Kurth, M. G., Kühn, W., Lane, J. J., Lange, J. S., Larin, P., Lavania, A., Lavezzi, L., Lei, Z. H., Leithoff, H., Lellmann, M., Lenz, T., Li, C., Li, C. H., Li, Cheng, Li, D. M., Li, F., Li, G., Li, H., Li, H. B., Li, H. J., Li, J. L., Li, J. Q., Li, J. S., Li, Ke, Li, L. K., Li, Lei, Li, P. R., Li, S. Y., Li, W. D., Li, W. G., Li, X. H., Li, X. L., Li, Xiaoyu, Li, Z. Y., Liang, H., Liang, Y. F., Liang, Y. T., Liao, G. R., Liao, L. Z., Libby, J., Lin, C. X., Liu, B. J., Liu, C. X., Liu, D., Liu, F. H., Liu, Fang, Liu, Feng, Liu, H. B., Liu, H. M., Liu, Huanhuan, Liu, Huihui, Liu, J. B., Liu, J. L., Liu, J. Y., Liu, K., Liu, K. Y., Liu, Ke, Liu, L., Liu, M. H., Liu, P. L., Liu, Q., Liu, S. B., Liu, Shuai, Liu, T., Liu, W. M., Liu, X., Liu, Y., Liu, Y. B., Liu, Z. A., Liu, Z. Q., Lou, X. C., Lu, F. X., Lu, H. J., Lu, J. D., Lu, J. G., Lu, X. L., Lu, Y., Lu, Y. P., Luo, C. L., Luo, M. X., Luo, P. W., Luo, T., Luo, X. L., Lusso, S., Lyu, X. R., Ma, F. C., Ma, H. L., Ma, L. L., Ma, M. M., Ma, Q. M., Ma, R. Q., Ma, R. T., Ma, X. X., Ma, X. Y., Maas, F. E., Maggiora, M., Maldaner, S., Malde, S., Malik, Q. A., Mangoni, A., Mao, Y. J., Mao, Z. P., Marcello, S., Meng, Z. X., Messchendorp, J. G., Mezzadri, G., Min, T. J., Mitchell, R. E., Mo, X. H., Mo, Y. J., Muchnoi, N. Yu., Muramatsu, H., Nakhoul, S., Nefedov, Y., Nerling, F., Nikolaev, I. B., Ning, Z., Nisar, S., Olsen, S. L., Ouyang, Q., Pacetti, S., Pan, X., Pan, Y., Pathak, A., Patteri, P., Pelizaeus, M., Peng, H. P., Peters, K., Pettersson, J., Ping, J. L., Ping, R. G., Poling, R., Prasad, V., Qi, H., Qi, H. R., Qi, K. H., Qi, M., Qi, T. Y., Qian, S., Qian, W. B., Qian, Z., Qiao, C. F., Qin, L. Q., Qin, X. P., Qin, X. S., Qin, Z. H., Qiu, J. F., Qu, S. Q., Rashid, K. H., Ravindran, K., Redmer, C. F., Rivetti, A., Rodin, V., Rolo, M., Rong, G., Rosner, Ch., Rump, M., Sang, H. S., Sarantsev, A., Schelhaas, Y., Schnier, C., Schoenning, K., Scodeggio, M., Shan, D. C., Shan, W., Shan, X. Y., Shangguan, J. F., Shao, M., Shen, C. P., Shen, P. X., Shen, X. Y., Shi, H. C., Shi, R. S., Shi, X., Shi, X. D, Song, J. J., Song, W. M., Song, Y. X., Sosio, S., Spataro, S., Su, K. X., Su, P. P., Sui, F. F., Sun, G. X., Sun, H. K., Sun, J. F., Sun, L., Sun, S. S., Sun, T., Sun, W. Y., Sun, X, Sun, Y. J., Sun, Y. K., Sun, Y. Z., Sun, Z. T., Tan, Y. H., Tan, Y. X., Tang, C. J., Tang, G. Y., Tang, J., Teng, J. X., Thoren, V., Tian, Y. T., Uman, I., Wang, B., Wang, C. W., Wang, D. Y., Wang, H. J., Wang, H. P., Wang, K., Wang, L. L., Wang, M., Wang, M. Z., Wang, Meng, Wang, W., Wang, W. H., Wang, W. P., Wang, X., Wang, X. F., Wang, X. L., Wang, Y., Wang, Y. D., Wang, Y. F., Wang, Y. Q., Wang, Y. Y., Wang, Z., Wang, Z. Y., Wang, Ziyi, Wang, Zongyuan, Wei, D. H., Weidenkaff, P., Weidner, F., Wen, S. P., White, D. J., Wiedner, U., Wilkinson, G., Wolke, M., Wollenberg, L., Wu, J. F., Wu, L. H., Wu, L. J., Wu, X., Wu, Z., Xia, L., Xiao, H., Xiao, S. Y., Xiao, Z. J., Xie, X. H., Xie, Y. G., Xie, Y. H., Xing, T. Y., Xu, G. F., Xu, Q. J., Xu, W., Xu, X. P., Xu, Y. C., Yan, F., Yan, L., Yan, W. B., Yan, W. C., Yan, Xu, Yang, H. J., Yang, H. X., Yang, L., Yang, S. L., Yang, Y. X., Yang, Yifan, Yang, Zhi, Ye, M., Ye, M. H., Yin, J. H., You, Z. Y., Yu, B. X., Yu, C. X., Yu, G., Yu, J. S., Yu, T., Yuan, C. Z., Yuan, L., Yuan, X. Q., Yuan, Y., Yuan, Z. Y., Yue, C. X., Yuncu, A., Zafar, A. A., Zeng, Y., Zhang, B. X., Zhang, Guangyi, Zhang, H., Zhang, H. H., Zhang, H. Y., Zhang, J. J., Zhang, J. L., Zhang, J. Q., Zhang, J. W., Zhang, J. Y., Zhang, J. Z., Zhang, Jianyu, Zhang, Jiawei, Zhang, L. M., Zhang, L. Q., Zhang, Lei, Zhang, S., Zhang, S. F., Zhang, Shulei, Zhang, X. D., Zhang, X. Y., Zhang, Y., Zhang, Y. H., Zhang, Y. T., Zhang, Yan, Zhang, Yao, Zhang, Yi, Zhang, Z. H., Zhang, Z. Y., Zhao, G., Zhao, J., Zhao, J. Y., Zhao, J. Z., Zhao, Lei, Zhao, Ling, Zhao, M. G., Zhao, Q., Zhao, S. J., Zhao, Y. B., Zhao, Y. X., Zhao, Z. G., Zhemchugov, A., Zheng, B., Zheng, J. P., Zheng, W. J., Zheng, Y., Zheng, Y. H., Zhong, B., Zhong, C., Zhou, L. P., Zhou, Q., Zhou, X., Zhou, X. K., Zhou, X. R., Zhou, X. Y., Zhu, A. N., Zhu, J., Zhu, K., Zhu, K. J., Zhu, S. H., Zhu, T. J., Zhu, W. J., Zhu, Y. C., Zhu, Z. A., Zou, B. S., and Zou, J. H.
- Subjects
High Energy Physics - Experiment - Abstract
Using $(27.12\pm 0.14)\times10^8$ $\psi(3686)$ decays and data samples of $e^+e^-$ collisions with $\sqrt{s}$ from 4.130 to 4.780~GeV collected with the BESIII detector, we report the first observation of the electromagnetic Dalitz transition $h_c\to e^+e^-\eta_c$ with a statistical significance of $5.4\sigma$. We measure the ratio of the branching fractions $\frac{\mathcal{B}(h_c\rightarrow e^+e^-\eta_c)}{\mathcal{B}(h_c\rightarrow \gamma \eta_c)}$ separately for the $h_c$ samples produced via $\psi(3686)\to\pi^0h_c$ and $e^+e^-\to\pi^+\pi^-h_c$. The average ratio is determined to be $(0.59\pm0.10(\text{stat.})\pm0.04(\text{syst.}))\%$, where the uncertainty includes both statistical and systematic components.
- Published
- 2024
17. Participatory Approaches in AI Development and Governance: Case Studies
- Author
-
Parthasarathy, Ambreesh, Phalnikar, Aditya, Krishnan, Gokul S, Jauhar, Ameen, and Ravindran, Balaraman
- Subjects
Computer Science - Computers and Society - Abstract
This paper forms the second of a two-part series on the value of a participatory approach to AI development and deployment. The first paper had crafted a principled, as well as pragmatic, justification for deploying participatory methods in these two exercises (that is, development and deployment of AI). The pragmatic justification is that it improves the quality of the overall algorithm by providing more granular and minute information. The more principled justification is that it offers a voice to those who are going to be affected by the deployment of the algorithm, and through engagement attempts to build trust and buy-in for an AI system. By a participatory approach, we mean including various stakeholders (defined a certain way) in the actual decision making process through the life cycle of an AI system. Despite the justifications offered above, actual implementation depends crucially on how stakeholders in the entire process are identified, what information is elicited from them, and how it is incorporated. This paper will test these preliminary conclusions in two sectors, the use of facial recognition technology in the upkeep of law and order and the use of large language models in the healthcare sector. These sectors have been chosen for two primary reasons. Since Facial Recognition Technologies are a branch of AI solutions that are well-researched and the impact of which is well documented, it provides an established space to illustrate the various aspects of adapting PAI to an existing domain, especially one that has been quite contentious in the recent past. LLMs in healthcare provide a canvas for a relatively less explored space, and helps us illustrate how one could possibly envision enshrining the principles of PAI for a relatively new technology, in a space where innovation must always align with patient welfare.
- Published
- 2024
18. Participatory Approaches in AI Development and Governance: A Principled Approach
- Author
-
Parthasarathy, Ambreesh, Phalnikar, Aditya, Jauhar, Ameen, Somayajula, Dhruv, Krishnan, Gokul S, and Ravindran, Balaraman
- Subjects
Computer Science - Computers and Society - Abstract
The widespread adoption of Artificial Intelligence (AI) technologies in the public and private sectors has resulted in them significantly impacting the lives of people in new and unexpected ways. In this context, it becomes important to inquire how their design, development and deployment takes place. Upon this inquiry, it is seen that persons who will be impacted by the deployment of these systems have little to no say in how they are developed. Seeing this as a lacuna, this research study advances the premise that a participatory approach is beneficial (both practically and normatively) to building and using more responsible, safe, and human-centric AI systems. Normatively, it enhances the fairness of the process and empowers citizens in voicing concerns to systems that may heavily impact their lives. Practically, it provides developers with new avenues of information which will be beneficial to them in improving the quality of the AI algorithm. The paper advances this argument first, by describing the life cycle of an AI system; second, by identifying criteria which may be used to identify relevant stakeholders for a participatory exercise; and third, by mapping relevant stakeholders to different stages of AI lifecycle. This paper forms the first part of a two-part series on participatory governance in AI. The second paper will expand upon and concretise the principles developed in this paper and apply the same to actual use cases of AI systems.
- Published
- 2024
19. Measurement of the energy dependence of the $e^+e^- \to B\bar{B}$, $B\bar{B}{}^*$, and $B^*\bar{B}{}^*$ cross sections at Belle~II
- Author
-
Belle II Collaboration, Adachi, I., Aggarwal, L., Ahmed, H., Aihara, H., Akopov, N., Aloisio, A., Althubiti, N., Ky, N. Anh, Asner, D. M., Atmacan, H., Aushev, T., Aushev, V., Aversano, M., Ayad, R., Babu, V., Bae, H., Bahinipati, S., Bambade, P., Banerjee, Sw., Bansal, S., Barrett, M., Baudot, J., Bauer, M., Baur, A., Beaubien, A., Becherer, F., Becker, J., Behera, P. K., Bennett, J. V., Bernlochner, F. U., Bertacchi, V., Bertemes, M., Bertholet, E., Bessner, M., Bettarini, S., Bhuyan, B., Bianchi, F., Bierwirth, L., Bilka, T., Biswas, D., Bobrov, A., Bodrov, D., Bolz, A., Bondar, A., Borah, J., Boschetti, A., Bozek, A., Bračko, M., Branchini, P., Briere, R. A., Browder, T. E., Budano, A., Bussino, S., Campagna, Q., Campajola, M., Cao, L., Casarosa, G., Cecchi, C., Cerasoli, J., Chang, M. -C., Chang, P., Cheema, P., Cheon, B. G., Chilikin, K., Chirapatpimol, K., Cho, H. -E., Cho, K., Cho, S. -J., Choi, S. -K., Choudhury, S., Cochran, J., Corona, L., Cui, J. X., Das, S., Dattola, F., De La Cruz-Burelo, E., De La Motte, S. A., de Marino, G., De Nardo, G., De Nuccio, M., De Pietro, G., de Sangro, R., Destefanis, M., Dey, S., Dhamija, R., Di Canto, A., Di Capua, F., Dingfelder, J., Doležal, Z., Jiménez, I. Domínguez, Dong, T. V., Dorigo, M., Dorner, D., Dort, K., Dossett, D., Dreyer, S., Dubey, S., Dugic, K., Dujany, G., Ecker, P., Eliachevitch, M., Epifanov, D., Feichtinger, P., Ferber, T., Ferlewicz, D., Fillinger, T., Finck, C., Finocchiaro, G., Fodor, A., Forti, F., Frey, A., Fulsom, B. G., Gabrielli, A., Ganiev, E., Garcia-Hernandez, M., Garg, R., Garmash, A., Gaudino, G., Gaur, V., Gaz, A., Gellrich, A., Ghevondyan, G., Ghosh, D., Ghumaryan, H., Giakoustidis, G., Giordano, R., Giri, A., Glazov, A., Gobbo, B., Godang, R., Gogota, O., Goldenzweig, P., Gradl, W., Grammatico, T., Granderath, S., Graziani, E., Greenwald, D., Gruberová, Z., Gu, T., Guan, Y., Gudkova, K., Halder, S., Han, Y., Hara, K., Hara, T., Harris, C., Hayasaka, K., Hayashii, H., Hazra, S., Hearty, C., Hedges, M. T., Heidelbach, A., de la Cruz, I. Heredia, Villanueva, M. Hernández, Hershenhorn, A., Higuchi, T., Hill, E. C., Hoek, M., Hohmann, M., Horak, P., Hsu, C. -L., Humair, T., Iijima, T., Inami, K., Inguglia, G., Ipsita, N., Ishikawa, A., Ito, S., Itoh, R., Iwasaki, M., Jackson, P., Jacobs, W. W., Jang, E. -J., Ji, Q. P., Jia, S., Jin, Y., Johnson, A., Joo, K. K., Junkerkalefeld, H., Kakuno, H., Kaleta, M., Kalita, D., Kaliyar, A. B., Kandra, J., Kang, K. H., Kang, S., Karyan, G., Kawasaki, T., Keil, F., Ketter, C., Kiesling, C., Kim, C. -H., Kim, D. Y., Kim, K. -H., Kim, Y. -K., Kindo, H., Kinoshita, K., Kodyš, P., Koga, T., Kohani, S., Kojima, K., Konno, T., Korobov, A., Korpar, S., Kovalenko, E., Kowalewski, R., Kraetzschmar, T. M. G., Križan, P., Krokovny, P., Kulii, Y., Kuhr, T., Kumar, J., Kumar, M., Kumar, R., Kumara, K., Kunigo, T., Kuzmin, A., Kwon, Y. -J., Lacaprara, S., Lai, Y. -T., Lam, T., Lanceri, L., Lange, J. S., Laurenza, M., Leboucher, R., Diberder, F. R. Le, Lee, M. J., Leitl, P., Leo, P., Levit, D., Lewis, P. M., Li, C., Li, L. K., Li, S. X., Li, Y., Li, Y. B., Libby, J., Liu, Q. Y., Liu, Z. Q., Liventsev, D., Longo, S., Lozar, A., Lueck, T., Lyu, C., Ma, Y., Maggiora, M., Maharana, S. P., Maiti, R., Maity, S., Mancinelli, G., Manfredi, R., Manoni, E., Mantovano, M., Marcantonio, D., Marcello, S., Marinas, C., Martel, L., Martellini, C., Martini, A., Martinov, T., Massaccesi, L., Masuda, M., Matsuda, T., Matsuoka, K., Matvienko, D., Maurya, S. K., McKenna, J. A., Mehta, R., Meier, F., Merola, M., Metzner, F., Milesi, M., Miller, C., Mirra, M., Mitra, S., Miyabayashi, K., Miyake, H., Mizuk, R., Mohanty, G. B., Molina-Gonzalez, N., Mondal, S., Moneta, S., Moser, H. -G., Mrvar, M., Mussa, R., Nakamura, I., Nakao, M., Nakazawa, Y., Charan, A. Narimani, Naruki, M., Narwal, D., Natkaniec, Z., Natochii, A., Nayak, L., Nayak, M., Nazaryan, G., Neu, M., Niebuhr, C., Nisar, N. K., Nishida, S., Ogawa, S., Onishchuk, Y., Ono, H., Onuki, Y., Oskin, P., Otani, F., Pakhlov, P., Pakhlova, G., Paladino, A., Panta, A., Paoloni, E., Pardi, S., Parham, K., Park, H., Park, J., Park, S. -H., Paschen, B., Passeri, A., Patra, S., Paul, S., Pedlar, T. K., Peruzzi, I., Peschke, R., Pestotnik, R., Pham, F., Piccolo, M., Piilonen, L. E., Angioni, G. Pinna, Podesta-Lerma, P. L. M., Podobnik, T., Pokharel, S., Praz, C., Prell, S., Prencipe, E., Prim, M. T., Privalov, S., Purwar, H., Rad, N., Rados, P., Raeuber, G., Raiz, S., Rauls, N., Ravindran, K., Reif, M., Reiter, S., Remnev, M., Reuter, L., Ripp-Baudot, I., Robertson, S. H., Roehrken, M., Roney, J. M., Rostomyan, A., Rout, N., Russo, G., Sahoo, D., Sanders, D. A., Sandilya, S., Sangal, A., Santelj, L., Sato, Y., Savinov, V., Scavino, B., Schneider, S., Schnepf, M., Schwanda, C., Seino, Y., Selce, A., Senyo, K., Serrano, J., Sevior, M. E., Sfienti, C., Shan, W., Sharma, C., Shen, C. P., Shi, X. D., Shillington, T., Shimasaki, T., Shiu, J. -G., Shtol, D., Shwartz, B., Sibidanov, A., Simon, F., Singh, J. B., Skorupa, J., Smith, K., Sobie, R. J., Sobotzik, M., Soffer, A., Sokolov, A., Solovieva, E., Spataro, S., Spruck, B., Starič, M., Stavroulakis, P., Stefkova, S., Stottler, Z. S., Stroili, R., Strube, J., Sue, Y., Sumihama, M., Sumisawa, K., Sutcliffe, W., Svidras, H., Takahashi, M., Takizawa, M., Tamponi, U., Tanaka, S., Tanida, K., Tenchini, F., Thaller, A., Tittel, O., Tiwary, R., Tonelli, D., Torassa, E., Toutounji, N., Trabelsi, K., Tsaklidis, I., Uchida, M., Ueda, I., Uematsu, Y., Uglov, T., Unger, K., Unno, Y., Uno, K., Uno, S., Urquijo, P., Ushiroda, Y., Vahsen, S. E., van Tonder, R., Varner, G. S., Varvell, K. E., Veronesi, M., Vinokurova, A., Vismaya, V. S., Vitale, L., Vobbilisetti, V., Volpe, R., Wach, B., Wakai, M., Wallner, S., Wang, E., Wang, M. -Z., Wang, X. L., Wang, Z., Warburton, A., Watanabe, M., Watanuki, S., Wessel, C., Won, E., Xu, X. P., Yabsley, B. D., Yamada, S., Yan, W., Yang, S. B., Yelton, J., Yin, J. H., Yoshihara, K., Yuan, C. Z., Zani, L., Zeng, F., Zhang, B., Zhang, Y., Zhilich, V., Zhou, J. S., Zhou, Q. D., Zhou, X. Y., Zhukova, V. I., and Žlebčík, R.
- Subjects
High Energy Physics - Experiment - Abstract
We report measurements of the $e^+e^- \to B\bar{B}$, $B\bar{B}{}^*$, and $B^*\bar{B}{}^*$ cross sections at four energies, 10653, 10701, 10746 and 10805 MeV, using data collected by the Belle~II experiment. We reconstruct one $B$ meson in a large number of hadronic final states and use its momentum to identify the production process. In the first $2-5$ MeV above $B^*\bar{B}{}^*$ threshold, the $e^+e^- \to B^*\bar{B}{}^*$ cross section increases rapidly. This may indicate the presence of a pole close to the threshold., Comment: 30 pages, 15 figures, version accepted by JHEP
- Published
- 2024
20. Selecting Experimental Sites for External Validity
- Author
-
Gechter, Michael, Hirano, Keisuke, Lee, Jean, Mahmud, Mahreen, Mondal, Orville, Morduch, Jonathan, Ravindran, Saravana, and Shonchoy, Abu S.
- Subjects
Economics - General Economics - Abstract
Policy decisions often depend on evidence generated elsewhere. We take a Bayesian decision-theoretic approach to choosing where to experiment to optimize external validity. We frame external validity through a policy lens, developing a prior specification for the joint distribution of site-level treatment effects using a microeconometric structural model and allowing for other sources of heterogeneity. With data from South Asia, we show that, relative to basing policies on experiments in optimal sites, large efficiency losses result from instead using evidence from randomly-selected sites or, conversely, from sites with the largest expected treatment effects.
- Published
- 2024
21. Deception in Reinforced Autonomous Agents
- Author
-
Dogra, Atharvan, Pillutla, Krishna, Deshpande, Ameet, Sai, Ananya B, Nay, John, Rajpurohit, Tanmay, Kalyan, Ashwin, and Ravindran, Balaraman
- Subjects
Computer Science - Computation and Language - Abstract
We explore the ability of large language model (LLM)-based agents to engage in subtle deception such as strategically phrasing and intentionally manipulating information to misguide and deceive other agents. This harmful behavior can be hard to detect, unlike blatant lying or unintentional hallucination. We build an adversarial testbed mimicking a legislative environment where two LLMs play opposing roles: a corporate *lobbyist* proposing amendments to bills that benefit a specific company while evading a *critic* trying to detect this deception. We use real-world legislative bills matched with potentially affected companies to ground these interactions. Our results show that LLM lobbyists initially exhibit limited deception against strong LLM critics which can be further improved through simple verbal reinforcement, significantly enhancing their deceptive capabilities, and increasing deception rates by up to 40 points. This highlights the risk of autonomous agents manipulating other agents through seemingly neutral language to attain self-serving goals.
- Published
- 2024
22. Continual Imitation Learning for Prosthetic Limbs
- Author
-
Dey, Sharmita, Paassen, Benjamin, Nair, Sarath Ravindran, Boughorbel, Sabri, and Schilling, Arndt F.
- Subjects
Computer Science - Machine Learning ,Computer Science - Robotics - Abstract
Lower limb amputations and neuromuscular impairments severely restrict mobility, necessitating advancements beyond conventional prosthetics. Motorized bionic limbs offer promise, but their utility depends on mimicking the evolving synergy of human movement in various settings. In this context, we present a novel model for bionic prostheses' application that leverages camera-based motion capture and wearable sensor data, to learn the synergistic coupling of the lower limbs during human locomotion, empowering it to infer the kinematic behavior of a missing lower limb across varied tasks, such as climbing inclines and stairs. We propose a model that can multitask, adapt continually, anticipate movements, and refine. The core of our method lies in an approach which we call -- multitask prospective rehearsal -- that anticipates and synthesizes future movements based on the previous prediction and employs a corrective mechanism for subsequent predictions. We design an evolving architecture that merges lightweight, task-specific modules on a shared backbone, ensuring both specificity and scalability. We empirically validate our model against various baselines using real-world human gait datasets, including experiments with transtibial amputees, which encompass a broad spectrum of locomotion tasks. The results show that our approach consistently outperforms baseline models, particularly under scenarios affected by distributional shifts, adversarial perturbations, and noise.
- Published
- 2024
23. Towards Building Autonomous Data Services on Azure
- Author
-
Zhu, Yiwen, Tian, Yuanyuan, Cahoon, Joyce, Krishnan, Subru, Agarwal, Ankita, Alotaibi, Rana, Camacho-Rodríguez, Jesús, Chundatt, Bibin, Chung, Andrew, Dutta, Niharika, Fogarty, Andrew, Gruenheid, Anja, Haynes, Brandon, Interlandi, Matteo, Iyer, Minu, Jurgens, Nick, Khushalani, Sumeet, Kroth, Brian, Kumar, Manoj, Leeka, Jyoti, Matusevych, Sergiy, Mittal, Minni, Mueller, Andreas, Muthyala, Kartheek, Nagulapalli, Harsha, Park, Yoonjae, Patel, Hiren, Pavlenko, Anna, Poppe, Olga, Ravindran, Santhosh, Saur, Karla, Sen, Rathijit, Suh, Steve, Tarafdar, Arijit, Waghray, Kunal, Wang, Demin, Curino, Carlo, and Ramakrishnan, Raghu
- Subjects
Computer Science - Distributed, Parallel, and Cluster Computing - Abstract
Modern cloud has turned data services into easily accessible commodities. With just a few clicks, users are now able to access a catalog of data processing systems for a wide range of tasks. However, the cloud brings in both complexity and opportunity. While cloud users can quickly start an application by using various data services, it can be difficult to configure and optimize these services to gain the most value from them. For cloud providers, managing every aspect of an ever-increasing set of data services, while meeting customer SLAs and minimizing operational cost is becoming more challenging. Cloud technology enables the collection of significant amounts of workload traces and system telemetry. With the progress in data science (DS) and machine learning (ML), it is feasible and desirable to utilize a data-driven, ML-based approach to automate various aspects of data services, resulting in the creation of autonomous data services. This paper presents our perspectives and insights on creating autonomous data services on Azure. It also covers the future endeavors we plan to undertake and unresolved issues that still need attention., Comment: SIGMOD Companion of the 2023 International Conference on Management of Data. 2023
- Published
- 2024
- Full Text
- View/download PDF
24. HMTRace: Hardware-Assisted Memory-Tagging based Dynamic Data Race Detection
- Author
-
Shastri, Jaidev, Wang, Xiaoguang, Shivakumar, Basavesh Ammanaghatta, Verbeek, Freek, and Ravindran, Binoy
- Subjects
Computer Science - Distributed, Parallel, and Cluster Computing - Abstract
Data race, a category of insidious software concurrency bugs, is often challenging and resource-intensive to detect and debug. Existing dynamic race detection tools incur significant execution time and memory overhead while exhibiting high false positives. This paper proposes HMTRace, a novel Armv8.5-A memory tag extension (MTE) based dynamic data race detection framework, emphasizing low compute and memory requirements while maintaining high accuracy and precision. HMTRace supports race detection in userspace OpenMP- and Pthread-based multi-threaded C applications. HMTRace showcases a combined f1-score of 0.86 while incurring a mean execution time overhead of 4.01% and peak memory (RSS) overhead of 54.31%. HMTRace also does not report false positives, asserting all reported races.
- Published
- 2024
25. NNLO QCD corrections to polarized semi-inclusive DIS
- Author
-
Goyal, Saurav, Lee, Roman N., Moch, Sven-Olaf, Pathak, Vaibhav, Rana, Narayan, and Ravindran, V.
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Experiment - Abstract
Polarized semi-inclusive deep-inelastic scattering (SIDIS) is a key process in the quest for a resolution of the proton spin puzzle. We present the complete results for the polarized SIDIS process at next-to-next-to-leading order (NNLO) in perturbative quantum chromodynamics. Our analytical results include all partonic channels for the scattering of polarized leptons off hadrons and a spin-averaged hadron identified in the final state. A numerical analysis of the NNLO corrections illustrates their significance and the reduced residual scale dependence in the kinematic range probed by the future Electron-Ion-Collider EIC., Comment: 6 pages, 2 figures; 1 ancillary file
- Published
- 2024
26. Valuation of the EORTC Quality of Life Utility Core 10 Dimensions (QLU-C10D) in a Multi-ethnic Asian Setting: How Does Having Cancer Matter?
- Author
-
Gandhi, Mihir, Kanesvaran, Ravindran, Rashid, Mohamad Farid Bin Harunal, Chong, Dawn Qingqing, Chay, Wen-Yee, Tan, Rachel Lee-Yin, Norman, Richard, King, Madeleine T., and Luo, Nan
- Published
- 2024
- Full Text
- View/download PDF
27. Challenges of Providing End-of-Life Care to Homeless Woman with Cancer and Mental Illness: A Case Report
- Author
-
Somanna, Madhu Alathuru, Raman, Kalyanasundaram Janaki, Basavarajappa, Chethan, Ravindran, Swathi, Roy, Roniyamol, Kumar, Amit, Timothy, Sinu Jesin, and Singh, Naynee
- Published
- 2024
- Full Text
- View/download PDF
28. Geophysical and geochemical studies on sinking stream occurrence in Ayankulam village of South Tamilnadu, India
- Author
-
Ravindran, A. Antony, Promilton, A. Antony Alosanai, Kingston, J. Vinoth, Abishek, S. Richard, Aswin, S. K., Abinaya, R., and Priya, R. Sakthi
- Published
- 2024
- Full Text
- View/download PDF
29. Green synthesis of ZrO2 nanoparticles by Phyllanthus niruri extract and its tensile and high temperature wear behaviour of Al2017A/hBN composites
- Author
-
Ravindran, S. and Mani, N.
- Published
- 2024
- Full Text
- View/download PDF
30. Physicochemical characterization of microencapsulated spice oleoresin blend using various carrier agents
- Author
-
Ravindran, Archana, Jayashree, E., Jeyakumari, A., Anees, K., and Alfiya, P. V.
- Published
- 2024
- Full Text
- View/download PDF
31. Advanced dual-switch converter with proportional integral technique for enhanced efficiency and power quality in electric vehicle energy storage
- Author
-
Edwin Isaac Raj, A., Carmel Sobia, M., and Ravindran, M.
- Published
- 2024
- Full Text
- View/download PDF
32. Ecofriendly Curcumin-Conjugated Copper Oxide Nanoparticles: Targeted Cytotoxicity and Apoptosis in Oral Carcinoma KB Cells
- Author
-
Majeed, Shahnaz, Sisinthy, Sreenivas Patro, Sa’ari, Anis Sofieyya Binti, Danish, Mohammed, Muthukumarasamy, Ravindran, Alanazi, Abdulaziz M., and Aftab, Raja Ahsan
- Published
- 2024
- Full Text
- View/download PDF
33. Unlocking rice drought tolerance through affordable phenotyping methods
- Author
-
Visakh, Ravindran Lalithambika, Anand, Sreekumar, Nalishma, Raghu, Seeja, Gopidas, Sah, Rameswar Prasad, and Beena, Radha
- Published
- 2024
- Full Text
- View/download PDF
34. Enfortumab Vedotin Following Platinum Chemotherapy and Avelumab Maintenance in Patients with Metastatic Urothelial Carcinoma: A Retrospective Data from the ARON-2EV Study
- Author
-
Fiala, Ondřej, Massari, Francesco, Basso, Umberto, Giannatempo, Patrizia, Grande, Enrique, Buti, Sebastiano, Myint, Zin W., De Giorgi, Ugo, Pichler, Renate, Grillone, Francesco, Ürün, Yüksel, Calabrò, Fabio, Bourlon, Maria T., Galli, Luca, Kanesvaran, Ravindran, Roviello, Giandomenico, Kucharz, Jakub, Rizzo, Mimma, Park, Se Hoon, Cerbone, Linda, Seront, Emmanuel, Messina, Carlo, Molina-Cerrillo, Javier, Santini, Daniele, Yano, Akihiro, Incorvaia, Lorena, Catalano, Martina, Pinto, Alvaro, Formisano, Luigi, Soares, Andrey, Facchini, Gaetano, Fornarini, Giuseppe, Poprach, Alexandr, Rebuzzi, Sara Elena, Nasso, Cecilia, Spinelli, Gian Paolo, Angel, Martin, Stellato, Marco, Tural, Deniz, Aurilio, Gaetano, Epstein, Ilana, Carrozza, Francesco, Monteiro, Fernando Sabino Marques, Benedetti, Giovanni, Büchler, Tomáš, Ortega, Cinzia, Zakopoulou, Roubini, Battelli, Nicola, Porta, Camillo, Bellmunt, Joaquin, Gupta, Shilpa, and Santoni, Matteo
- Published
- 2024
- Full Text
- View/download PDF
35. Real-World Primary Resistance to First-Line Immune-Based Combinations in Patients with Advanced Renal Cell Carcinoma (ARON-1)
- Author
-
Santini, Daniele, Li, Haoran, Roviello, Giandomenico, Park, Se Hoon, Grande, Enrique, Kucharz, Jakub, Basso, Umberto, Fiala, Ondrej, Monteiro, Fernando Sabino Marques, Poprach, Alexandr, Buti, Sebastiano, Molina-Cerrillo, Javier, Catalano, Martina, Buchler, Tomas, Seront, Emmanuel, Ansari, Jawaher, Myint, Zin W., Ghosn, Marwan, Calabrò, Fabio, Kopp, Ray Manneh, Bhuva, Dipen, Bourlon, Maria T., Roberto, Michela, Di Civita, Mattia Alberto, Mollica, Veronica, Marchetti, Andrea, Soares, Andrey, Battelli, Nicola, Ricci, Marco, Kanesvaran, Ravindran, Bamias, Aristotelis, Porta, Camillo, Massari, Francesco, and Santoni, Matteo
- Published
- 2024
- Full Text
- View/download PDF
36. Valorization of Crustacean Shells: Preparation, Characterization, and Chemical Modification of Nano-Chitin Biopolymer Membrane for Application in Water Purification
- Author
-
Lakshmi, D. Shanthana, Ravindran, Lakshmipriya, Mary, P. J. Maida, Rathika, G., Sreekala, M. S., and Munisamy, Shanmugam
- Published
- 2024
- Full Text
- View/download PDF
37. Unraveling potential gene biomarkers for dengue infection through RNA sequencing
- Author
-
Suppiah, Jeyanthi, Md Sani, Saiful Safuan, Hassan, Safiah Sabrina, Nadzar, Nur Iman Fasohah, Ibrahim, Nurul ‘Izzah, Thayan, Ravindran, and Mohd Zain, Rozainanee
- Published
- 2024
- Full Text
- View/download PDF
38. Pathogen genomic surveillance status among lower resource settings in Asia
- Author
-
Getchell, Marya, Wulandari, Suci, de Alwis, Ruklanthi, Agoramurthy, Shreya, Khoo, Yoong Khean, Mak, Tze-Minn, Moe, La, Stona, Anne-Claire, Pang, Junxiong, Momin, Muhd Haziq Fikry Haji Abdul, Amir, Afreenish, Andalucia, Lucia Rizka, Azzam, Ghows, Chin, Savuth, Chookajorn, Thanat, Arunkumar, Govindakarnavar, Hung, Do Thai, Ikram, Aamer, Jha, Runa, Karlsson, Erik A., Le Thi, Mai Quynh, Mahasirimongkol, Surakameth, Malavige, Gathsaurie Neelika, Manning, Jessica E., Munira, Syarifah Liza, Trung, Nguyen Vu, Nisar, Imran, Qadri, Firdausi, Qamar, Farah Naz, Robinson, Matthew T., Saloma, Cynthia P., Setk, Swe, Shirin, Tahmina, Tan, Le Van, Dizon, Timothy John R., Thayan, Ravindran, Thu, Hlaing Myat, Tissera, Hasitha, Xangsayarath, Phonepadith, Zaini, Zainun, Lim, John C. W., Maurer-Stroh, Sebastian, Smith, Gavin J. D., Wang, Lin-Fa, and Pronyk, Paul
- Published
- 2024
- Full Text
- View/download PDF
39. Effect of Acidic Treatment for Conventional Processing and Recent Advances on Lignocellulosic Ricinus Communis: A Comparative Evaluation on Decomposition of Biomass for Environmental Sustainability
- Author
-
Koshariya, Ashok Kumar, Kumar, Sujit, Kulkarni, Megha, Madhu, P., Kumar, P. Suresh, Nguyen, Vinh Dinh, Alarifi, Saud, Ahamed, Anis, Chang, Soon Woong, and Ravindran, Balasubramani
- Published
- 2024
- Full Text
- View/download PDF
40. Seasonal shift in trophic status induced by bacterial metabolic activity in tropical mangrove-dominated estuaries of Southwest India
- Author
-
Seleyi, Seyieleno C., Ravindran, Chinnarajan, Mohandass, Chellandi, and Patra, Prantick
- Published
- 2024
- Full Text
- View/download PDF
41. Influence of GNP Additions on the Microstructure, Mechanical Properties, and Electrical Conductivity of Cast A319 Aluminum Alloy
- Author
-
Andilab, Bernoulli, Emadi, Payam, Sydorenko, Mykola, and Ravindran, Comondore
- Published
- 2024
- Full Text
- View/download PDF
42. Influence of Chemical Milling on the Mechanical and Microstructural Properties of α Cased β-Titanium Alloy
- Author
-
Krishna, R. S., Suresh, Kurra, Mahesh, K., Sujith, Ravindran, and Singh, Swadesh Kumar
- Published
- 2024
- Full Text
- View/download PDF
43. Isolation and Characterisation of Biological Growth Promoters from Gut Region of Subterranean Termites
- Author
-
Bama, P. Sathiya and Ravindran, A. David
- Published
- 2018
- Full Text
- View/download PDF
44. InSaAF: Incorporating Safety through Accuracy and Fairness | Are LLMs ready for the Indian Legal Domain?
- Author
-
Tripathi, Yogesh, Donakanti, Raghav, Girhepuje, Sahil, Kavathekar, Ishan, Vedula, Bhaskara Hanuma, Krishnan, Gokul S, Goyal, Shreya, Goel, Anmol, Ravindran, Balaraman, and Kumaraguru, Ponnurangam
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence - Abstract
Recent advancements in language technology and Artificial Intelligence have resulted in numerous Language Models being proposed to perform various tasks in the legal domain ranging from predicting judgments to generating summaries. Despite their immense potential, these models have been proven to learn and exhibit societal biases and make unfair predictions. In this study, we explore the ability of Large Language Models (LLMs) to perform legal tasks in the Indian landscape when social factors are involved. We present a novel metric, $\beta$-weighted $\textit{Legal Safety Score ($LSS_{\beta}$)}$, which encapsulates both the fairness and accuracy aspects of the LLM. We assess LLMs' safety by considering its performance in the $\textit{Binary Statutory Reasoning}$ task and its fairness exhibition with respect to various axes of disparities in the Indian society. Task performance and fairness scores of LLaMA and LLaMA--2 models indicate that the proposed $LSS_{\beta}$ metric can effectively determine the readiness of a model for safe usage in the legal sector. We also propose finetuning pipelines, utilising specialised legal datasets, as a potential method to mitigate bias and improve model safety. The finetuning procedures on LLaMA and LLaMA--2 models increase the $LSS_{\beta}$, improving their usability in the Indian legal domain. Our code is publicly released.
- Published
- 2024
45. Optimizing for ROC Curves on Class-Imbalanced Data by Training over a Family of Loss Functions
- Author
-
Lieberman, Kelsey, Yuan, Shuai, Ravindran, Swarna Kamlam, and Tomasi, Carlo
- Subjects
Computer Science - Machine Learning ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Although binary classification is a well-studied problem in computer vision, training reliable classifiers under severe class imbalance remains a challenging problem. Recent work has proposed techniques that mitigate the effects of training under imbalance by modifying the loss functions or optimization methods. While this work has led to significant improvements in the overall accuracy in the multi-class case, we observe that slight changes in hyperparameter values of these methods can result in highly variable performance in terms of Receiver Operating Characteristic (ROC) curves on binary problems with severe imbalance. To reduce the sensitivity to hyperparameter choices and train more general models, we propose training over a family of loss functions, instead of a single loss function. We develop a method for applying Loss Conditional Training (LCT) to an imbalanced classification problem. Extensive experiment results, on both CIFAR and Kaggle competition datasets, show that our method improves model performance and is more robust to hyperparameter choices. Code is available at https://github.com/klieberman/roc_lct.
- Published
- 2024
46. BCG as an Innovative Option for HCC Treatment: Repurposing and Mechanistic Insights.
- Author
-
Vaziri, Farzam, Setayesh, Tahereh, Hu, Ying, Ravindran, Resmi, Wei, Dongguang, and Wan, Yu-Jui
- Subjects
bacterial immunotherapy ,fibrosis ,interferon ,liver ,trained immunity ,Male ,Mice ,Animals ,Female ,Carcinoma ,Hepatocellular ,BCG Vaccine ,Proto-Oncogene Proteins c-akt ,Liver Neoplasms ,Mycobacterium bovis - Abstract
This study investigates Bacillus Calmette-Guérin (BCG) as a potential treatment for hepatocellular carcinoma (HCC), a condition often associated with unfavorable treatment outcomes. Exploiting BCGs recognized immune-boosting properties, preclinical trials are conducted using HCC mice, with a single subcutaneous dose of BCG administered post-tumor formation. Results indicate that BCG treatment effectively diminishes tumor burden and extends survival in both male and female HCC mice. Positive influences on hepatic fibrosis and metabolism are observed, leading to a reduction in lipid levels. Spatial analysis underscores BCGs tumor-specific effects, inducing the enrichment of metabolic pathways and inhibiting various cancer-related pathways. Furthermore, BCG promotes immune cell infiltration, including CD4+, CD8+ T cells, and M1 macrophages, in both v-akt murine thymoma viral oncogene homolog 1(AKT)/neutoblastoma RAS viral oncogene homolog (RAS) and β-catenin positive HCC models. Interestingly, blocking T cells, trained immunity, and Interferon-γ (IFN-γ) function reverses BCGs anti-HCC effects. In conclusion, BCG emerges as a promising treatment option for HCC, characterized by a favorable safety profile and efficacy in inhibiting fibrosis, improving metabolism, and engaging both trained immunity and T cells in therapeutic mechanisms.
- Published
- 2024
47. Management of oncology-related emergencies at the emergency department: A long-term undertaking
- Author
-
Chua, Wei Lin Tallie, Chan, Shi En Joanna, Lai, Gillianne, Tracy Yong, Looi Yee, Kanesvaran, Ravindran, and Anantharaman, Venkataraman
- Published
- 2023
48. Production and characterization of xylooligosaccharides from sugarcane bagasse using response surface methodology and its prebiotic properties
- Author
-
Kathiresan, Nagamani, Karuppiah, Vijay, Gopal, Lingesh, Abraham, David Ravindran, and Thangavel, Kavitha
- Published
- 2024
- Full Text
- View/download PDF
49. A network pharmacology-based approach to understand the mechanism of action of anti-mycobacterial activity of Acacia nilotica: a modelling and experimental study
- Author
-
Suresh, Madhumitha, Sai, Kadambari Vijay, Mitra, Kartik, Ravindran, Radhika, and Doble, Mukesh
- Published
- 2024
- Full Text
- View/download PDF
50. The influence of Self System Model of Motivational Development on college students’ learning engagement: a hybrid three stage Fuzzy Delphi and structural equation modeling approach
- Author
-
Peng, Qian, Liang, Shaoshuai, Latha, Ravindran, Li, Na, and Zheng, Aiyan
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.