1. Left-Right Difference in Brain Pharmacokinetics Following Nasal Administration Via One-Site Nostrils.
- Author
-
Tanaka A, Kiriyama A, Sano A, Changung C, Katsumi H, Yamamoto A, and Furubayashi T
- Subjects
- Animals, Male, Ranitidine pharmacokinetics, Ranitidine administration & dosage, Nasal Cavity metabolism, Rats, Rats, Sprague-Dawley, Tissue Distribution, Nasal Mucosa metabolism, Administration, Intranasal, Brain metabolism
- Abstract
The olfactory and trigeminal pathways are direct delivery pathways between the nose and brain. To determine the effect of direct delivery on drug distribution in the brain, two model drugs with different physical properties, antipyrine (ANP), with high membrane permeability, and ranitidine (RNT), with low membrane permeability, were selected. For ANP, direct delivery from the nose to the brain was observed only in the olfactory bulb beside the nasal cavity, with a direct transport percentage (DTP) of approximately 45 %, whereas in the frontal and occipital brains, the contribution from the systemic circulation to the brain was observed as the primary route of brain distribution. No significant variations were observed in the pharmacokinetics of ANP in the left and right brain, whereas RNT was distributed in all brain regions with a DTP of > 95 %. The closer the brain region is to the nasal cavity, the higher the DTP. Furthermore, the left brain, the same nostril site (left nostril) of administration, had a larger level of drug delivery than the right brain. These findings imply that the influence of the administered nostril site differs based on the physicochemical properties and amount of the drug., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 American Pharmacists Association. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF