1. Autoencoder based blind source separation for photoacoustic resolution enhancement
- Author
-
Matan Benyamin, Hadar Genish, Ran Califa, Lauren Wolbromsky, Michal Ganani, Zhen Wang, Shuyun Zhou, Zheng Xie, and Zeev Zalevsky
- Subjects
Medicine ,Science - Abstract
Abstract Photoacoustics is a promising technique for in-depth imaging of biological tissues. However, the lateral resolution of photoacoustic imaging is limited by size of the optical excitation spot, and therefore by light diffraction and scattering. Several super-resolution approaches, among which methods based on localization of labels and particles, have been suggested, presenting promising but limited solutions. This work demonstrates a novel concept for extended-resolution imaging based on separation and localization of multiple sub-pixel absorbers, each characterized by a distinct acoustic response. Sparse autoencoder algorithm is used to blindly decompose the acoustic signal into its various sources and resolve sub-pixel features. This method can be used independently or as a combination with other super-resolution techniques to gain further resolution enhancement and may also be extended to other imaging schemes. In this paper, the general idea is presented in details and experimentally demonstrated.
- Published
- 2020
- Full Text
- View/download PDF