1. Binding Kinetics, Bias, Receptor Internalization and Effects on Insulin Secretion in vitro and in vivo of a Novel GLP-1R/GIPR Dual Agonist, HISHS-2001.
- Author
-
Manchanda Y, Jones B, Carrat G, Ramchunder Z, Marchetti P, Leclerc I, Thennati R, Burade V, Natarajan M, Shahi P, Tomas A, and Rutter GA
- Abstract
The use of incretin analogues has emerged in recent years as an effective approach to achieve both enhanced insulin secretion and weight loss in type 2 diabetes (T2D) patients. Agonists which bind and stimulate multiple receptors have shown particular promise. However, off target effects, including nausea and diarrhoea, remain a complication of using these agents, and modified versions with optimized pharmacological profiles and/or biased signaling at the cognate receptors are increasingly sought. Here, we describe the synthesis and properties of a molecule which binds to both glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptors (GLP-1R and GIPR) to enhance insulin secretion. HISHS-2001 shows increased affinity at the GLP-1R, as well as a tendency towards reduced internalization and recycling at this receptor versus FDA-approved dual GLP-1R/GIPR agonist tirzepatide. HISHS-2001 also displayed significantly greater bias towards cAMP generation versus β-arrestin 2 recruitment compared to tirzepatide. In contrast, G
αs recruitment was lower versus tirzepatide at the GLP-1R, but higher at the GIPR. Administered to obese hyperglycaemic db/db mice, HISHS-2001 increased circulating insulin whilst lowering body weight and HbA1c with similar efficacy to tirzepatide at substantially lower doses. Thus, HISHS-2001 represents a novel dual receptor agonist with an improved pharmacological profile., Competing Interests: Conflicts of Interest Vinod Burade, Thennati Rajamannar, Muthukumaran Natarajan, and Pradeep Shahi are employees of Sun Pharmaceuticals, from whom Guy A. Rutter and Alejandra Tomas have received grant funding.- Published
- 2025
- Full Text
- View/download PDF