1. Stored RBC transfusions leads to the systemic inflammatory response syndrome in anemic murine neonates.
- Author
-
Ramatchandirin B, Balamurugan MA, Desiraju S, Chung Y, Wojczyk BS, and MohanKumar K
- Subjects
- Animals, Animals, Newborn, Mice, Lipopolysaccharides, Anemia therapy, Mice, Inbred C57BL, Triggering Receptor Expressed on Myeloid Cells-1 genetics, Cytokines blood, Erythrocyte Transfusion adverse effects, Toll-Like Receptor 4 genetics, Mice, Knockout, Systemic Inflammatory Response Syndrome blood
- Abstract
Objective: RBC transfusions (RBCT) are life-saving treatment for premature and critically ill infants. However, the procedure has been associated with the development of systemic inflammatory response syndrome (SIRS) and potentially multiple organ dysfunction syndrome (MODS) in neonates. The present study aimed to investigate the mechanisms of RBCT-related SIRS in severely anemic murine neonates., Methods: C57BL/6 (WT), TLR4
-/- and myeloid-specific triggered myeloid receptor-1 (trem1)-/- mouse pups were studied in 4 groups (n = 6 each): (1) naïve controls, (2) transfused control, (3) anemic (hematocrit 20-24%) and (4) anemic with RBC transfused using our established murine model of phlebotomy-induced anemia (PIA) and RBC transfusion. Plasma was measured for quantifying inflammatory cytokines (IFN-γ, IL-1β, TNF-α, IL-6, MIP-1α, MIP-1β, MIP2 and LIX) using a Luminex assay. In vitro studies included (i) sensitization by exposing the cells to a low level of lipopolysaccharide (LPS; 500 ng/ml) and (ii) trem1-siRNA transfection with/without plasma supernatant from stored RBC to assess the acute inflammatory response through trem1 by qRT-PCR and immunoblotting., Results: Anemic murine pups developed cytokine storm within 2 h of receiving stored RBCs, which increased until 6 h post-transfusion, as compared to non-anemic mice receiving stored RBCTs ("transfusion controls"), in a TLR4-independent fashion. Nonetheless, severely anemic pups had elevated circulating endotoxin levels, thereby sensitizing circulating monocytes to presynthesize proinflammatory cytokines (IFN-γ, IL-1β, TNF-α, IL-6, MIP-1α, MIP-1β, MIP2, LIX) and express trem1. Silencing trem1 expression in Raw264.7 cells mitigated both endotoxin-associated presynthesis of proinflammatory cytokines and the RBCT-induced release of inflammatory cytokines. Indeed, myeloid-specific trem1-/- murine pups had significantly reduced evidence of SIRS following RBCTs., Conclusion: Severe anemia-associated low-grade inflammation sensitizes monocytes to enhance the synthesis of proinflammatory cytokines and trem1. In this setting, RBCTs further activate these monocytes, thereby inducing SIRS. Inhibiting trem1 in myeloid cells, including monocytes, alleviates the inflammatory response associated with the combined effects of anemia and RBCTs in murine neonates., (© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)- Published
- 2024
- Full Text
- View/download PDF