8 results on '"Rajlic S"'
Search Results
2. Exposure to aircraft noise exacerbates cardiovascular and oxidative damage in three mouse models of diabetes.
- Author
-
Mihalikova D, Stamm P, Kvandova M, Pednekar C, Strohm L, Ubbens H, Oelze M, Kuntic M, Witzler C, Bayo Jimenez MT, Rajlic S, Frenis K, Tang Q, Ruan Y, Karbach S, Kleinert H, Hahad O, von Kriegsheim A, Xia N, Grune T, Li H, Kröller-Schön S, Gericke A, Ruf W, Wild PS, Lurz P, Münzel T, Daiber A, and Jansen T
- Abstract
Background: Epidemiology links noise to increased risk of metabolic diseases like diabetes and obesity. Translational studies in humans and experimental animals showed that noise causes reactive oxygen species (ROS)-mediated cardiovascular damage. The interaction between noise and diabetes, specifically potential additive adverse effects, remains to be determined., Methods and Results: C57BL/6 mice were treated with streptozotocin (i.p. injections, 50 mg/kg/d for 5d) to induce type-1 diabetes, with S961 (subcutaneous osmotic minipumps, 0.57 mg/kg/d for 7d) or fed a high-fat diet (HFD, 20 weeks) to induce type-2 diabetes. Control and diabetic mice were exposed to aircraft noise to an average sound pressure level of 72 dB(A) for 4d. While body weight was unaffected, noise reduced insulin production in all diabetes models. The oral glucose tolerance test showed only an additive aggravation by noise in the HFD model. Noise increased blood pressure and aggravated diabetes-induced aortic, mesenteric, and cerebral arterioles endothelial dysfunction. ROS formation in cerebral arterioles, the aorta, the heart, and isolated mitochondria was consistently increased by noise in all models of diabetes. Mitochondrial respiration was impaired by diabetes and noise, however without additive effects. Noise increased ROS and caused inflammation in adipose tissue in the HFD model. RNA sequencing data and alteration of gene pathway clusters also supported additive damage by noise in the setting of diabetes., Conclusion: In all three models of diabetes, aircraft noise exacerbates oxidative stress, inflammation, and endothelial dysfunction in mice with pre-existing diabetes. Thus, noise may potentiate the already increased cardiovascular risk in diabetic patients., (© The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology.)
- Published
- 2024
- Full Text
- View/download PDF
3. MCJ: A mitochondrial target for cardiac intervention in pulmonary hypertension.
- Author
-
Santamans AM, Cicuéndez B, Mora A, Villalba-Orero M, Rajlic S, Crespo M, Vo P, Jerome M, Macías Á, López JA, Leiva M, Rocha SF, León M, Rodríguez E, Leiva L, Pintor Chocano A, García Lunar I, García-Álvarez A, Hernansanz-Agustín P, Peinado VI, Barberá JA, Ibañez B, Vázquez J, Spinelli JB, Daiber A, Oliver E, and Sabio G
- Subjects
- Animals, Humans, Mice, Hypoxia, Lung, Myocardium, Pulmonary Artery, Swine, Hypertension, Pulmonary etiology, Hypertension, Pulmonary drug therapy
- Abstract
Pulmonary hypertension (PH) can affect both pulmonary arterial tree and cardiac function, often leading to right heart failure and death. Despite the urgency, the lack of understanding has limited the development of effective cardiac therapeutic strategies. Our research reveals that MCJ modulates mitochondrial response to chronic hypoxia. MCJ levels elevate under hypoxic conditions, as in lungs of patients affected by COPD, mice exposed to hypoxia, and myocardium from pigs subjected to right ventricular (RV) overload. The absence of MCJ preserves RV function, safeguarding against both cardiac and lung remodeling induced by chronic hypoxia. Cardiac-specific silencing is enough to protect against cardiac dysfunction despite the adverse pulmonary remodeling. Mechanistically, the absence of MCJ triggers a protective preconditioning state mediated by the ROS/mTOR/HIF-1α axis. As a result, it preserves RV systolic function following hypoxia exposure. These discoveries provide a potential avenue to alleviate chronic hypoxia-induced PH, highlighting MCJ as a promising target against this condition.
- Published
- 2024
- Full Text
- View/download PDF
4. Effects of aircraft noise cessation on blood pressure, cardio- and cerebrovascular endothelial function, oxidative stress, and inflammation in an experimental animal model.
- Author
-
Bayo Jimenez MT, Gericke A, Frenis K, Rajlic S, Kvandova M, Kröller-Schön S, Oelze M, Kuntic M, Kuntic I, Mihalikova D, Tang Q, Jiang S, Ruan Y, Duerr GD, Steven S, Schmeisser MJ, Hahad O, Li H, Daiber A, and Münzel T
- Abstract
Large epidemiological studies have shown that traffic noise promotes the development of cardiometabolic diseases. It remains to be established how long these adverse effects of noise may persist in response to a noise-off period. We investigated the effects of acute aircraft noise exposure (mean sound level of 72 dB(A) applied for 4d) on oxidative stress and inflammation mediating vascular dysfunction and increased blood pressure in male C57BL/6 J mice. 1, 2 or 4d of noise cessation after a 4d continuous noise exposure period completely normalized noise-induced endothelial dysfunction of the aorta (measured by acetylcholine-dependent relaxation) already after a 1d noise pause. Vascular oxidative stress and the increased blood pressure were partially corrected, while markers of inflammation (VCAM-1, IL-6 and leukocyte oxidative burst) showed a normalization within 4d of noise cessation. In contrast, endothelial dysfunction, oxidative stress, and inflammation of the cerebral microvessels of noise-exposed mice did not improve at all. These data demonstrate that the recovery from noise-induced damage is more complex than expected demonstrating a complete restoration of large conductance vessel function but persistent endothelial dysfunction of the microcirculation. These findings also imply that longer noise pauses are required to completely reverse noise-induced vascular dysfunction including the resistance vessels., Competing Interests: Declaration of competing interest The authors declare that they have no conflicts of interest with the contents of this article., (Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
5. Mitigation of aircraft noise-induced vascular dysfunction and oxidative stress by exercise, fasting, and pharmacological α1AMPK activation: molecular proof of a protective key role of endothelial α1AMPK against environmental noise exposure.
- Author
-
Kvandová M, Rajlic S, Stamm P, Schmal I, Mihaliková D, Kuntic M, Bayo Jimenez MT, Hahad O, Kollárová M, Ubbens H, Strohm L, Frenis K, Duerr GD, Foretz M, Viollet B, Ruan Y, Jiang S, Tang Q, Kleinert H, Rapp S, Gericke A, Schulz E, Oelze M, Keaney JF Jr, Daiber A, Kröller-Schön S, Jansen T, and Münzel T
- Subjects
- Humans, Mice, Animals, Oxidative Stress, Fasting, Aircraft, AMP-Activated Protein Kinases genetics, AMP-Activated Protein Kinases metabolism, AMP-Activated Protein Kinases pharmacology, Endothelium, Vascular metabolism, Noise, Transportation adverse effects
- Abstract
Aims: Environmental stressors such as traffic noise represent a global threat, accounting for 1.6 million healthy life years lost annually in Western Europe. Therefore, the noise-associated health side effects must be effectively prevented or mitigated. Non-pharmacological interventions such as physical activity or a balanced healthy diet are effective due to the activation of the adenosine monophosphate-activated protein kinase (α1AMPK). Here, we investigated for the first time in a murine model of aircraft noise-induced vascular dysfunction the potential protective role of α1AMPK activated via exercise, intermittent fasting, and pharmacological treatment., Methods and Results: Wild-type (B6.Cg-Tg(Cdh5-cre)7Mlia/J) mice were exposed to aircraft noise [maximum sound pressure level of 85 dB(A), average sound pressure level of 72 dB(A)] for the last 4 days. The α1AMPK was stimulated by different protocols, including 5-aminoimidazole-4-carboxamide riboside application, voluntary exercise, and intermittent fasting. Four days of aircraft noise exposure produced significant endothelial dysfunction in wild-type mice aorta, mesenteric arteries, and retinal arterioles. This was associated with increased vascular oxidative stress and asymmetric dimethylarginine formation. The α1AMPK activation with all three approaches prevented endothelial dysfunction and vascular oxidative stress development, which was supported by RNA sequencing data. Endothelium-specific α1AMPK knockout markedly aggravated noise-induced vascular damage and caused a loss of mitigation effects by exercise or intermittent fasting., Conclusion: Our results demonstrate that endothelial-specific α1AMPK activation by pharmacological stimulation, exercise, and intermittent fasting effectively mitigates noise-induced cardiovascular damage. Future population-based studies need to clinically prove the concept of exercise/fasting-mediated mitigation of transportation noise-associated disease., Competing Interests: Conflict of interest: None declared., (© The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology.)
- Published
- 2023
- Full Text
- View/download PDF
6. Early Detection Is the Best Prevention-Characterization of Oxidative Stress in Diabetes Mellitus and Its Consequences on the Cardiovascular System.
- Author
-
Rajlic S, Treede H, Münzel T, Daiber A, and Duerr GD
- Subjects
- Humans, Oxidative Stress physiology, Reactive Oxygen Species, NADPH Oxidases metabolism, Diabetes Mellitus, Cardiovascular Diseases, Cardiovascular System metabolism
- Abstract
Previous studies demonstrated an important role of oxidative stress in the pathogenesis of cardiovascular disease (CVD) in diabetic patients due to hyperglycemia. CVD remains the leading cause of premature death in the western world. Therefore, diabetes mellitus-associated oxidative stress and subsequent inflammation should be recognized at the earliest possible stage to start with the appropriate treatment before the onset of the cardiovascular sequelae such as arterial hypertension or coronary artery disease (CAD). The pathophysiology comprises increased reactive oxygen and nitrogen species (RONS) production by enzymatic and non-enzymatic sources, e.g., mitochondria, an uncoupled nitric oxide synthase, xanthine oxidase, and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). Considering that RONS originate from different cellular mechanisms in separate cellular compartments, adequate, sensitive, and compartment-specific methods for their quantification are crucial for early detection. In this review, we provide an overview of these methods with important information for early, appropriate, and effective treatment of these patients and their cardiovascular sequelae.
- Published
- 2023
- Full Text
- View/download PDF
7. Co-exposure to urban particulate matter and aircraft noise adversely impacts the cerebro-pulmonary-cardiovascular axis in mice.
- Author
-
Kuntic M, Kuntic I, Krishnankutty R, Gericke A, Oelze M, Junglas T, Bayo Jimenez MT, Stamm P, Nandudu M, Hahad O, Keppeler K, Daub S, Vujacic-Mirski K, Rajlic S, Strohm L, Ubbens H, Tang Q, Jiang S, Ruan Y, Macleod KG, Steven S, Berkemeier T, Pöschl U, Lelieveld J, Kleinert H, von Kriegsheim A, Daiber A, and Münzel T
- Subjects
- Mice, Animals, Particulate Matter adverse effects, Mice, Inbred C57BL, Inflammation chemically induced, Oxidative Stress, Aircraft, COVID-19, Cardiovascular System
- Abstract
Worldwide, up to 8.8 million excess deaths/year have been attributed to air pollution, mainly due to the exposure to fine particulate matter (PM). Traffic-related noise is an additional contributor to global mortality and morbidity. Both health risk factors substantially contribute to cardiovascular, metabolic and neuropsychiatric sequelae. Studies on the combined exposure are rare and urgently needed because of frequent co-occurrence of both risk factors in urban and industrial settings. To study the synergistic effects of PM and noise, we used an exposure system equipped with aerosol generator and loud-speakers, where C57BL/6 mice were acutely exposed for 3d to either ambient PM (NIST particles) and/or noise (aircraft landing and take-off events). The combination of both stressors caused endothelial dysfunction, increased blood pressure, oxidative stress and inflammation. An additive impairment of endothelial function was observed in isolated aortic rings and even more pronounced in cerebral and retinal arterioles. The increase in oxidative stress and inflammation markers together with RNA sequencing data indicate that noise particularly affects the brain and PM the lungs. The combination of both stressors has additive adverse effects on the cardiovascular system that are based on PM-induced systemic inflammation and noise-triggered stress hormone signaling. We demonstrate an additive upregulation of ACE-2 in the lung, suggesting that there may be an increased vulnerability to COVID-19 infection. The data warrant further mechanistic studies to characterize the propagation of primary target tissue damage (lung, brain) to remote organs such as aorta and heart by combined noise and PM exposure., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
8. Fatty Acid Amide Hydrolase Deficiency Is Associated with Deleterious Cardiac Effects after Myocardial Ischemia and Reperfusion in Mice.
- Author
-
Rajlic S, Surmann L, Zimmermann P, Weisheit CK, Bindila L, Treede H, Velten M, Daiber A, and Duerr GD
- Subjects
- Mice, Animals, Endocannabinoids metabolism, Ligands, Amidohydrolases metabolism, Polyunsaturated Alkamides pharmacology, Polyunsaturated Alkamides metabolism, Receptors, Cannabinoid, PPAR alpha metabolism, Inflammation, Reperfusion, Collagen, Hypertrophy, Myocardial Ischemia, Ventricular Dysfunction, Left metabolism, Coronary Artery Disease, Cardiomyopathies, Cannabinoids
- Abstract
Ischemic cardiomyopathy leads to inflammation and left ventricular (LV) dysfunction. Animal studies provided evidence for cardioprotective effects of the endocannabinoid system, including cardiomyocyte adaptation, inflammation, and remodeling. Cannabinoid type-2 receptor (CB2) deficiency led to increased apoptosis and infarctions with worsened LV function in ischemic cardiomyopathy. The aim of our study was to investigate a possible cardioprotective effect of endocannabinoid anandamide (AEA) after ischemia and reperfusion (I/R). Therefore, fatty acid amide hydrolase deficient (FAAH)
-/- mice were subjected to repetitive, daily, 15 min, left anterior descending artery (LAD) occlusion over 3 and 7 consecutive days. Interestingly, FAAH-/- mice showed stigmata such as enhanced inflammation, cardiomyocyte loss, stronger remodeling, and persistent scar with deteriorated LV function compared to wild-type (WT) littermates. As endocannabinoids also activate PPAR-α (peroxisome proliferator-activated receptor), PPAR-α mediated effects of AEA were eliminated with PPAR-α antagonist GW6471 i.v. in FAAH-/- mice. LV function was assessed using M-mode echocardiography. Immunohistochemical analysis revealed apoptosis, macrophage accumulation, collagen deposition, and remodeling. Hypertrophy was determined by cardiomyocyte area and heart weight/tibia length. Molecular analyses involved Taqman® RT-qPCR and immune cells were analyzed with fluorescence-activated cell sorting (FACS). Most importantly, collagen deposition was reduced to WT levels when FAAH-/- mice were treated with GW6471. Chemokine ligand-2 (CCL2) expression was significantly higher in FAAH-/- mice compared to WT, followed by higher macrophage infiltration in infarcted areas, both being reversed by GW6471 treatment. Besides restoring antioxidative properties and contractile elements, PPAR-α antagonism also reversed hypertrophy and remodeling in FAAH-/- mice. Finally, FAAH-/- -mice showed more substantial downregulation of PPAR-α compared to WT, suggesting a compensatory mechanism as endocannabinoids are also ligands for PPAR-α, and its activation causes lipotoxicity leading to cardiomyocyte apoptosis. Our study gives novel insights into the role of endocannabinoids acting via PPAR-α. We hypothesize that the increase in endocannabinoids may have partially detrimental effects on cardiomyocyte survival due to PPAR-α activation.- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.