87 results on '"Rajasekharan, Jayaprakash"'
Search Results
2. Advances in Machine-Learning Based Disaggregation of Building Heating Loads: A Review
- Author
-
Lien, Synne Krekling, primary, Najafi, Behzad, additional, and Rajasekharan, Jayaprakash, additional
- Published
- 2023
- Full Text
- View/download PDF
3. Decentralization, decarbonization and digitalization in swarm electrification
- Author
-
Fuchs, Ida, Rajasekharan, Jayaprakash, and Cali, Ümit
- Published
- 2024
- Full Text
- View/download PDF
4. Short-term inflow forecasting in a dam-regulated river in Southwest Norway using causal variational mode decomposition
- Author
-
Yousefi, Mojtaba, Wang, Jinghao, Fandrem Høivik, Øivind, Rajasekharan, Jayaprakash, Hubert Wierling, August, Farahmand, Hossein, and Arghandeh, Reza
- Published
- 2023
- Full Text
- View/download PDF
5. Flexibility Characterization, Aggregation, and Market Design Trends with a High Share of Renewables: a Review
- Author
-
Granado, Pedro Crespo del, Rajasekharan, Jayaprakash, Pandiyan, Surya Venkatesh, Tomasgard, Asgeir, Kara, Güray, Farahmand, Hossein, and Jaehnert, Stefan
- Published
- 2023
- Full Text
- View/download PDF
6. Swarm electrification: Harnessing surplus energy in off-grid solar home systems for universal electricity access
- Author
-
Fuchs, Ida, Balderrama, Sergio, Quoilin, Sylvain, del Granado, Pedro Crespo, and Rajasekharan, Jayaprakash
- Published
- 2023
- Full Text
- View/download PDF
7. Day-ahead inflow forecasting using causal empirical decomposition
- Author
-
Yousefi, Mojtaba, Cheng, Xiaomei, Gazzea, Michele, Wierling, August Hubert, Rajasekharan, Jayaprakash, Helseth, Arild, Farahmand, Hossein, and Arghandeh, Reza
- Published
- 2022
- Full Text
- View/download PDF
8. Challenges in platforming and digitizing decentralized energy services
- Author
-
Idries, Ahmed, Krogstie, John, and Rajasekharan, Jayaprakash
- Published
- 2022
- Full Text
- View/download PDF
9. Recursive training based physics-inspired neural network for electric water heater modeling
- Author
-
Pandiyan, Surya Venkatesh and Rajasekharan, Jayaprakash
- Published
- 2022
- Full Text
- View/download PDF
10. Decentralization, Decarbonization and Digitalization in Swarm Electrification
- Author
-
Fuchs, Ida, primary, Rajasekharan, Jayaprakash, additional, and Cali, Ümit, additional
- Published
- 2024
- Full Text
- View/download PDF
11. Exploring the application of machine‐learning techniques in the next generation of long‐term hydropower‐thermal scheduling
- Author
-
Wang, Jinghao, primary, Yousefi, Mojtaba, additional, Rajasekharan, Jayaprakash, additional, Arghandeh, Reza, additional, and Farahmand, Hossein, additional
- Published
- 2024
- Full Text
- View/download PDF
12. Optimal Energy Consumption Model for Smart Grid Households with Energy Storage
- Author
-
Rajasekharan, Jayaprakash and Koivunen, Visa
- Subjects
Computer Science - Other Computer Science - Abstract
In this paper, we propose to model the energy consumption of smart grid households with energy storage systems as an intertemporal trading economy. Intertemporal trade refers to transaction of goods across time when an agent, at any time, is faced with the option of consuming or saving with the aim of using the savings in the future or spending the savings from the past. Smart homes define optimal consumption as either balancing/leveling consumption such that the utility company is presented with a uniform demand or as minimizing consumption costs by storing energy during off-peak time periods when prices are lower and use the stored energy during peak time periods when prices are higher. Due to the varying nature of energy requirements of household and market energy prices over different time periods in a day, households face a trade-off between consuming to meet their current energy requirements and/or storing energy for future consumption and/or spending energy stored in the past. These trade-offs or consumption preferences of the household are modeled as utility functions using consumer theory. We introduce two different utility functions, one for cost minimization and another for consumption balancing/leveling, that are maximized subject to respective budget, consumption, storage and savings constraints to solve for the optimum consumption profile. The optimization problem of a household with energy storage is formulated as a geometric program for consumption balancing/leveling, while cost minimization is formulated as a linear programming problem. Simulation results show that the proposed model achieves extremely low peak to average ratio in the consumption balancing/leveling scheme with about 8% reduction in consumption costs and the least possible amount for electricity bill with about 12% reduction in consumption costs in the cost minimization scheme., Comment: 26 pages, 9 figures, 34 equations
- Published
- 2013
- Full Text
- View/download PDF
13. Cooperative Game-Theoretic Approach to Spectrum Sharing in Cognitive Radios
- Author
-
Rajasekharan, Jayaprakash, Eriksson, Jan, and Koivunen, Visa
- Subjects
Computer Science - Computer Science and Game Theory ,Computer Science - Information Theory ,Computer Science - Networking and Internet Architecture - Abstract
In this paper, a novel framework for normative modeling of the spectrum sensing and sharing problem in cognitive radios (CRs) as a transferable utility (TU) cooperative game is proposed. Secondary users (SUs) jointly sense the spectrum and cooperatively detect the primary user (PU) activity for identifying and accessing unoccupied spectrum bands. The games are designed to be balanced and super-additive so that resource allocation is possible and provides SUs with an incentive to cooperate and form the grand coalition. The characteristic function of the game is derived based on the worths of SUs, calculated according to the amount of work done for the coalition in terms of reduction in uncertainty about PU activity. According to her worth in the coalition, each SU gets a pay-off that is computed using various one-point solutions such as Shapley value, \tau-value and Nucleolus. Depending upon their data rate requirements for transmission, SUs use the earned pay-off to bid for idle channels through a socially optimal Vickrey-Clarke-Groves (VCG) auction mechanism. Simulation results show that, in comparison with other resource allocation models, the proposed cooperative game-theoretic model provides the best balance between fairness, cooperation and performance in terms of data rates achieved by each SU., Comment: 11 pages, 9 figures, 6 tables, journal
- Published
- 2011
14. Scenario Clustering for Long-term Hydropower-Thermal Scheduling using Shape Feature Extraction
- Author
-
Wang, Jinghao, primary, Yousefi, Mojtaba, primary, Rajasekharan, Jayaprakash, primary, Farahmand, Hossein, primary, and Arghandeh, Reza, primary
- Published
- 2023
- Full Text
- View/download PDF
15. Surplus energy in solar home systems as driver for bottom-up grids: When grids emerge from the edge
- Author
-
Fuchs, Ida, primary, Balderrama, Sergio, additional, Del Granado, Pedro Crespo, additional, Quoilin, Sylvain, additional, and Rajasekharan, Jayaprakash, additional
- Published
- 2023
- Full Text
- View/download PDF
16. Federated Learning vs Edge Learning for Hot Water Demand Forecasting in Distributed Electric Water Heaters for Demand Side Flexibility Aggregation
- Author
-
Pandiyan, Surya Venkatesh, primary and Rajasekharan, Jayaprakash, additional
- Published
- 2023
- Full Text
- View/download PDF
17. Scenario Reduction for Long-term Hydropower Scheduling using Shape-based Block Decomposition
- Author
-
Wang, Jinghao, primary, Yousefi, Mojtaba, primary, Cheng, Xu, primary, Rajasekharan, Jayaprakash, primary, Farahmand, Hossein, primary, and Arghandeh, Reza, primary
- Published
- 2023
- Full Text
- View/download PDF
18. Cooperative game-theoretic approach to spectrum sharing in cognitive radios
- Author
-
Rajasekharan, Jayaprakash and Koivunen, Visa
- Published
- 2015
- Full Text
- View/download PDF
19. Dynamic Capabilities in Electrical Energy Digitalization: A Case from the Norwegian Ecosystem
- Author
-
Idries, Ahmed, primary, Krogstie, John, additional, and Rajasekharan, Jayaprakash, additional
- Published
- 2022
- Full Text
- View/download PDF
20. Self-organizing maps for scenario reduction in long-term hydropower scheduling
- Author
-
Wang, Jinghao, primary, Yousefi, Mojtaba, additional, Cheng, Xiaomei, additional, Rajasekharan, Jayaprakash, additional, Arghandeh, Reza, additional, Pan, Xueping, additional, and Farahmand, Hossein, additional
- Published
- 2022
- Full Text
- View/download PDF
21. Evaluation of Distributed Ledger Technology Implementation in Electrical Energy Service through a Case Study
- Author
-
Idries, Ahmed, primary, Krogstie, John, additional, and Rajasekharan, Jayaprakash, additional
- Published
- 2022
- Full Text
- View/download PDF
22. Physics-Informed Neural Network Model for Flexibility Modeling of Electric Water Heaters
- Author
-
Pandiyan, Surya Venkatesh, primary and Rajasekharan, Jayaprakash, additional
- Published
- 2022
- Full Text
- View/download PDF
23. Image Approach towards Document Mining in Neuroscientific Publications
- Author
-
Rajasekharan, Jayaprakash, Scharfenberger, Ulrike, Gonçalves, Nicolau, Vigário, Ricardo, Hutchison, David, editor, Kanade, Takeo, editor, Kittler, Josef, editor, Kleinberg, Jon M., editor, Mattern, Friedemann, editor, Mitchell, John C., editor, Naor, Moni, editor, Nierstrasz, Oscar, editor, Pandu Rangan, C., editor, Steffen, Bernhard, editor, Sudan, Madhu, editor, Terzopoulos, Demetri, editor, Tygar, Doug, editor, Vardi, Moshe Y., editor, Weikum, Gerhard, editor, Cohen, Paul R., editor, Adams, Niall M., editor, and Berthold, Michael R., editor
- Published
- 2010
- Full Text
- View/download PDF
24. Multi-objective Day-ahead Scheduling of Regional Integrated Energy Systems Considering Energy Sharing
- Author
-
Yang, Shuangshuang, primary, Sun, Xiaorong, additional, Pan, Xueping, additional, Xu, Qijie, additional, Xu, Yi, additional, Farahmand, Hossein, additional, and Rajasekharan, Jayaprakash, additional
- Published
- 2022
- Full Text
- View/download PDF
25. Local flexibility market design for aggregators providing multiple flexibility services at distribution network level
- Author
-
Universitat Politècnica de Catalunya. Departament d'Enginyeria Elèctrica, Universitat Politècnica de Catalunya. CITCEA - Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments, Olivella Rosell, Pol, Lloret Gallego, Pau, Villafafila Robles, Roberto, Sumper, Andreas, Ottesen, Stig Odegaard, Rajasekharan, Jayaprakash, Bremdal, Bernt, Universitat Politècnica de Catalunya. Departament d'Enginyeria Elèctrica, Universitat Politècnica de Catalunya. CITCEA - Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments, Olivella Rosell, Pol, Lloret Gallego, Pau, Villafafila Robles, Roberto, Sumper, Andreas, Ottesen, Stig Odegaard, Rajasekharan, Jayaprakash, and Bremdal, Bernt
- Abstract
This paper presents a general description of local flexibility markets as a market-based management mechanism for aggregators. The high penetration of distributed energy resources introduces new flexibility services like prosumer or community self-balancing, congestion management and time-of-use optimization. This work is focused on the flexibility framework to enable multiple participants to compete for selling or buying flexibility. In this framework, the aggregator acts as a local market operator and supervises flexibility transactions of the local energy community. Local market participation is voluntary. Potential flexibility stakeholders are the distribution system operator, the balance responsible party and end-users themselves. Flexibility is sold by means of loads, generators, storage units and electric vehicles. Finally, this paper presents needed interactions between all local market stakeholders, the corresponding inputs and outputs of local market operation algorithms from participants and a case study to highlight the application of the local flexibility market in three scenarios. The local market framework could postpone grid upgrades, reduce energy costs and increase distribution grids’ hosting capacity., Postprint (published version)
- Published
- 2018
26. Energy storage as a trigger for business model innovation in the energy sector
- Author
-
Ilieva, Iliana, primary and Rajasekharan, Jayaprakash, additional
- Published
- 2018
- Full Text
- View/download PDF
27. Local Flexibility Market Design for Aggregators Providing Multiple Flexibility Services at Distribution Network Level
- Author
-
Olivella-Rosell, Pol, primary, Lloret-Gallego, Pau, additional, Munné-Collado, Íngrid, additional, Villafafila-Robles, Roberto, additional, Sumper, Andreas, additional, Ottessen, Stig, additional, Rajasekharan, Jayaprakash, additional, and Bremdal, Bernt, additional
- Published
- 2018
- Full Text
- View/download PDF
28. Creating a local energy market
- Author
-
Bremdal, Bernt A., primary, Olivella-Rosell, Pol, additional, Rajasekharan, Jayaprakash, additional, and Ilieva, Iliana, additional
- Published
- 2017
- Full Text
- View/download PDF
29. EMPOWER: A network market approach for local energy trade
- Author
-
Bremdal, Bernt A., primary, Olivella, Pol, additional, and Rajasekharan, Jayaprakash, additional
- Published
- 2017
- Full Text
- View/download PDF
30. Demand response for renewable energy integration and load balancing in smart grid communities
- Author
-
Chis, Adriana, primary, Rajasekharan, Jayaprakash, additional, Lunden, Jarmo, additional, and Koivunen, Visa, additional
- Published
- 2016
- Full Text
- View/download PDF
31. EMPOWER: A network market approach for local energy trade and renewable electricity system integration.
- Author
-
Bremdal, Bernt A., Rajasekharan, Jayaprakash, Kunze, Christian W., and Rosell, Pol Olivella
- Subjects
RENEWABLE energy sources ,ELECTRIC utilities ,ELECTRIC networks ,ENERGY industries ,INTERNET - Abstract
This paper describes the local market for trade in energy, flexibility and energy related services developed in the ongoing H2020 project, EMPOWER. It is based on a network market approach. The establishment of a local community of prosumers and consumers, inspired by Internet communities, energy cooperatives and online shopping clubs, is central to the idea. At the heart of the community the Smart Energy Service Provider (SESP) can be found. The principal entities and operations associated with the local market concept developed are explained. Some early field results as well as regulatory challenges for a broader roll-out are described. [ABSTRACT FROM AUTHOR]
- Published
- 2017
32. Cooperative game-theoretic approach to load balancing in smart grids with community energy storage
- Author
-
Rajasekharan, Jayaprakash, primary and Koivunen, Visa, additional
- Published
- 2015
- Full Text
- View/download PDF
33. Optimal Energy Consumption Model for Smart Grid Households With Energy Storage
- Author
-
Rajasekharan, Jayaprakash, primary and Koivunen, Visa, additional
- Published
- 2014
- Full Text
- View/download PDF
34. Intertemporal trading economy model for smart grid household energy consumption
- Author
-
Rajasekharan, Jayaprakash, primary and Koivunen, Visa, additional
- Published
- 2014
- Full Text
- View/download PDF
35. Production equilibrium in cooperative smart hybrid renewable minigrids
- Author
-
Rajasekharan, Jayaprakash, primary and Koivunen, Visa, additional
- Published
- 2014
- Full Text
- View/download PDF
36. Competitive equilibrium pricing and cooperation in smart grids with energy storage
- Author
-
Rajasekharan, Jayaprakash, primary, Lunden, Jarmo, additional, and Koivunen, Visa, additional
- Published
- 2013
- Full Text
- View/download PDF
37. Cooperative game theory and auctioning for spectrum allocation in cognitive radios
- Author
-
Rajasekharan, Jayaprakash, primary, Eriksson, Jan, additional, and Koivunen, Visa, additional
- Published
- 2011
- Full Text
- View/download PDF
38. Cooperative game-theoretic modeling for spectrum sensing in cognitive radios
- Author
-
Rajasekharan, Jayaprakash, primary, Eriksson, Jan, additional, and Koivunen, Visa, additional
- Published
- 2010
- Full Text
- View/download PDF
39. Local Flexibility Market Design for Aggregators Providing Multiple Flexibility Services at Distribution Network Level
- Author
-
Olivella-Rosell, Pol, Lloret-Gallego, Pau, Munné-Collado, Íngrid, Villafafila-Robles, Roberto, Sumper, Andreas, Ottesen, Stig Ødegaard, Rajasekharan, Jayaprakash, and Bremdal, Bernt A.
- Subjects
Distribution network ,Local markets ,Distributed energy resources ,Flexibility ,Smart Grids ,7. Clean energy - Abstract
This paper presents a general description of local flexibility markets as a market-based management mechanism for aggregators. The high penetration of distributed energy resources introduces new flexibility services like prosumer or community self-balancing, congestion management and time-of-use optimization. This work is focused on the flexibility framework to enable multiple participants to compete for selling or buying flexibility. In this framework, the aggregator acts as a local market operator and supervises flexibility transactions of the local energy community. Local market participation is voluntary. Potential flexibility stakeholders are the distribution system operator, the balance responsible party and end-users themselves. Flexibility is sold by means of loads, generators, storage units and electric vehicles. Finally, this paper presents needed interactions between all local market stakeholders, the corresponding inputs and outputs of local market operation algorithms from participants and a case study to highlight the application of the local flexibility market in three scenarios. The local market framework could postpone grid upgrades, reduce energy costs and increase distribution grids’ hosting capacity.
40. Local Flexibility Market Design For Aggregators Providing Multiple Flexibility Services At Distribution Network Level
- Author
-
Olivella-Rosell, Pol, Lloret-Gallego, Pau, Munné-Collado, Íngrid, Villafafila-Robles, Roberto, Sumper, Andreas, Ottesen, Stig Ødegaard, Rajasekharan, Jayaprakash, and Bremdal, Bernt A.
- Subjects
Distribution network ,Local markets ,Distributed energy resources ,Flexibility ,Smart Grids ,7. Clean energy - Abstract
This paper presents a general description of local flexibility markets as a market-based management mechanism for aggregators. The high penetration of distributed energy resources introduces new flexibility services like prosumer or community self-balancing, congestion management and time-of-use optimization. This work is focused on the flexibility framework to enable multiple participants to compete for selling or buying flexibility. In this framework, the aggregator acts as a local market operator and supervises flexibility transactions of the local energy community. Local market participation is voluntary. Potential flexibility stakeholders are the distribution system operator, the balance responsible party and end-users themselves. Flexibility is sold by means of loads, generators, storage units and electric vehicles. Finally, this paper presents needed interactions between all local market stakeholders, the corresponding inputs and outputs of local market operation algorithms from participants and a case study to highlight the application of the local flexibility market in three scenarios. The local market framework could postpone grid upgrades, reduce energy costs and increase distribution grids’ hosting capacity.
41. Baseline Estimation for Flexibility Validation
- Author
-
Sandhu, Simran Jit Kaur, Vågen, Marthe, and Rajasekharan, Jayaprakash
- Abstract
For å håndtere utfordringer fra ukontrollerbare energiressurser og implementering av distribuerte energiressurser, krever distribusjonssystemoperatører fleksible laster og energikilder som hjelper balanseringen av elektrisk energiforsyning og etterspørsel. En aggregator, som fungerer som en mellommann, kan kjøpe fleksibilitet fra forbrukere for å så samle dette og selge videre til en kjøper, som distribusjonssystemoperatører. Oppgjørsprosessen mellom aggregator og distribusjonssystemoperatør krever validering av den aktiverte fleksibiliteten, noe som kan være utfordrende siden den aktiverte fleksibiliteten ikke fysisk kan måles. Hovedformålet i denne masteroppgaven inkluderer hvordan distribusjonssystemoperatøren kan validere denne etterspørselsside-fleksibiliteten på nettstasjonsnivå aktivert av aggregatoren i oppgjørsprosessen, og hvordan valideringen kan implementeres i et realistisk scenario ved å bruke forbruksdata tilgjengelig for distribusjonssystemoperatøren. Lastprognosemetoder for grunnlinjeestimering kan brukes til disse formålene, da de estimerer hva forbrukere ville ha konsumert i fravær av fleksibilitetsaktivering. To regresjonsmetoder ble foreslått i denne oppgaven: kunstig nevrale nettverk og flerlineær regresjon. To strategier ble implementert med regresjonsmetodene: rekursiv og korrigerende. Den rekursive strategien ble valgt for å forbedre estimeringsresultatene og få simuleringene til å reflektere et virkelighetsscenario, da kun data tilgjengelig for distribusjonssystemoperatøren ble brukt. Den korrigerende strategien ble implementert for å forbedre nøyaktigheten til den rekursive strategien. Det ble brukt kunstig nettstasjonsdata med både 1 og 5 minutters frekvens. Grunnlinjeestimering av individuelle husholdninger ble også utført for å undersøke om mer informasjon angående fleksibilitetsvalideringen kunne bestemmes på et lavere nivå. Implementeringen av den rekursive strategien viste mer nøyaktige resultater i kunstig nevrale nettverk enn flerlineær regresjon. Begge metodene fulgte trenden til den faktiske grunnlinjen, men ingen av metodene var i stand til å fange opp den høye fluktuerende frekvensen. Den korrigerende strategien forbedret estimeringsresultatene til en viss grad. Nøyaktigheten av metodene etter implementering av strategiene er moderat. Det er imidlertid rom for forbedringer i fremtiden ved å blant annet bruke passende forklaringsvariabler og avanserte maskinlæringsalgoritmer. Frekvensjusteringen hadde lite eller noe betydning for nøyaktigheten til metodene, og ingen av de to frekvensene vil derfor være mer gunstige for distribusjonssystemoperatøren. Siden grunnlinjeestimering er utfordrende på boligdata, kan bidraget fra de enkelte husestimatene være ubetydelig for distribusjonssystemoperatøren i oppgjørsprosessen. Kompleksiteten til validering ved bruk av grunnlinjeestimering er bevist, der selv de vanligste regresjonsmetodene mislykkes på grunn av problemets natur. Videre arbeid bør undersøke faktorene som påvirker strategiene og undersøke ulike strategier. To deal with challenges posed by intermittent energy resources and the implementation of distributed energy resources, distribution system operators require flexible loads and energy sources that support the balancing of electrical energy supply and demand. An aggregator, acting as an intermediary, may purchase flexibility from consumers to aggregate and sell to a buyer, such as distribution system operators. The settlement process between aggregator and distribution system operator requires validation of the activated flexibility, which can be challenging as this activated flexibility can not be physically measured. The main research question of this thesis includes how the distribution system operator can validate this demand-side flexibility at substation level activated by the aggregator in the settlement process and how validation can be implemented in a realistic scenario using consumption data available to the distribution system operator. Load forecasting methods for baseline estimation can be implemented for this purpose, as they estimate what consumers would have consumed in the absence of flexibility activation. Two regression methods were proposed in this thesis: artificial neural network and multiple linear regression. Two strategies were implemented with the regression methods: recursive and rectifying. The recursive strategy was chosen to improve the estimation results and make the simulations reflect a real-world scenario, as only data available to the distribution system operator was used. The rectifying strategy was implemented to improve the accuracy of the recursive strategy. Artificially created substation data with both 1 and 5-minute frequency were used. Baseline estimation of individual households was also conducted to examine whether more information regarding the flexibility validation could be determined at a lower level. The implementation of the recursive strategy showed more accurate results in artificial neural network than multiple linear regression. Both methods followed the trend of the actual baseline, but neither method was able to capture the high fluctuating frequency. The rectifying strategy improved the baseline estimation results to some degree. The accuracy of the methods after implementing the strategies is moderate. However, it has scope for improvement in the future by using appropriate explanatory variables and advanced machine learning algorithms, among other factors. The frequency adjustment had little or some effect on the accuracy of the methods, and neither of the two frequencies might therefore be more favorable for the DSO. As baseline estimation is challenging on residential data, the contribution from the individual house estimations might be negligible to the DSO in the settlement process. The complexity of validation using baseline estimation has been proven, where even the most common regression methods fail due to the nature of the problem. Further work should research the factors affecting the strategies and examine different strategies.
- Published
- 2022
42. Optimal Integration and Control of Distributed Batteries for Multiple Grid Services
- Author
-
Sørdalen, Abraham Paulsen, Rajasekharan, Jayaprakash, and Korpås, Magnus
- Abstract
Med elektrifiseringen av samfunnet og økt kraftproduksjon fra svært variable, intermitterende og distribuerte fornybare energiressurser kan forårsake ubalanse, ustabilitet og overbelastninger i transmissions- og distribusjonssystemet. Elektrisitetssystemet trenger distribuert og smart kraftfleksibilitet. Et lovende middel for slik fleksibilitet er batterisystemer. Batterisystemer kan tilby flere strømfleksibilitetstjenester til alle interessenter i elektrisitetssystemet; kraftprodusentene, kraftforbrukerne og «pro-sumers», distribusjonssystemoperatørene, og transmisjonssystemoperatørene. Vanligvis har batterisystemer blitt brukt for bare én eller to fleksibilitetstjenester. I denne oppgaven er det imidlertid utviklet et konsept for at batterisystemer skal levere flere tjenester til flere av interessentene. Dessuten integrerer og kontrollerer konseptet en flåte av distribuerte enheter for å oppnå ønsket fleksibilitet. Arbeidet omfatter utvikling av en modulær systemmodell for distribuerte batterier og et agentbasert kontrollkonsept. Det hierarkiske, agentbaserte kontrollsystemet gir energiarbitrage, peak-shaving og reservemarkedstjenester. De distribuerte agentene utleder tjenesteplanlegging basert på deres forbruksprognoser og ulike statistiske analyser. En sentral kontroller er inkludert for at batteri-agentene skal handle tjenester seg imellom. Gjennom en omlegging av tjenester kan de distribuerte batterisystemene i fellesskap øke leveringen av total effektrespons til elektrisitetssystemet og øke lønnsomheten. I tillegg til utvikling og analyse av den modulære modellen og kontrollkonseptet, er det utviklet en Python-basert simulator. Analysene viser at det foreslåtte konseptet med den distribuerte agentbaserte BESS gjør at hvert batterisystem kan tilby flere nettjenester. Videre vises det at samarbeidet via en sentral koordinator gjør at hvert batterisystem kan omprioriteres mellom lokale fleksibilitetsbehov og regionale fleksibilitetsbehov basert på oppdaterte prognoser. Det foreslåtte distribuerte agentbaserte-konseptet optimerer derfor støtten for både tidsmessige ubalanser mellom total produksjon og forbruk av elektrisitet, så vel som for overbelastninger i nettet. Som et eksempel lar det foreslåtte konseptet et batterisystem bestemme når det skal brukes til å gi mer strøm til en overbelastet transformator eller el-ladestasjon, eller når det skal generere inntekter fra reservemarkeder for å stabilisere frekvensen til nettet. The electrification of society and the increased power generation from highly variable, intermittent and distributed Renewable Energy Resources (RES) can cause imbalance, instability, and congestions in the transmission- and distribution system. The electricity system requires distributed and smart power flexibility. A promising means for such flexibility is Battery Energy Storage Systems (BESS). BESS can provide multiple power flexibility services to all stakeholders in the electricity system; the power producers, the power consumers and “pro-sumers”, the Distribution System Operators (DSO), and the Transmission System Operators (TSO). Typically, BESS have been deployed for only one or two flexibility services. In this thesis, however, a concept is developed for BESS to provide multiple services to several of the stakeholders. Moreover, the concept integrates and controls a fleet of distributed units to achieve the desired temporal and spatial flexibility. The work includes the development of a modular system model for distributed batteries and an agent-based control concept. The hierarchical, agent-based control system provides energy arbitrage, peak-shaving, and reserve market services. The distributed agents derive BESS service scheduling based on their consumption forecasting and various statistical analysis. A Central Controller (CC) is included to act as an aggregator and market maker between the agents. The CC enables the individual BESS agents to trade services between themselves. Through a rescheduling of services, the distributed BESS can jointly enhance the provision of total power response to the electricity system and increase the operational profitability. In addition to the development and analysis of the modular model and control concept, a Python-based simulator has been developed. The analyses show that the proposed concept with the distributed agent-based BESS enables each BESS to provide multiple grid services. Moreover, it is shown that the cooperation via a central coordinator enables each BESS to re-prioritise between local flexibility needs and regional flexibility needs based on updated forecasting. The proposed distributed agent-based BESS concept optimises hence the support for both temporal imbalances between total generation and consumption of electricity, as well as for spatial congestions in the grid. As an example, the proposed concept enables a battery system to decide when it should be used for providing more power to an overloaded transformer or EV charging station, or when to generate revenues from reserve markets to stabilize the frequency of the grid.
- Published
- 2022
43. Accessing Flexibility in Batteries Through a Local Flexibility Market
- Author
-
Berge, Renate Høvik, Rajasekharan, Jayaprakash, and Bjarghov, Sigurd
- Abstract
Netteieren, eller distribusjonssystemoperatøren, er ansvarlig for å operere og vedlikeholde distribusjonsnettet. I forskrift om leveringskvalitet er det fastsatt at det er netteieren som er ansvarlig for å opprettholde kraft- og spenningskvaliteten i nettet, dette innebærer at spenningen skal være innenfor lovbestemte grenser. På grunn av den pågående klimakrisen og behovet for mer effektiv kraftproduksjon blir strømnettet mer og mer desentralisert. Dette medfører en økt andel varierende fornybar kraftproduksjon og mer kraftproduksjon koblet til distribusjonsnettet. Den pågående endringen av strømnettet medfører ulike spenningproblem som f.eks. under-spenningsproblemer. Bruken av batteri i distribusjonsnettet gir tilgang på en pålitelig energikilde som kan benyttes til f.eks. spenningsregulering. Fleksibiliteten i batteriene kan tilgjengelig gjøres gjennom lokale fleksibilitet marked. Denne masteren presenterer derfor en modell av et casestudie nettverket med under-spenningsproblemer. Spenningsproblemene vurderes ut i fra tre ulike last profil scenario og resultatene benyttes for å skaffe fleksibilitetsbehovet for de ulike scenarioene, med hensyn til to ulike spenningsgrenser, på 0.95 pu og 0.90 pu. Spenningsgrensene ble satt for å reflektere netteierens ansvar for å opprettholde kraft- og spenningskvaliteten i nettet. En to-steg stokastisk optimeringsmodell ble laget med et mål om å skaffe nok fleksibilitet, fra et batteri, til å dekke fleksibilitetsbehovene ved de tre last profil scenarioene. Objektivet til modellen er å minimere netteieren utgifter med hensyn på kostnaden av å booke og aktivere fleksibilitet gjennom to fleksibilitetsmuligheter, LongFlex og ShortFlex, og samtidig ta hensyn til kostandene ved nedbrytingen av de ulike segmentene i batteriet. Ved å benytte fleksibilitetsbehovet skaffet ved bruk av under-spenningsgrensen og to ulike profiler for fleksibilitetskostnader i optimeringsmodellen gir en bekreftelse på at modellen fungerer slik den skal, ettersom det aktiveres nok fleksibilitet til å dekke behovet. Det benyttes både ShortFlex og LongFlex avhenging av prisen på aktivering og booking. Modellen trekker nok kraft fra batteriet til å dekke behovet og ulike segmenter i batteriet blir aktivert. Den totale kostnaden for netteieren er veldig lav, men dette kommer av at batteriet er overdimensjonert og av det lave fleksibilitetsbehovet. Ved å benytte fleksibilitetsbehovene fra kraft-kvalitetsgrense er ikke modellen løselig, og dette er på grunn av det konstante fleksibilitetsbehovet, ettersom dette betyr at batteriet ikke får muligheten til å lade. I slike situasjoner kan det være mulig å benytte flere batteriet eller vurdere andre metoder for å styrke nettet. The power quality regulation states that the distribution system operator is responsible for maintaining the power quality in the grid and ensuring that the voltage quality is within statutory limits. Due to environmental issues and a demand for more efficient energy generation the power system is transforming into a more decentralized system resulting in more intermittent power generation and distributed generation. This results in challenges in the distribution grid, such as under-voltage issues. The use of battery energy storage in the distribution grid provides a reliable energy source to be used for e.g. voltage control. The flexibility in battery energy storage systems can be made accessible for the distribution system operator through local flexibility markets. This master thesis therefore presents the network model of a case study network with under-voltage issues. The under-voltage issues are evaluated for three load profile scenarios and the results are used to procure the flexibility demand for the load profile scenarios, consider two set voltage limits at 0.95 pu and 0.9 pu. These voltage limits reflect the DSO responsibility for ensuring the power quality in the distribution grid and the responsibility for ensuring that the voltage quality is within statutory limits. A two-stage stochastic optimization model was created with goal of obtaining enough flexibility, through a battery, to cover the flexibility demands procured, and thereby avoid violating the set voltage limits. The objective of the model is to minimize the total cost for the distribution system operator considering the cost of booking and activating flexibility through two flexibility options, LongFlex and ShortFlex, and also considering the cost of battery degradation. The use of various load profile scenarios in the network model resulted in varying degree of under-voltage issues, considering voltage magnitude and the duration of the issues. The use of the flexibility demands procured, by the use of the under-voltage limit, in the optimization model verified that the model booked and activated enough flexibility to cover the demands. The use of ShortFlex and LongFlex varied with the cost of booking and activation, for both of the cost profiles. The battery discharged enough power to cover the demand and various segments in battery are activated. However, the model resulted in low cost for the distribution system operator as a result of operating with small amount of power and a overdimensioned battery. The use of the power quality limit resulted in a very high flexibility demand for each scenario, and the use of these demands in the optimization model resulted in an infeasible model. This was a result of the constant flexibility demands, which did not allow for any battery charging. In situations with a great demand more batteries must be considered or other options for reinforcing the grid.
- Published
- 2022
44. Predictions on solar power plant generation with machine learning techniques (PRESAV)
- Author
-
Hadi, Mohamed, Jacob, Stefan Quvald, Rajasekharan, Jayaprakash, and Dimd, Berhane Darsene
- Abstract
Energiproduksjon har en betydelig innvirkning på menneskers liv, og forskere har forsøkt å predikere været for å forbedre kraftstabiliteten, redusere energitap og øke økonomisk gevinster. Med tanke på dagens klimautfor- dringer og bekymringer, undersøker forskere fra SINTEF og NTNU potensialet på å koble flere rene energikilder sammen i et nullutslippsbygg laboratorium lokalisert i Trondheim. Denne bacheloroppgaven undersøker et sett med maskinlæringalgoritmer for prediksjon av mengden fotovoltaisk energi som genereres av ZEB-laboratoriet, og hensikten er å sammenkoble den prediktive dataen i en styringsstrategi som vil operere sammen med andre produksjonssystemer i bygningen. Prosjektteamet vil fokusere på å bruke maskinlæringsmetoder på tidligere data på solcelleproduksjon fra anlegget og værdata samlet inn fra SINTEFs testcelle for å assistere ZEB-bygningen med å bestemme den beste strategien for redusert strømforbruk og klimagassutslipp samtidig øke bruken av lokalt produsert energi. Konseptene som presenteres i denne rapporten er basert på tidligere forskningslitteratur, vitenskapelige artikler og arbeid gjort av andre vitenskapsmenn. Energy production has a significant impact on human life, and scientists have attempted to predict weather in order to improve power stability, decrease the energy waste, and raise economic wealth. Considering the current climate challenges and concerns, SINTEF and NTNU researchers are examining the potential of merging several clean energy production sources in a zero-emission building laboratory (ZEB-lab) in Trondheim. This bachelor’s thesis investigates a set of supervised machine learning algorithms for predicting the amount of photovoltaic energy generated by the ZEB-lab, with the goal of integrating the predicted data into a control system that works in tandem with the building’s other power generation systems. The project team will focus on using machine learning approaches on historical photovoltaic production from the plant and weather data collected from SINTEF’s test cell to assist the ZEB-building in determining the best strategy to reduce power consumption and greenhouse gas emissions while increasing the usage of energy produced locally. The concepts presented in this report are based on past research literature, scientific papers, and other scholars’ work.
- Published
- 2022
45. Voltage Support with Reactive Power from Fast Charging Stations with Local Energy Storage and Production
- Author
-
Langseth, Ida, Rajasekharan, Jayaprakash, Torsæter, Bendik Nybakk, and Klemets, Jonatan
- Abstract
Norge er ledende innen elektrisk mobilitet, og norske myndigheter har et mål om at alle passasjerbiler, lette varebiler og bybusser skal være nullutslippskjøretøy innen 2025. Med økt elbilandel vil også behovet for hurtigladestasjoner øke betydelig. Hurtigladestasjoner med høy effekt er viktig for å være konkurransedyktig mot tradisjonelle bensinstasjoner. Økte ladeeffekter fra hurtigladestasjonene kan medføre spenningsproblemer i distribusjonsnettet, som er uønsket for nettoperatørene. I denne masteroppgaven har en metode for å tilby spenningsstøtte fra en hurtigladestasjon blitt utviklet. Tre kontrollstrategier har blitt utviklet, en regelbasert, en optimeringsbasert og en Model Predictive Control (MPC) basert, sammen med en kontroll for reaktiv effekt basert på spenningssensitivitet. Hensikten er minske å spenningsproblemene som hurtiglading kan medføre, samtidig som kostnader for ladestasjonsoperatøren bli minimert. For å verifisere kontrollerne, ble disse simulert i en nettmodell, med et tilkoblet system som består av en hurtigladestasjon med 10 ladepunkter med 150 kW effekt hver, et 1 MWh stasjonært batteri og et 1.38 MWp solcellesystem. Kontrollstrategiene er evaluert i en komparativ analyse og en sensitivetsanalyse. Resultatene demonstrerer fordelene med en kontrollstrategi for reaktiv effekt og lokal energilagring og produksjon. Batteriet minimerer energikostnadene for ladestasjonsoperatøren på en vellykket måte når en optimeringsbasert batterikontroll brukes, samtidig som spenningen korrigeres med injeksjon av reaktiv effekt. Med en optimeringsbasert og MPC-basert kontroll lades batteriet med effekt fra nettet når prisene er lave, som medfører nye spenningsfall. Imidlertid, hvis batterikontrollen er kombinert med kontroll for reaktiv effekt, reduseres disse spenningsfallene. Den reaktive effekten er derfor hovedbidragsyter til den forbedrede spenningsprofilen. I et scenario med høy produksjon, viser resultatene at systemet er i stand til å opprettholde en akseptabel spenningsprofil. Batteriet og PV-produksjonen er de viktigste bidragsyterne til å holde spenningen nær grensen. Hovedforskjellen er at den optimeringsbaserte batterikontrolleren er i stand til å redusere kostnadene i større grad enn den regelbaserte kontrolleren. Sensitivitetsanalysen viser at en øvre grense på nettimportert effekt eller ladeeffekt er mulige løsninger på de nye spenningsfallene som følge av batteriladingen. Hvis de foreslåtte batterikontrollene skulle ha blitt implementert i praksis, bør de ta hensyn til nettleie, eller ha en øvre grense for batterieffekt eller nettimportert effekt. Det er også funnet at det foreslåtte kontrollsystemet gir bedre spenningsresultater med en 45\% høyere last, sammenlignet med spenningen uten batteri og PV med den opprinnelige lasten. Den utviklede kontrollstrategien tillater derfor høyere ladeeffekter for ladestasjonen uten å forårsake økt nettpåvirkning. Resultatene illustrerer også at bruken av reaktiv effekt er i stand til å gi tilstrekkelig spenningsstøtte selv når batterier har suboptimal ytelse grunnet avvik i prediksjoner for last og produksjon, og kan derfor tillate mindre avanserte prediksjons-algoritmer. Det konkluderes med at spenningen ved den kritiske bussen kan forbedres betraktelig ved å bruke reaktiv effekt. Ved å kombinere dette med et stasjonært batteri og lokal produksjon, kan det også øke fordelen for ladestasjonsoperatøren. Norway is a world leader in electric mobility, and the Norwegian government has stated that all new passenger cars, light vans, and city buses should be zero-emission vehicles by 2025. Even though low power home charging is the most prevalent charging option today, the rapid increase in electric vehicles will also increase the need for fast charging stations that can compete with conventional fuelling stops. The associated high power of fast charging loads can lead to voltage issues, which is undesirable for the distribution grid operators. In this master's thesis, a methodology for voltage support from a fast charging station has been developed. Three control strategies namely, a rule-based, optimization-based, and a Model Predictive Control (MPC) based battery control have been developed, together with a reactive power control based on voltage sensitivity calculations. The purpose is to mitigate the voltage issues caused by high power charging, and simultaneously minimize energy costs for the charging station operator. To verify the proposed approach, simulations were carried out on a system consisting of a fast charging station equipped with 10 charging outlets of 150 kW rating each, a 1 MWh stationary battery, and a 1.38 MWp PV system. The control strategies are evaluated in a comparative analysis, and a sensitivity analysis is conducted. The results demonstrate the benefits of a control strategy for reactive power and local storage- and production. The battery successfully minimizes energy costs for the charging station operator when an optimization-based control is used. Simultaneously, the voltage is corrected by reactive power injection. In a low production scenario, the rule-based control strategy does not utilize the full potential of the battery. With an optimization or MPC-based control, the battery recharges when the prices are low, which leads to new voltage drops. However, combined with reactive power, the voltage drop is mitigated. The reactive power is therefore the main contributor to the improved voltage profile. In a high production scenario, the results verify that the system can sustain an acceptable voltage profile. The battery and PV production are the main contributors to keeping the voltage close to the limit, and the main is that the optimal battery control can reduce costs to a larger extent than the rule-based control. The sensitivity analysis demonstrates that an upper limit on the grid imported power or on the charging power, are possible solutions to the new voltage drops due to battery recharging. If the proposed battery controllers were to be implemented in practice, they should either account for grid tariffs or have an upper limit on charging power or grid imported power. It is also found that the proposed control system gives better voltage mitigation results with a 45\% higher load, compared to the voltage without battery and PV and original load. The developed control strategy, therefore, allows higher charging powers for the charging station operators without causing significant grid impact. The results also illustrate that the utilization of reactive power can provide adequate voltage support even when the battery has a sub-optimal performance due to prediction errors for load and production, and could therefore allow less computationally expensive prediction algorithms. It is concluded that the voltage at the critical bus can be improved considerably by using reactive power. By combining this with a stationary battery and local production, it can also increase benefit for the charging operator.
- Published
- 2021
46. Optimal Resource Allocation and Pricing for Distributed Demand-Side Flexibility Services
- Author
-
Larsen, Stine Morberg., Njøten, Amanda., and Rajasekharan, Jayaprakash
- Abstract
Den økende andelen fornybar produksjon vil utfordre kraftsystemenes stabilitet og pålitelighet, ettersom balansering av produksjon og forbruk blir vanskeligere. Som et resultat er det en økende interesse for å utnytte etterspørselssiden for å redusere ubalanser i nettet, og særlig for bruk av fleksibilitetstjenester i boliger som tilbys gjennom en aggregator. Siden deltakelse i et fleksibilitetsprogram kan forårsake ulempe for sluttbrukerne, må aggregatoren gi økonomiske insentiver for å oppmuntre dem til å delta. Det er derfor nødvendig å etablere en allokeringsalgoritme som sikrer brukerpreferanser og tekniske begrensninger, samt en prismekanisme som anses som rettferdig for både aggregator og sluttbrukere for at forbrukerfleksibilitet skal bli realisert. Denne avhandlingen undersøker allokeringsgyldigheten og den økonomiske levedyktigheten til forbrukerfleksibilitet fra en aggregator's perspektiv, forutsatt at kjøperen av fleksibilitet er en balanseansvarlig part (BRP). Det foreslås en metode for optimal tildeling av forbrukerfleksibilitetskilder fra en portefølje av batterier, reduserbare, regulerbare og skiftbare laster i respons på en fleksibilitetsforespørsel som tar hensyn til brukerpreferanser og tekniske begrensninger. Deretter utvikles en ny prismekanisme med tre forskjellige prisstrategier for å finne en prisrekkevidde innenfor definerte rammer som sikrer fortjeneste for både aggregatoren og sluttbrukerne. Strategiene er brukt for å teste lønnsomheten til aggregatoren og sluttbrukerne. Strategi 1 forutsetter uniforme priser for alle kilder begrenset av eksisterende kraftmarkedspriser i hvert kvarter av dagen. Det samme antas for strategi 2, men med individuelle priser for hver kilde. Strategi 3 forutsetter uniforme priser for alle kilder begrenset av heuristisk bestemte grenser på 0 NOK/kWh og 100 NOK/kWh i hvert kvarter av dagen. En optimal tidsplan er bestemt for for hver ukedag og resultatene viser at skiftbare kilder og batterier levere mest fleksibilitet, men er de minst lønnsomme. Resultatene indikerer at det er mer rettferdig med forskjellige priser for hver kildetype. En gyldig prisklasse eksisterer for den optimale tidsplanen for tre av syv simulerte dager med strategier 1 og 2, og for alle dager med strategi 3. Resultatene viser at aggregatorens profitt øker når individuelle priser er tillatt sammenlignet med uniforme priser, og den øker ytterligere når prisene er begrenset av faste verdier uavhengig av eksisterende kraftmarkedspriser. Avslutningsvis viser denne oppgaven at avgrensning av fleksibilitetsprisene basert på eksisterende kraftmarkedspriser er lønnsomt for både aggregatoren og sluttbrukerne. Imidlertid bør fremtidig forskning om priser på forbrukerfleksibilitetstjenester omfatte tiltak for rettferdighet og utforske hvordan prisene kan settes basert på tilleggsparametere, med tanke på sosiale og atferdsmessige aspekter. The increasing share of renewable energy will significantly challenge the stability and reliability of power systems as balancing generation and consumption becomes more difficult. As a result, there is a growing interest in exploiting the demand-side flexibility to mitigate imbalances in the grid, and in particular, the use of residential flexibility services procured through an aggregator. Since participating in a flexibility program can cause inconvenience for the end-users, the aggregator needs to provide financial incentives to encourage them to participate. It is therefore necessary to establish an allocation algorithm that ensures user preferences and technical constraints, as well as a pricing mechanism that is considered fair to both the aggregator and end-users for residential flexibility to be realized. This thesis investigates the allocation feasibility and economic viability of residential flexibility from the perspective of an aggregator, assuming that the buyer of flexibility is a Balance Responsible Party (BRP). A method is proposed for the optimal allocation of residential flexibility sources from a portfolio of batteries, curtailable, regulatable, and shiftable loads in response to a flexibility request, which takes into account user preferences and technical constraints. Then, a novel pricing mechanism with three different pricing strategies is developed to find a price range within defined bounds that ensures a profit for both the aggregator and the end-users. The strategies are used to test and analyze the profitability for an aggregator and end-users. Strategy 1 assumes uniform prices bounded by existing power market prices in each quarter of the day. The same is assumed for Strategy 2, but with individual prices for each source. Strategy 3 assumes uniform prices for all sources bounded by heuristically determined fixed bounds of 0 NOK/kWh and 100 NOK/kWh in each quarter of the day. An optimal schedule is determined for each day of the week, and the results show that shiftable sources and batteries provide the most flexibility but benefit the least. This suggests that it is fairer to differentiate flexibility prices for each source type. A feasible price range is found to exist only for three days of the simulated week with Strategies 1 and 2 but found to exist for all seven days with Strategy 3. The results show that the aggregator's profit increases when individual prices are allowed compared to uniform prices, and it increases further when prices are constrained by fixed values independent of existing power market prices. In conclusion, this thesis shows that bounding the flexibility prices based on the existing power market prices is profitable for both the aggregator and end-users. However, future research on the pricing of residential flexibility services should incorporate measures of fairness and explore how prices can be set based on additional parameters, taking into account social and behavioural aspects.
- Published
- 2021
47. Demand response verification using baseline estimation and load disaggregation
- Author
-
Sloth, Ole Andreas and Rajasekharan, Jayaprakash
- Abstract
Det fremtidige kraftsystemet står overfor flere utfordringer, for eksempel integrering av fornybareenergikilder og den raske økningen i energiforbruk. Fleksibilitet foreslås som en del av løsningenfor å løse disse utfordringene. Med integrasjonen av smarte systemer kan fleksibilitet tilbys påforbrukersiden av kraftsystemet ved å redusere forbruket for å møte tilbudet. Baseline estimeringrefererer til estimering av den normale driften av lastene som deltar i fleksibilitetsprosessen. Denneestimeringen er utfordrende på grunn av at måling av strømforbruket vanligvis er på bygningsnivåog ikke lastnivå. Baseline estimering gir ikke informasjon om opprinnelsen til fleksibiliteten og utenopprinnelsen kan fleksibilitetsoppgjøret være unøyaktig. Lastdeling er prosessen med å innhenteindividuell lastinformasjon fra aggregerte forbruksmålinger. Det kan gi tilleggsinformasjon om detenkelte lastforbruket, for eksempel en effektprofil for den fleksible lasten og opprinnelsen til denfleksible effekten. Siden det er usikkerhet i både grunnlagsestimering og lastdeling, kan kombineringav metodene skape et mer nøyaktig fleksibilitetsoppgjør.Denne oppgaven undersøker muligheten for å kombinere lastdeling som en ekstra validering av flek-sibilitet itillegg til estimering av baseline. Modellen sammenligner ytelsen til tre forskjellige baselineberegningsmetoder: LSTM reccurent network metode, en artificial nerual network metode og engjennomsnittsmetode. I tillegg undersøkes muligheten for ytterligere verifisering av fleksibilitet vedlastdeling. Kombinasjonen av estimering av baseline og lastdeling blir testet på reelle kundedatalevert av ENFO AS. Den ekstra valideringen kan optimalt gi en effektprofil for den fleksible lastenfor å bestemme fleksibiliteten. Ettersom systemoppsettet bare gir målinger av aktiv effekt, varlastdelingsmetoden ikke sofistikert nok til å gi en effektprofil. Derfor ble det istedenfor undersøktmuligheten for å koble sammen de fleksible tidspunktene for å verifisere at fleksibiliteten er gitt frasamme last. Hvis fleksibiliteten er koblet til en enkelt last, er det rimelig å anta at fleksibilitetenkommer fra den forventede lasten. Modellen foreslår å bruke kantdeteksjon for å oppdage endringeri effektforbruk og skille kantene på de fleksible hendelsene fra de andre endringene i effektforbruketved dynamic time warping.De tre forskjellige estimeringsteknikkene for baseline indikerer at modeller med omtrent samme feilhar betydelige forskjeller i estimering av baseline. Derfor kan valget av baselineteknikk skape etvesentlig annet resultat av fleksibilitetsoppgjøret. Ytterligere trinn for å redusere feil i baselinees-timering er også nødvendig for å sikre at nøyaktigheten av fleksibilitetsoppgjør er tilstrekkelig. Itillegg, på grunn at de forventede fleksible apparatene har flere innstillinger og for lav oppløsningpå dataen, er kantene på de fleksible hendelsene utfordrende å skille fra andre kanter og lastdel-ingsteknikken for enkel. Ved å inkludere flere funksjoner som reaktiv effekt, spenning og strøm, itillegg til spesifikke lastsignaturer, kan en effektprofil for den fleksible lasten estimeres for å hjelpeestimering av baseline og validere opprinnelsen til fleksibiliteten. The future power system faces multiple challenges, such as the integration of renewable energy sources and the rapid increase in energy consumption. Flexibility is proposed as part of the solution to solve these challenges. With the integration of smart systems, the demand side could provide flexibility by reducing the consumption of multiple appliances to meet the supply. Baseline estimation refers to the estimation of the normal operation of the appliances participating in the flexibility process. However, this estimation is difficult due to the measurement of the power consumption usually are at the building level and not appliance level, and baseline estimation do not offer any information regarding the origin of the flexibility. Without the origin of flexibility, the flexibility settlement can be inaccurate. Load disaggregation is the process of acquiring individual appliance information from aggregated consumption measurements. It can provide additional information regarding the individual appliance consumption, such as a power profile for the flexible appliance and the origin of the flexible power. As there are uncertainties in both baseline estimation and load disaggregation, combining the methods can create a more accurate flexibility settlement. This thesis examines the possibility to combine load disaggregation as an extra validation of flexibility in addition to baseline estimation. The model compares the performance of three different baseline estimation methods: a long short-term memory recurrent network method, an artificial neural network method and an averaging method and examines the possibility for additional verification of demand response by load disaggregation. The comination of baseline estimation and load disaggregation is tested at real costumer locations provided by ENFO AS. The extra validation could optimally provide a power profile for the flexible appliance to help determine the flexibility provided. However, as the system setup only provides active power measurements, the disaggregation method could not be sophisticated enough to provide a power profile. Therefore, the disaggregation proposed instead examined the possibility to connect the flexible events to verify that the flexibility is provided from the same appliance. If the flexibility is connected to a single appliance, it is reasonable to assume that flexibility is provided by the expected appliance. The model proposes to use edge detection to discover changes in power consumption and differentiate the edges of the flexible events from the other changes in power consumption by dynamic time warping. The three different baseline estimation techniques indicate that models with approximately the same error have significant gaps in baseline estimation. Therefore, the choice of baseline technique could create a significantly different outcome of the flexibility settlement. Additional steps to reduce error in baseline estimation are also required to ensure that the accuracy of flexibility settlement is sufficient. In addition, due to the aggregation effect and the expected flexible appliances are multi-state, the edges of the flexible events are not similar enough, and the proposed disaggregation technique is too simple. The flexible events could therefore not be differentiated from other edges in the power consumption. By including more features such as reactive power, voltage and current, in addition to specific appliance signatures, a power profile for the flexible appliance might be estimated to assist baseline estimation and validate the origin of the flexibility.
- Published
- 2021
48. Leveraging residential battery energy storage systems for voltage support in remote distribution grids with high penetration of renewables
- Author
-
Bratlie, Frida and Rajasekharan, Jayaprakash
- Abstract
Den høye penetrasjonen av fornybare energiressurser i distribusjonsnettet medfører nye operasjonelle utfordringer for nettselskapene. Overspenning er spesielt et problem som utgjør den største begrensningen for integrering av fornybare energiressurser i distribusjonsnettet. En løsning for å håndtere denne tekniske utfordringen kan være å bruke aktiv effektstøtte fra batterisystemer. På grunn av markedsstruktur og regulering er implementeringen av batterisystemer i kraftsystemet begrenset til nettkunder. I denne oppgaven er det foreslått en kontrollmetode for batterisystemer i boliger kombinert med solcelleanlegg. Målet er å bruke kundeeid batterisystemer til å løse overspenningsproblemer forårsaket av høy vind- og solinntrengning uten at dette i vesentlig grad vil påvirke kundenes økonomiske fortjeneste. Dette var oppnådd ved å ta de fleste operasjonelle beslutningene lokalt, der en lokal kontroller bestemte en optimal opp- og utlading av batterisystemet. Spenningskontroll ble utført ved å fjernstyre batterisystemene med en sentral kontroller. Den sentrale kontrolleren ble kun aktivert under kritiske perioder, bestemt ut ifra en prognose av nettet. En spenningsfølsomhetsmetode var brukt til å velge batterisystemet med størst påvirkning på systemet til å delta i spenningsreguleringen. Den foreslåtte metoden ble validert gjennom en case-studie utført på øya Utsira i Norge. Øya opplever store spenningsvariasjoner grunnet en kombinasjon av variabel produksjon fra to vindturbiner, lastvariasjoner, et svakt nett og en underdimensjonert sjøkabel. Resultatene viste at ved bruk av den foreslåtte metoden kunne kundeeide batterisystemer løse både over- og underspenninger. Bruk av kundeeid batterisystemer for spenningsstøtte er kun mulig med en kommersiell forretningsmodell. En bærekraftig forretningsmodell vil ikke bare motivere kunden til å investere i et batterisystem, men kan gi både kunden og nettselskapet nytte av investeringen hvis batterisystemet kontrolleres riktig. Nettselskapet reduserer behovet for nettforsterkning, og kunden kan redusere strømregningen ved å øke selvforbruket eller ved å respondere på prisvariasjoner. Ulike forretningsmodeller for operasjonell kostnadsdeling er foreslått i denne masteroppgaven. The high penetration of renewable energy resources (RES) in the distribution grid causes new operational challenges for the distribution system operator. Over-voltage is especially an issue that constitutes the major limitation to the increase in RES penetration and integration. One solution to cope with this technical challenge is to utilize the active power support from battery energy storage systems (BESS). Due to market structure and regulation, the implementation of BESS in the power system is restricted to network customers. In this thesis, a distributed control method for residential BESS coupled with photovoltaic systems was proposed. The objective was to utilize customer-owned BESS to solve the over-voltage issues caused by high wind and solar penetration without significantly affecting the BESS owners' profits. This was achieved by taking most of the operational decisions locally, where a local controller optimally schedules the charging and discharging of the BESS. Voltage control was accomplished by remotely controlling the BESSs with a central controller. The central controller was activated only during critical periods, determined based on a prediction of the network. A voltage sensitivity method was used to select the BESS with the greatest effect on the system to participate in the voltage regulation. The performance of the proposed method was validated through a case study conducted at Utsira island in Norway. The island experiences large voltage variations due to a combination of variable production from two wind turbines, load variations, a weak grid, and an underdimensioned submarine cable. The results showed that utilization of residential BESS could successfully solve both over-and under-voltage issues with the proposed method. Utilization of customer-owned BESS for voltage support is only possible with a commercially viable business model. A proper business model will not only motivate the customer to invest in a BESS, but both the customer and the distribution system operator will get benefits if the operation of the BESS is properly controlled. The system operator reduces their need for grid reinforcement, and the customer can decrease their electricity bill by increasing their self-consumption or by responding to price variations. Different business models for operational cost-sharing are proposed in this master's thesis.
- Published
- 2021
49. Modelling Electrical Flexibility from Domestic Water Heaters
- Author
-
Svendsen, Ine Ingebrigtsen and Rajasekharan, Jayaprakash
- Abstract
Elektriske varmtvannsberedere (EVB-er) har fått mye oppmerksomhet i akademiske studier på grunn av deres utmerkede termiske kapasitet, høye effekt og raske responstid. Dette gjør dem til en bra kilde for fleksibilitet til strømnettet, som for eksempel flytting av last og frekvenskontroll. Mange forskere har sett på store populasjoner av EVB-er i husholdninger når de studerer fleksibilitetspotensialet, mens det kan forskes mye mer på mindre populasjoner der man tar hensyn til den diskrete oppførselen til EVB-ene. Derfor vil denne oppgaven utforske oppførselen og estimere fleksibilitetspotensialet til en liten gruppe EVBer, både på et aggregert og individuelt nivå ved å bruke forskjellige kontroll- og gjenkoblingsstrategier. Høyefrekvens temperatur- og effektmålinger på en EVB på det Nasjonale Smart Grid Laboratoriet har blitt brukt til å lage forskjellige modeller av en EVB. Den enkleste modellen ble valgt for å simulere EVB-en, siden denne passet bra med de målte eksperimentene gjort på laberatoriet, og temperaturen avvek med maksimalt 8%. Modellen ble brukt sammen med en modell som simulerer vannforbruksdata for å lage en liten populasjon av EVB-er, og fleksibilitetspotensialet var estimert ved å bruke to forskjellige kontrollstrategier: aktivitetskontroll og temperaturkontroll. På tross av mangelen på norske vannforbruksdata traff den simulerte aggregerte effektprofilen, laget med svenske vannforbruksdata, bra sammenliknet med effektmålinger gjort på EVB-er i Norge. De samme morgen- og ettermiddagstoppene ble observert, og amplitudene på lasttoppene stemte bra overens. Populasjonen av EVB-er har et stort potensial til å flytte lasten sin, og totalt 7 kWh ble flyttet til et annet tidspunkt uten at komforten til forbrukerene ble påvirket. Resultatene gir en detaljert oversikt over oppførselen og fleksibiliteten til den enkelte EVB-en i tillegg til den aggregerte fleksibiliteten. Gjenkoblingen av EVB-ene er kritisk, og den foreslåtte strategien for gjenkobling virket utmerket slik at all last forbrukt en time, kunne bli flyttet uten å forårsake en større effekttopp etter gjenkobling. Temperaturkontroll er foretrukket over aktivitetskontroll, siden mer last kan flyttes og de maksimale effekttoppene etter gjenkobling er mindre. I tillegg er denne strategien mindre sensitiv til feil i predikert varmtvannsforbruk. Electric water heaters (EWHs) have gained a lot of attention in academic research because of their excellent thermal capacity, high rated power and fast response time, making them a great source of flexibility to provide grid services, such as load shifting and frequency control. Many researchers have looked into large populations of residential EWHs when studying the flexibility potential, leaving much to be studied on smaller populations, taking into consideration the discreteness of their behaviour. Therefore, the objective of this master thesis is to explore the behaviour and estimate the flexibility potential of a small scale population of EWHs, both on an individual and aggregated level, by using different control and reconnection strategies. High frequency power and temperature measurements of an EWH at the National smart grid laboratory were used to create different models of an EWH. The simplest model was chosen to simulate the EWHs, since it matched well with the experiments done at the laboratory, with the temperature differing by at most 8%. The model was used together with a water consumption behaviour model to simulate a small population of EWHs, and the flexibility potential was estimated using two different controls techniques: activity and temperature control. Despite the lack of Norwegian water consumption measurements, the simulated aggregated power profile performed very well with Swedish time-of-use data when comparing it to power measurements from EWHs in Norway. The same trend of morning and afternoon peaks could be observed, and the amplitude of the peaks matched reasonably well. The aggregation of EWHs has a large potential for load shifting, and up to 7 kWh was successfully shifted to a later time without affecting consumer comfort. The results provide a detailed overview of both the behaviour and flexibility of the individual EWHs, as well as the aggregated flexibility. It is found that the reconnection of the EWHs is critical, and the proposed strategy for reconnection performed excellently by shifting all consumption during one hour without increasing the maximum instantaneous power consumption after reconnection. The temperature control strategy is preferred over the activity control, since it can shift more energy and still cause smaller peaks in power consumption. In addition, this strategy is less sensitive to errors in predicted hot water usage.
- Published
- 2021
50. Islanded Microgrids: a Predictive Approach to Control Operation
- Author
-
Lindholm, Nina and Rajasekharan, Jayaprakash
- Abstract
Bygging av mikronett i øydrift er et alternativ for å levere energi til avsidesliggende områder. For å bidra til det grønne skiftet er alternativer som bruker fossile brennstoff ikke aktuelle. Væravhengige energikilder er vanlige å bruke for å gjøre mikronett fornybare. For å kompensere for deres varierende generering er prediksjoner nyttige. Et casestudie er utført på Rye Mikronett i Trondheim. Prediksjoner av effekt fra fotovoltaiske paneler, en vindturbin og last er utført. Lagringsenhetene i mikronettet er et batteri og et hydrogensystem (elektrolysør, tank og brenselcelle). En dieselgenerator er installert som reserveløsning. I denne oppgaven har det blitt utviklet en ny operasjonsstrategi. Det nye designet er inspirert av Model Predictive Control. Effektprediksjoner er laget, basert på enkle maskinlæringskonsepter. Prediksjonsmodellene er trent på historiske målinger av værdata og tidspunkter. I hvert tidssteg blir prediksjonene over en viss tidshorisont laget. Disse prediksjonene blir tatt med i en optimering for å bestemme hver enkelt komponents effekt. Det første tidssteget fra optimeringsresultatet blir utført. Før dette kan gjøres må effektene balanseres på nytt, for å gjøre opp for feil i prediksjonene. Prosessen blir gjentatt for hver time i ett år. Resultatene tydeliggjør viktigheten av et godt styringssystem. Optimeringens objektivfunksjon sitt hovedfokus var å begrense bruken av dieselgeneratoren. I tillegg ble mengden kuttet energi fra solcellepanelene og vindmøllen begrenset. Den siste prioriteringen var å begrense mengden tapt energi i omgjøringene i batteri, elektrolysør og brenselcelle. Den prediktive metoden har stor innvirkning på hvordan mikronettet opereres. Ved den implementerte objektivfunksjonen er det enkelt å endre strategien. Sammenligning av den nye, prediktive metoden med den eksisterende strategien, viser at energien fra dieselgeneratoren blir redusert med 48.71%. Disse resultatene reduserer mikronettets dieselavhengighet. Som en konsekvens av dette kan endringene i styringssystemet ha en effekt på mikronettets suksess. Det kan bli et verdifullt tillegg i både nye og eksisterende mikronett. Håpet er at denne oppgaven kan bidra til å gjøre fornybar energi tilgjengelig, særlig i avsidesliggende områder. Building an island mode operated microgrid is a solution to supply remote areas with electricity. In order to contribute to the decarbonization, fossil fuel solutions are not an option. Weather dependent energy sources are common, in order to make these microgrids renewable. To compensate for their intermittent behaviour power predictions are useful. A case study is conducted on Rye microgrid in Norway. Predictions of the power from photovoltaic panels, a wind turbine and a load are made. The storage units in the microgrid are a battery energy storage system and a hydrogen energy storage system (electrolyser, tank and fuel cell). A diesel generator set is also included for backup. In this thesis, a new operational strategy for the microgrid is developed. The new design is inspired by Model Predictive Control. Power predictions are made, based on basic machine learning concepts. The prediction models are trained on historical measurements of environmental data and time stamps. In every time step, the predictions are made for a certain control horizon. These predictions are input into an optimisation, that is executed to determine the power of all involved components. The first time step of the optimisation result is applied to the microgrid. In order to do so, a balancing of powers is done, to make up for inaccuracies in the predictions. The process is repeated for every hour of a year. The results clarify the importance of having a good control system. The objective function's main focus was to limit the power from the diesel generator. In addition, it limited the amount of curtailed power from the generating units. The final priority was to limit the energy lost in conversion related to the battery, electrolyser and fuel cell. The predictive control greatly influences the operation, and having an objective function makes the system strategy easy to alter. Comparing the developed model with the existing model, the energy supplied by the diesel generator was reduced by 48.71%. These results bring the microgrid closer to meeting its goal of limiting the diesel dependence. As a consequence, changing the operational strategy may have an impact on the microgrid success. It could be considered a valuable design feature in new and established microgrids. The final hope is for this thesis to contribute to renewable energy being available, even in remote locations.
- Published
- 2020
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.