62 results on '"Radford CA"'
Search Results
2. Behavioural sleep in two species of buccal pumping sharks (Heterodontus portusjacksoni and Cephaloscyllium isabellum)
- Author
-
Kelly, Michael, Spreitzenbarth, S, Kerr, Caroline, Hemmi, JM, Lesku, John, Radford, CA, and Collin, Shaun
- Subjects
human activities ,Uncategorized - Abstract
Sleep is known to occur in most, if not all, animals studied thus far. Recent studies demonstrate the presence of sleep in flatworms and jellyfish, suggesting that this behaviour evolved early in the evolution of animals. Sharks are the earliest known extant, jawed vertebrates and may play an important role in understanding the evolutionary history of sleep in vertebrates, and yet, it is unknown whether they sleep. The Port Jackson (Heterodontus portusjacksoni) and draughtsboard (Cephaloscyllium isabellum) sharks are both benthic, buccal pumping species and remain motionless for extended periods of time. Whether these periods of prolonged inactivity represent sleep or quiet wakefulness is unknown. A key criterion for separating sleep from other quiescent states is an increased arousal threshold. We show here that inactive sharks of both species require significantly higher levels of electric stimulation before they show a visible response. Sharks deprived of rest, however, show no significant compensatory increase in restfulness during their normal active period following enforced swimming. Nonetheless, increased arousal thresholds in inactive animals suggest that these two species of shark sleep – the first such demonstration for members of this group of vertebrates. Further research, including electrophysiological studies, on these and other sharks, is required for a comprehensive understanding of sleep in cartilaginous fishes.
- Published
- 2022
- Full Text
- View/download PDF
3. Diverse activity rhythms in sharks (Elasmobranchii)
- Author
-
Kelly, Michael, Murray, ERP, Kerr, Caroline, Radford, CA, Collin, Shaun, Lesku, John, and Hemmi, JM
- Subjects
chemical and pharmacologic phenomena ,human activities ,Uncategorized - Abstract
Sharks are an interesting group of vertebrates, as many species swim continuously to “ram” oxygen-rich seawater over their gills (ram ventilators), whereas other species “pump” seawater over their gills by manipulating buccal cavity volume while remaining motionless (buccal pumpers). This difference in respiratory physiology raises the question: What are the implications of these differences in lifestyle for circadian rhythms? We investigated the diel activity patterns of 5 species of sharks, including 3 ram ventilating species: the school shark (Galeorhinus galeus), the spotted estuary smooth-hound (Mustelus lenticulatus), and the spiny dogfish (Squalus acanthias); and 2 buccal pumping species: the Port Jackson (Heterodontus portusjacksoni) and draughtsboard (Cephaloscyllium isabellum) sharks. We measured the amount, duration, and distance traveled while swimming over multiple days under a 12:12 light:dark light regime for all species and used modified light regimes for species with a clear diel rhythm in activity. We identified a surprising diversity of activity rhythms. The school shark and smooth-hound swam continuously; however, whereas the school shark swam at the same speed and covered the same distance during the day and night, the smooth-hound swam slower at night and traversed a shorter distance. A similar pattern was observed in the spiny dogfish, although this shark swam less overall. Both the Port Jackson and draughtsboard sharks showed a marked nocturnal preference for swimming. This pattern was muted and disrupted during constant light and constant dark regimes, although circadian organization of this pattern was maintained under certain conditions. The consequences of these patterns for other biological processes, such as sleep, remain unclear. Nonetheless, these 5 species demonstrate remarkable diversity within the activity rhythms of sharks.
- Published
- 2022
- Full Text
- View/download PDF
4. Effect of biological and anthropogenic sound on the orientation behavior of four species of brachyuran crabs
- Author
-
Sal Moyano, MP, primary, Ceraulo, M, additional, Hidalgo, FJ, additional, Luppi, T, additional, Nuñez, J, additional, Radford, CA, additional, Mazzola, S, additional, Gavio, MA, additional, and Buscaino, G, additional
- Published
- 2021
- Full Text
- View/download PDF
5. Eavesdropping on the Kaipara Harbour: characterising underwater soundscapes within a seagrass bed and a subtidal mudflat
- Author
-
Pine, MK, primary, Radford, CA, additional, and Jeffs, AG, additional
- Published
- 2015
- Full Text
- View/download PDF
6. Adjacent coral reef habitats produce different underwater sound signatures
- Author
-
Radford, CA, primary, Stanley, JA, additional, and Jeffs, AG, additional
- Published
- 2014
- Full Text
- View/download PDF
7. Contributions of the Leigh Marine Laboratory to marine science, 1962–2012: sensory neuroethology
- Author
-
Montgomery, JC, primary and Radford, CA, additional
- Published
- 2013
- Full Text
- View/download PDF
8. Fish larvae prefer coral over algal water cues: implications of coral reef degradation
- Author
-
Lecchini, D, primary, Waqalevu, VP, additional, Parmentier, E, additional, Radford, CA, additional, and Banaigs, B, additional
- Published
- 2013
- Full Text
- View/download PDF
9. Chronic low-intensity noise exposure affects the hearing thresholds of juvenile snapper
- Author
-
Caiger, PE, primary, Montgomery, JC, additional, and Radford, CA, additional
- Published
- 2012
- Full Text
- View/download PDF
10. Modelling a reef as an extended sound source increases the predicted range at which reef noise may be heard by fish larvae
- Author
-
Radford, CA, primary, Tindle, CT, additional, Montgomery, JC, additional, and Jeffs, AG, additional
- Published
- 2011
- Full Text
- View/download PDF
11. Localised coastal habitats have distinct underwater sound signatures
- Author
-
Radford, CA, primary, Stanley, JA, additional, Tindle, CT, additional, Montgomery, JC, additional, and Jeffs, AG, additional
- Published
- 2010
- Full Text
- View/download PDF
12. An electrophysiological correlate of sleep in a shark.
- Author
-
Lesku JA, Libourel PA, Kelly ML, Hemmi JM, Kerr CC, Collin SP, and Radford CA
- Abstract
Sleep is a prominent physiological state observed across the animal kingdom. Yet, for some animals, our ability to identify sleep can be masked by behaviors otherwise associated with being awake, such as for some sharks that must swim continuously to push oxygenated seawater over their gills to breathe. We know that sleep in buccal pumping sharks with clear rest/activity cycles, such as draughtsboard sharks (Cephaloscyllium isabellum, Bonnaterre, 1788), manifests as a behavioral shutdown, postural relaxation, reduced responsiveness, and a lowered metabolic rate. However, these features of sleep do not lend themselves well to animals that swim nonstop. In addition to video and accelerometry recordings, we tried to explore the electrophysiological correlates of sleep in draughtsboard sharks using electroencephalography (EEG), electromyography, and electrooculography, while monitoring brain temperature. The seven channels of EEG activity had a surprising level of (apparent) instability when animals were swimming, but also when sleeping. The amount of stable EEG signals was too low for replication within- and across individuals. Eye movements were not measurable, owing to instability of the reference electrode. Based on an established behavioral characterization of sleep in draughtsboard sharks, we offer the original finding that muscle tone was strongest during active wakefulness, lower in quietly awake sharks, and lowest in sleeping sharks. We also offer several critical suggestions on how to improve techniques for characterizing sleep electrophysiology in future studies on elasmobranchs, particularly for those that swim continuously. Ultimately, these approaches will provide important insights into the evolutionary confluence of behaviors typically associated with wakefulness and sleep., (© 2024 The Author(s). Journal of Experimental Zoology Part A: Ecological and Integrative Physiology published by Wiley Periodicals LLC.)
- Published
- 2024
- Full Text
- View/download PDF
13. Comparison of acoustic particle acceleration detection capabilities in three shark species.
- Author
-
Nieder C, Gibbs BJ, Rapson J, McLay J, Montgomery JC, and Radford CA
- Abstract
Behavioural studies have shown that sharks are capable of directional orientation to sound. However, only one previous experiment addresses the physiological mechanisms of directional hearing in sharks. Here, we used a directional shaker table in combination with the auditory evoked potential (AEP) technique to understand the broadscale directional hearing capabilities in the New Zealand carpet shark (Cephaloscyllium isabellum), rig shark (Mustelus lenticulatus) and school shark (Galeorhinus galeus). The aim of this experiment was to test if sharks are more sensitive to vertical (z-axis) or head-to-tail (x-axis) accelerations, and whether there are any differences between species. Our results support previous findings, suggesting that shark ears can receive sounds from all directions. Acceleration detection bandwidth was narrowest for the carpet shark (40-200 Hz), and broader for rig and school sharks (40-800 Hz). Greatest sensitivity bands were 40-80 Hz for the carpet shark, 100-200 Hz for the rig and 80-100 Hz for the school shark. Our results indicate that there may be differences in directional hearing abilities among sharks. The bottom-dwelling carpet shark was equally sensitive to vertical and head-to-tail particle accelerations. In contrast, both benthopelagic rig and school sharks appeared to be more sensitive to vertical accelerations at frequencies up to 200 Hz. This is the first study to provide physiological evidence that sharks may differ in their directional hearing and sound localisation abilities. Further comparative physiological and behavioural studies in more species with different lifestyles, habitats and feeding strategies are needed to further explore the drivers for increased sensitivity to vertical accelerations among elasmobranchs., Competing Interests: Competing interests The authors declare no competing or financial interests., (© 2023. Published by The Company of Biologists Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
14. Comparison of auditory evoked potential thresholds in three shark species.
- Author
-
Nieder C, Rapson J, Montgomery JC, and Radford CA
- Subjects
- Animals, Evoked Potentials, Auditory, Hearing physiology, Hearing Tests, Ecosystem, Auditory Threshold physiology, Sharks physiology
- Abstract
Auditory sensitivity measurements have been published for only 12 of the more than 1150 extant species of elasmobranchs (sharks, skates and rays). Thus, there is a need to further understand sound perception in more species from different ecological niches. In this study, the auditory evoked potential (AEP) technique was used to compare hearing abilities of the bottom-dwelling New Zealand carpet shark (Cephaloscyllium isabellum) and two benthopelagic houndsharks (Triakidae), the rig (Mustelus lenticulatus) and the school shark (Galeorhinus galeus). AEPs were measured in response to tone bursts (frequencies: 80, 100, 150, 200, 300, 450, 600, 800 and 1200 Hz) from an underwater speaker positioned 55 cm in front of the shark in an experimental tank. AEP detection thresholds were derived visually and statistically, with statistical measures slightly more sensitive (∼4 dB) than visual methodology. Hearing abilities differed between species, mainly with respect to bandwidth rather than sensitivity. Hearing was least developed in the benthic C. isabellum [upper limit: 300 Hz, highest sensitivity: 100 Hz (82.3±1.5 dB re. 1 µm s-2)] and had a wider range in the benthopelagic rig and school sharks [upper limit: 800 Hz; highest sensitivity: 100 Hz (79.2±1.6 dB re. 1 µm s-2) for G. galeus and 150 Hz (74.8±1.8 dB re. 1 µm s-2) for M. lenticulatus]. The data are consistent with those known for 'hearing non-specialist' teleost fishes that detect only particle motion, not pressure. Furthermore, our results provide evidence that benthopelagic sharks exploit higher frequencies (max. 800 Hz) than some of the bottom-dwelling sharks (max. 300 Hz). Further behavioural and morphological studies are needed to identify what ecological factors drive differences in upper frequency limits of hearing in elasmobranchs., Competing Interests: Competing interests The authors declare no competing or financial interests., (© 2023. Published by The Company of Biologists Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
15. Interspecific Variation in the Inner Ear Maculae of Sharks.
- Author
-
Sauer DJ, Yopak KE, and Radford CA
- Abstract
There is well-documented diversity in the organization of inner ear hair cells in fishes; this variation is thought to reflect the differing functional requirements of species across a range of ecological niches. However, relatively little is known about interspecific variation (and its potential ecological implications) in the number and density of inner ear hair cells in elasmobranchs (sharks, skates, and rays). In this study, we quantified inner ear hair cells in the saccule, lagena, utricle, and macula neglecta of 9 taxonomically and ecologically distinct shark species. Using phylogenetically informed comparative approaches, sharks that feed in the water column had significantly greater hair cell density and total number of hair cells in the lagena and macula neglecta (i.e., vertically oriented maculae) compared to species that feed primarily on the seafloor. In addition, sharks within Carcharhinidae seemingly possess a specialized macula neglecta compared to other shark species. Overall, findings suggest that, similar to bony fishes, there is considerable variation in hair cell organization of shark inner ears, which may be tied to variation in ecology and/or specialized behaviors between different species., Competing Interests: The authors declare no competing interests., (© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology.)
- Published
- 2023
- Full Text
- View/download PDF
16. From the morphospace to the soundscape: Exploring the diversity and functional morphology of the fish inner ear, with a focus on elasmobranchsa).
- Author
-
Chapuis L, Yopak KE, and Radford CA
- Subjects
- Animals, Phylogeny, Finite Element Analysis, Hearing, Fishes, Ear, Inner diagnostic imaging
- Abstract
Fishes, including elasmobranchs (sharks, rays, and skates), present an astonishing diversity in inner ear morphologies; however, the functional significance of these variations and how they confer auditory capacity is yet to be resolved. The relationship between inner ear structure and hearing performance is unclear, partly because most of the morphological and biomechanical mechanisms that underlie the hearing functions are complex and poorly known. Here, we present advanced opportunities to document discontinuities in the macroevolutionary trends of a complex biological form, like the inner ear, and test hypotheses regarding what factors may be driving morphological diversity. Three-dimensional (3D) bioimaging, geometric morphometrics, and finite element analysis are methods that can be combined to interrogate the structure-to-function links in elasmobranch fish inner ears. In addition, open-source 3D morphology datasets, advances in phylogenetic comparative methods, and methods for the analysis of highly multidimensional shape data have leveraged these opportunities. Questions that can be explored with this toolkit are identified, the different methods are justified, and remaining challenges are highlighted as avenues for future work., (© 2023 Acoustical Society of America.)
- Published
- 2023
- Full Text
- View/download PDF
17. Quantitative assessment of inner ear variation in elasmobranchs.
- Author
-
Sauer DJ, Radford CA, Mull CG, and Yopak KE
- Subjects
- Animals, Endolymphatic Duct, Semicircular Canals, Kidney Tubules, Sharks, Skates, Fish
- Abstract
Considerable diversity has been documented in most sensory systems of elasmobranchs (sharks, rays, and skates); however, relatively little is known about morphological variation in the auditory system of these fishes. Using magnetic resonance imaging (MRI), the inner ear structures of 26 elasmobranchs were assessed in situ. The inner ear end organs (saccule, lagena, utricle, and macula neglecta), semi-circular canals (horizontal, anterior, and posterior), and endolymphatic duct were compared using phylogenetically-informed, multivariate analyses. Inner ear variation can be characterised by three primary axes that are influenced by diet and habitat, where piscivorous elasmobranchs have larger inner ears compared to non-piscivorous species, and reef-associated species have larger inner ears than oceanic species. Importantly, this variation may reflect differences in auditory specialisation that could be tied to the functional requirements and environmental soundscapes of different species., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
18. Sound detection and production mechanisms in aquatic decapod and stomatopod crustaceans.
- Author
-
Radford CA and Stanley JA
- Subjects
- Animals, Hearing, Sound, Crustacea, Ecosystem, Decapoda
- Abstract
The sensory systems of crustaceans (aquatic decapods and stomatopods) have adapted to a diverse range of aquatic ecosystems. Sound production in aquatic crustaceans is more widespread than previously thought, and has been shown to play a major role in many of their life-history strategies; however, there are still many gaps in our understanding of their sound reception abilities. Crustaceans have three main sensory receptors for sound - the statocyst, superficial hair cells and chordotonal organs - which are all sensitive to the particle motion component of the sound field, rather than the pressure component. Our current understanding of these receptors is that they are sensitive to low-frequency sounds (<2000 Hz). There are a wide variety of sound-producing mechanisms employed by these animals, ranging from stridulation to implosive cavitation (see Glossary). These signals are used for a range of social behaviours, such as courtship, territorial defence and assessing 'resource guarding'. Furthermore, there are examples of sound signals that exceed their hearing range, highlighting a mismatch in our understanding of their hearing systems. This mismatch provides weight to the suggestion that another sound transmission channel - substrate-borne vibrations - might be at play, particularly because most crustaceans live on or near the seafloor. Finally, suggestions are made regarding potential future work that is needed to fill the substantial gaps in our understanding of how crustaceans hear and produce sound., Competing Interests: Competing interests The authors declare no competing or financial interests., (© 2023. Published by The Company of Biologists Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
19. Impact of small boat sound on the listening space of Pempheris adspersa, Forsterygion lapillum, Alpheus richardsoni and Ovalipes catharus.
- Author
-
Wilson L, Constantine R, Pine MK, Farcas A, and Radford CA
- Subjects
- Animals, Sound, Auditory Perception, Hearing, Acoustics, Fishes, Ships, Decapoda
- Abstract
Anthropogenic stressors, such as plastics and fishing, are putting coastal habitats under immense pressure. However, sound pollution from small boats has received little attention given the importance of sound in the various life history strategies of many marine animals. By combining passive acoustic monitoring, propagation modelling, and hearing threshold data, the impact of small-boat sound on the listening spaces of four coastal species was determined. Listening space reductions (LSR) were greater for fishes compared to crustaceans, for which LSR varied by day and night, due to their greater hearing abilities. Listening space also varied by sound modality for the two fish species, highlighting the importance of considering both sound pressure and particle motion. The theoretical results demonstrate that boat sound hinders the ability of fishes to perceive acoustic cues, advocating for future field-based research on acoustic cues, and highlighting the need for effective mitigation and management of small-boat sound within coastal areas worldwide., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
20. Ontogeny of the inner ear maculae in school sharks (Galeorhinus galeus).
- Author
-
Sauer DJ, Yopak KE, and Radford CA
- Subjects
- Animals, Fishes anatomy & histology, Fishes physiology, Hair Cells, Auditory, Saccule and Utricle, Schools, Ear, Inner, Sharks
- Abstract
Studies on the auditory system of fishes can provide fundamental information about the early evolution of vertebrate hearing. While there are limited data available on the auditory system of bony fishes, comparatively far less is known about auditory structures in elasmobranchs, despite their critical basal position within vertebrate evolution. Specifically, while there is a high degree of plasticity in the nervous system, little is known about how the different sensory epithelia within the inner ear vary throughout life in elasmobranchs. Using a combination of immunohistochemistry and fluorescence microscopy, we quantified macular area, number of sensory hair cells, hair cell density, and hair cell orientations in the saccule, lagena, utricle, and macula neglecta of school sharks (Galeorhinus galeus) of varying body size. In all maculae, macular area and the number of hair cells increased significantly throughout ontogeny, while hair cell density displayed a concurrent ontogenetic decrease (excluding the utricle). There were also significant differences in macular area, hair cell number, and hair cell density between the four maculae. However, hair cell orientation patterns did not vary between individuals and did not change with body growth. These findings represent one of the first comprehensive characterisations of the inner ear sensory epithelia in an elasmobranch, and reveal changes in morphology that may have implications for auditory capabilities through ontogeny., Competing Interests: Declaration of Competing Interest The authors declare no competing interests., (Copyright © 2022. Published by Elsevier B.V.)
- Published
- 2022
- Full Text
- View/download PDF
21. Diving into the vertical dimension of elasmobranch movement ecology.
- Author
-
Andrzejaczek S, Lucas TCD, Goodman MC, Hussey NE, Armstrong AJ, Carlisle A, Coffey DM, Gleiss AC, Huveneers C, Jacoby DMP, Meekan MG, Mourier J, Peel LR, Abrantes K, Afonso AS, Ajemian MJ, Anderson BN, Anderson SD, Araujo G, Armstrong AO, Bach P, Barnett A, Bennett MB, Bezerra NA, Bonfil R, Boustany AM, Bowlby HD, Branco I, Braun CD, Brooks EJ, Brown J, Burke PJ, Butcher P, Castleton M, Chapple TK, Chateau O, Clarke M, Coelho R, Cortes E, Couturier LIE, Cowley PD, Croll DA, Cuevas JM, Curtis TH, Dagorn L, Dale JJ, Daly R, Dewar H, Doherty PD, Domingo A, Dove ADM, Drew M, Dudgeon CL, Duffy CAJ, Elliott RG, Ellis JR, Erdmann MV, Farrugia TJ, Ferreira LC, Ferretti F, Filmalter JD, Finucci B, Fischer C, Fitzpatrick R, Forget F, Forsberg K, Francis MP, Franks BR, Gallagher AJ, Galvan-Magana F, García ML, Gaston TF, Gillanders BM, Gollock MJ, Green JR, Green S, Griffiths CA, Hammerschlag N, Hasan A, Hawkes LA, Hazin F, Heard M, Hearn A, Hedges KJ, Henderson SM, Holdsworth J, Holland KN, Howey LA, Hueter RE, Humphries NE, Hutchinson M, Jaine FRA, Jorgensen SJ, Kanive PE, Labaja J, Lana FO, Lassauce H, Lipscombe RS, Llewellyn F, Macena BCL, Mambrasar R, McAllister JD, McCully Phillips SR, McGregor F, McMillan MN, McNaughton LM, Mendonça SA, Meyer CG, Meyers M, Mohan JA, Montgomery JC, Mucientes G, Musyl MK, Nasby-Lucas N, Natanson LJ, O'Sullivan JB, Oliveira P, Papastamtiou YP, Patterson TA, Pierce SJ, Queiroz N, Radford CA, Richardson AJ, Richardson AJ, Righton D, Rohner CA, Royer MA, Saunders RA, Schaber M, Schallert RJ, Scholl MC, Seitz AC, Semmens JM, Setyawan E, Shea BD, Shidqi RA, Shillinger GL, Shipley ON, Shivji MS, Sianipar AB, Silva JF, Sims DW, Skomal GB, Sousa LL, Southall EJ, Spaet JLY, Stehfest KM, Stevens G, Stewart JD, Sulikowski JA, Syakurachman I, Thorrold SR, Thums M, Tickler D, Tolloti MT, Townsend KA, Travassos P, Tyminski JP, Vaudo JJ, Veras D, Wantiez L, Weber SB, Wells RJD, Weng KC, Wetherbee BM, Williamson JE, Witt MJ, Wright S, Zilliacus K, Block BA, and Curnick DJ
- Abstract
Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements.
- Published
- 2022
- Full Text
- View/download PDF
22. Energy conservation characterizes sleep in sharks.
- Author
-
Kelly ML, Collins SP, Lesku JA, Hemmi JM, Collin SP, and Radford CA
- Subjects
- Animals, Eye, Sleep physiology, Swimming, Sharks physiology
- Abstract
Sharks represent the earliest group of jawed vertebrates and as such, they may provide original insight for understanding the evolution of sleep in more derived animals. Unfortunately, beyond a single behavioural investigation, very little is known about sleep in these ancient predators. As such, recordings of physiological indicators of sleep in sharks have never been reported. Reduced energy expenditure arising from sustained restfulness and lowered metabolic rate during sleep have given rise to the hypothesis that sleep plays an important role for energy conservation. To determine whether this idea applies also to sharks, we compared metabolic rates of draughtsboard sharks ( Cephaloscyllium isabellum ) during periods ostensibly thought to be sleep, along with restful and actively swimming sharks across a 24 h period. We also investigated behaviours that often characterize sleep in other animals, including eye closure and postural recumbency, to establish relationships between physiology and behaviour. Overall, lower metabolic rate and a flat body posture reflect sleep in draughtsboard sharks, whereas eye closure is a poorer indication of sleep. Our results support the idea for the conservation of energy as a function of sleep in these basal vertebrates.
- Published
- 2022
- Full Text
- View/download PDF
23. Comparative sound detection abilities of four decapod crustaceans.
- Author
-
Radford CA, Tay K, and Goeritz ML
- Subjects
- Acoustic Stimulation, Animals, Auditory Perception physiology, Auditory Threshold physiology, Evoked Potentials, Auditory physiology, Brachyura, Hearing physiology
- Abstract
Sound perception and detection in decapod crustaceans is surprisingly poorly understood, even though there is mounting evidence for sound playing a critical role in many life history strategies. The suspected primary organ of sound perception is the paired statocysts at the base of the first antennal segment. To better understand the comparative sound detection of decapods, auditory evoked potentials were recorded from the statocyst nerve region of four species (Leptograpsus variegate, Plagusia chabrus, Ovalipes catharus, Austrohelice crassa) in response to two different auditory stimuli presentation methods, shaker table (particle acceleration) and underwater speaker (particle acceleration and pressure). The results showed that there was significant variation in the sound detection abilities between all four species. However, exposure to the speaker stimuli increased all four species sound detection abilities, in terms of both frequency bandwidth and sensitivity, compared with shaker table-derived sound detection abilities. This indicates that there is another sensory mechanism in play as well as the statocyst system. Overall, the present research provides comparative evidence of sound detection in decapods and indicates underwater sound detection in this animal group was even more complex than previously thought., Competing Interests: Competing interests The authors declare no competing or financial interests., (© 2022. Published by The Company of Biologists Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
24. Small recreational boats: a ubiquitous source of sound pollution in shallow coastal habitats.
- Author
-
Wilson L, Pine MK, and Radford CA
- Subjects
- Anthropogenic Effects, Environmental Pollution, Sound, Ecosystem, Ships
- Abstract
Sound from small recreational boats spans a wide range of frequencies and source levels, but the degree to which this impacts the soundscapes of shallow coastal habitats is poorly understood. Here, long-term passive acoustic recordings at five shallow coastal sites, including two MPAs, were used to quantify spatio-temporal variation in small boat sound and its effect on the soundscape. Boats were detected almost every day at each site, irrespective of protection status, significantly elevating the low-frequency (100-800 Hz) component of the soundscape. This frequency band is used by many species for communication, orientation, and predator avoidance. Therefore, highlighting the potential for small boat sound to alter soundscapes and mask cues. Existing tools for monitoring sound pollution are targeted at sound from shipping. These data highlight that the broadband and highly variable sound emitted by small boats must be considered when evaluating anthropogenic impacts on coastal marine ecosystems worldwide., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
25. Global COVID-19 lockdown highlights humans as both threats and custodians of the environment.
- Author
-
Bates AE, Primack RB, Biggar BS, Bird TJ, Clinton ME, Command RJ, Richards C, Shellard M, Geraldi NR, Vergara V, Acevedo-Charry O, Colón-Piñeiro Z, Ocampo D, Ocampo-Peñuela N, Sánchez-Clavijo LM, Adamescu CM, Cheval S, Racoviceanu T, Adams MD, Kalisa E, Kuuire VZ, Aditya V, Anderwald P, Wiesmann S, Wipf S, Badihi G, Henderson MG, Loetscher H, Baerenfaller K, Benedetti-Cecchi L, Bulleri F, Bertocci I, Maggi E, Rindi L, Ravaglioli C, Boerder K, Bonnel J, Mathias D, Archambault P, Chauvaud L, Braun CD, Thorrold SR, Brownscombe JW, Midwood JD, Boston CM, Brooks JL, Cooke SJ, China V, Roll U, Belmaker J, Zvuloni A, Coll M, Ortega M, Connors B, Lacko L, Jayathilake DRM, Costello MJ, Crimmins TM, Barnett L, Denny EG, Gerst KL, Marsh RL, Posthumus EE, Rodriguez R, Rosemartin A, Schaffer SN, Switzer JR, Wong K, Cunningham SJ, Sumasgutner P, Amar A, Thomson RL, Stofberg M, Hofmeyr S, Suri J, Stuart-Smith RD, Day PB, Edgar GJ, Cooper AT, De Leo FC, Garner G, Des Brisay PG, Schrimpf MB, Koper N, Diamond MS, Dwyer RG, Baker CJ, Franklin CE, Efrat R, Berger-Tal O, Hatzofe O, Eguíluz VM, Rodríguez JP, Fernández-Gracia J, Elustondo D, Calatayud V, English PA, Archer SK, Dudas SE, Haggarty DR, Gallagher AJ, Shea BD, Shipley ON, Gilby BL, Ballantyne J, Olds AD, Henderson CJ, Schlacher TA, Halliday WD, Brown NAW, Woods MB, Balshine S, Juanes F, Rider MJ, Albano PS, Hammerschlag N, Hays GC, Esteban N, Pan Y, He G, Tanaka T, Hensel MJS, Orth RJ, Patrick CJ, Hentati-Sundberg J, Olsson O, Hessing-Lewis ML, Higgs ND, Hindell MA, McMahon CR, Harcourt R, Guinet C, Hirsch SE, Perrault JR, Hoover SR, Reilly JD, Hobaiter C, Gruber T, Huveneers C, Udyawer V, Clarke TM, Kroesen LP, Hik DS, Cherry SG, Del Bel Belluz JA, Jackson JM, Lai S, Lamb CT, LeClair GD, Parmelee JR, Chatfield MWH, Frederick CA, Lee S, Park H, Choi J, LeTourneux F, Grandmont T, de-Broin FD, Bêty J, Gauthier G, Legagneux P, Lewis JS, Haight J, Liu Z, Lyon JP, Hale R, D'Silva D, MacGregor-Fors I, Arbeláez-Cortés E, Estela FA, Sánchez-Sarria CE, García-Arroyo M, Aguirre-Samboní GK, Franco Morales JC, Malamud S, Gavriel T, Buba Y, Salingré S, Lazarus M, Yahel R, Ari YB, Miller E, Sade R, Lavian G, Birman Z, Gury M, Baz H, Baskin I, Penn A, Dolev A, Licht O, Karkom T, Davidzon S, Berkovitch A, Yaakov O, Manenti R, Mori E, Ficetola GF, Lunghi E, March D, Godley BJ, Martin C, Mihaly SF, Barclay DR, Thomson DJM, Dewey R, Bedard J, Miller A, Dearden A, Chapman J, Dares L, Borden L, Gibbs D, Schultz J, Sergeenko N, Francis F, Weltman A, Moity N, Ramírez-González J, Mucientes G, Alonso-Fernández A, Namir I, Bar-Massada A, Chen R, Yedvab S, Okey TA, Oppel S, Arkumarev V, Bakari S, Dobrev V, Saravia-Mullin V, Bounas A, Dobrev D, Kret E, Mengistu S, Pourchier C, Ruffo A, Tesfaye M, Wondafrash M, Nikolov SC, Palmer C, Sileci L, Rex PT, Lowe CG, Peters F, Pine MK, Radford CA, Wilson L, McWhinnie L, Scuderi A, Jeffs AG, Prudic KL, Larrivée M, McFarland KP, Solis R, Hutchinson RA, Queiroz N, Furtado MA, Sims DW, Southall E, Quesada-Rodriguez CA, Diaz-Orozco JP, Rodgers KS, Severino SJL, Graham AT, Stefanak MP, Madin EMP, Ryan PG, Maclean K, Weideman EA, Şekercioğlu ÇH, Kittelberger KD, Kusak J, Seminoff JA, Hanna ME, Shimada T, Meekan MG, Smith MKS, Mokhatla MM, Soh MCK, Pang RYT, Ng BXK, Lee BPY, Loo AHB, Er KBH, Souza GBG, Stallings CD, Curtis JS, Faletti ME, Peake JA, Schram MJ, Wall KR, Terry C, Rothendler M, Zipf L, Ulloa JS, Hernández-Palma A, Gómez-Valencia B, Cruz-Rodríguez C, Herrera-Varón Y, Roa M, Rodríguez-Buriticá S, Ochoa-Quintero JM, Vardi R, Vázquez V, Requena-Mesa C, Warrington MH, Taylor ME, Woodall LC, Stefanoudis PV, Zhang X, Yang Q, Zukerman Y, Sigal Z, Ayali A, Clua EEG, Carzon P, Seguine C, Corradini A, Pedrotti L, Foley CM, Gagnon CA, Panipakoochoo E, Milanes CB, Botero CM, Velázquez YR, Milchakova NA, Morley SA, Martin SM, Nanni V, Otero T, Wakeling J, Abarro S, Piou C, Sobral AFL, Soto EH, Weigel EG, Bernal-Ibáñez A, Gestoso I, Cacabelos E, Cagnacci F, Devassy RP, Loretto MC, Moraga P, Rutz C, and Duarte CM
- Abstract
The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence. However, negative effects of lockdown on conservation also emerged, as confinement resulted in some park officials being unable to perform conservation, restoration and enforcement tasks, resulting in local increases in illegal activities such as hunting. Overall, there is a complex mixture of positive and negative effects of the pandemic lockdown on nature, all of which have the potential to lead to cascading responses which in turn impact wildlife and nature conservation. While the net effect of the lockdown will need to be assessed over years as data becomes available and persistent effects emerge, immediate responses were detected across the world. Thus, initial qualitative and quantitative data arising from this serendipitous global quasi-experimental perturbation highlights the dual role that humans play in threatening and protecting species and ecosystems. Pathways to favorably tilt this delicate balance include reducing impacts and increasing conservation effectiveness., Competing Interests: Authors declare no competing interests., (© 2021 Published by Elsevier Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
26. A Gulf in lockdown: How an enforced ban on recreational vessels increased dolphin and fish communication ranges.
- Author
-
Pine MK, Wilson L, Jeffs AG, McWhinnie L, Juanes F, Scuderi A, and Radford CA
- Subjects
- Acoustics, Animals, Communicable Disease Control, Humans, SARS-CoV-2, Animal Communication, COVID-19, Dolphins
- Abstract
From midnight of 26 March 2020, New Zealand became one of the first countries to enter a strict lockdown to combat the spread of COVID-19. The lockdown banned all non-essential services and travel both on land and sea. Overnight, the country's busiest coastal waterway, the Hauraki Gulf Marine Park, became devoid of almost all recreational and non-essential commercial vessels. An almost instant change in the marine soundscape ensued, with ambient sound levels in busy channels dropping nearly threefold the first 12 h. This sudden drop led fish and dolphins to experience an immediate increase in their communication ranges by up to an estimated 65%. Very low vessel activity during the lockdown (indicated by the presence of vessel noise over the day) revealed new insights into cumulative noise effects from vessels on auditory masking. For example, at sites nearer Auckland City, communication ranges increased approximately 18 m (22%) or 50 m (11%) for every 10% decrease in vessel activity for fish and dolphins, respectively. However, further from the city and in deeper water, these communication ranges were increased by approximately 13 m (31%) or 510 m (20%). These new data demonstrate how noise from small vessels can impact underwater soundscapes and how marine animals will have to adapt to ever-growing noise pollution., (© 2021 John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
27. Behavioural sleep in two species of buccal pumping sharks (Heterodontus portusjacksoni and Cephaloscyllium isabellum).
- Author
-
Kelly ML, Spreitzenbarth S, Kerr CC, Hemmi JM, Lesku JA, Radford CA, and Collin SP
- Subjects
- Animals, Sharks, Sleep physiology
- Abstract
Sleep is known to occur in most, if not all, animals studied thus far. Recent studies demonstrate the presence of sleep in flatworms and jellyfish, suggesting that this behaviour evolved early in the evolution of animals. Sharks are the earliest known extant, jawed vertebrates and may play an important role in understanding the evolutionary history of sleep in vertebrates, and yet, it is unknown whether they sleep. The Port Jackson (Heterodontus portusjacksoni) and draughtsboard (Cephaloscyllium isabellum) sharks are both benthic, buccal pumping species and remain motionless for extended periods of time. Whether these periods of prolonged inactivity represent sleep or quiet wakefulness is unknown. A key criterion for separating sleep from other quiescent states is an increased arousal threshold. We show here that inactive sharks of both species require significantly higher levels of electric stimulation before they show a visible response. Sharks deprived of rest, however, show no significant compensatory increase in restfulness during their normal active period following enforced swimming. Nonetheless, increased arousal thresholds in inactive animals suggest that these two species of shark sleep - the first such demonstration for members of this group of vertebrates. Further research, including electrophysiological studies, on these and other sharks, is required for a comprehensive understanding of sleep in cartilaginous fishes., (© 2020 European Sleep Research Society.)
- Published
- 2021
- Full Text
- View/download PDF
28. Ocean acidification effects on fish hearing.
- Author
-
Radford CA, Collins SP, Munday PL, and Parsons D
- Subjects
- Animals, Fishes, Hearing, Humans, Hydrogen-Ion Concentration, Oceans and Seas, Carbon Dioxide, Seawater
- Abstract
Humans are rapidly changing the marine environment through a multitude of effects, including increased greenhouse gas emissions resulting in warmer and acidified oceans. Elevated CO
2 conditions can cause sensory deficits and altered behaviours in marine organisms, either directly by affecting end organ sensitivity or due to likely alterations in brain chemistry. Previous studies show that auditory-associated behaviours of larval and juvenile fishes can be affected by elevated CO2 (1000 µatm). Here, using auditory evoked potentials (AEP) and micro-computer tomography (microCT) we show that raising juvenile snapper, Chrysophyrs auratus , under predicted future CO2 conditions resulted in significant changes to their hearing ability. Specifically, snapper raised under elevated CO2 conditions had a significant decrease in low frequency (less than 200 Hz) hearing sensitivity. MicroCT demonstrated that these elevated CO2 snapper had sacculus otolith's that were significantly larger and had fluctuating asymmetry, which likely explains the difference in hearing sensitivity. We suggest that elevated CO2 conditions have a dual effect on hearing, directly effecting the sensitivity of the hearing end organs and altering previously described hearing induced behaviours. This is the first time that predicted future CO2 conditions have been empirically linked through modification of auditory anatomy to changes in fish hearing ability. Given the widespread and well-documented impact of elevated CO2 on fish auditory anatomy, predictions of how fish life-history functions dependent on hearing may respond to climate change may need to be reassessed.- Published
- 2021
- Full Text
- View/download PDF
29. Marine soundscape variation reveals insights into baleen whales and their environment: a case study in central New Zealand.
- Author
-
Warren VE, McPherson C, Giorli G, Goetz KT, and Radford CA
- Abstract
Baleen whales reliably produce stereotyped vocalizations, enabling their spatio-temporal distributions to be inferred from acoustic detections. Soundscape analysis provides an integrated approach whereby vocal species, such as baleen whales, are sampled holistically with other acoustic contributors to their environment. Acoustic elements that occur concurrently in space, time and/or frequency can indicate overlaps between free-ranging species and potential stressors. Such information can inform risk assessment framework models. Here, we demonstrate the utility of soundscape monitoring in central New Zealand, an area of high cetacean diversity where potential threats are poorly understood. Pygmy blue whale calls were abundant in the South Taranaki Bight (STB) throughout recording periods and were also detected near Kaikōura during autumn. Humpback, Antarctic blue and Antarctic minke whales were detected in winter and spring, during migration. Wind, rain, tidal and wave activity increased ambient sound levels in both deep- and shallow-water environments across a broad range of frequencies, including those used by baleen whales, and sound from shipping, seismic surveys and earthquakes overlapped in time, space and frequency with whale calls. The results highlight the feasibility of soundscape analysis to quantify and understand potential stressors to free-ranging species, which is essential for conservation and management decisions., (© 2021 The Authors.)
- Published
- 2021
- Full Text
- View/download PDF
30. The soundscape of the Anthropocene ocean.
- Author
-
Duarte CM, Chapuis L, Collin SP, Costa DP, Devassy RP, Eguiluz VM, Erbe C, Gordon TAC, Halpern BS, Harding HR, Havlik MN, Meekan M, Merchant ND, Miksis-Olds JL, Parsons M, Predragovic M, Radford AN, Radford CA, Simpson SD, Slabbekoorn H, Staaterman E, Van Opzeeland IC, Winderen J, Zhang X, and Juanes F
- Subjects
- Animals, Oceans and Seas, Aquatic Organisms physiology, Hearing, Noise
- Abstract
Oceans have become substantially noisier since the Industrial Revolution. Shipping, resource exploration, and infrastructure development have increased the anthrophony (sounds generated by human activities), whereas the biophony (sounds of biological origin) has been reduced by hunting, fishing, and habitat degradation. Climate change is affecting geophony (abiotic, natural sounds). Existing evidence shows that anthrophony affects marine animals at multiple levels, including their behavior, physiology, and, in extreme cases, survival. This should prompt management actions to deploy existing solutions to reduce noise levels in the ocean, thereby allowing marine animals to reestablish their use of ocean sound as a central ecological trait in a healthy ocean., (Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2021
- Full Text
- View/download PDF
31. Diverse Activity Rhythms in Sharks (Elasmobranchii).
- Author
-
Kelly ML, Murray ERP, Kerr CC, Radford CA, Collin SP, Lesku JA, and Hemmi JM
- Subjects
- Animals, Darkness, Female, Gills metabolism, Male, Sleep, Sunlight, Swimming, Circadian Rhythm, Sharks physiology
- Abstract
Sharks are an interesting group of vertebrates, as many species swim continuously to "ram" oxygen-rich seawater over their gills (ram ventilators), whereas other species "pump" seawater over their gills by manipulating buccal cavity volume while remaining motionless (buccal pumpers). This difference in respiratory physiology raises the question: What are the implications of these differences in lifestyle for circadian rhythms? We investigated the diel activity patterns of 5 species of sharks, including 3 ram ventilating species: the school shark ( Galeorhinus galeus ), the spotted estuary smooth-hound ( Mustelus lenticulatus ), and the spiny dogfish ( Squalus acanthias ); and 2 buccal pumping species: the Port Jackson ( Heterodontus portusjacksoni ) and draughtsboard ( Cephaloscyllium isabellum ) sharks. We measured the amount, duration, and distance traveled while swimming over multiple days under a 12:12 light:dark light regime for all species and used modified light regimes for species with a clear diel rhythm in activity. We identified a surprising diversity of activity rhythms. The school shark and smooth-hound swam continuously; however, whereas the school shark swam at the same speed and covered the same distance during the day and night, the smooth-hound swam slower at night and traversed a shorter distance. A similar pattern was observed in the spiny dogfish, although this shark swam less overall. Both the Port Jackson and draughtsboard sharks showed a marked nocturnal preference for swimming. This pattern was muted and disrupted during constant light and constant dark regimes, although circadian organization of this pattern was maintained under certain conditions. The consequences of these patterns for other biological processes, such as sleep, remain unclear. Nonetheless, these 5 species demonstrate remarkable diversity within the activity rhythms of sharks.
- Published
- 2020
- Full Text
- View/download PDF
32. The use of evoked potentials to determine sensory sub-modality contributions to acoustic and hydrodynamic sensing.
- Author
-
Kibele CS, Montgomery JC, and Radford CA
- Subjects
- Acoustic Stimulation, Animals, Hydrodynamics, Mechanoreceptors physiology, Characidae physiology, Evoked Potentials physiology, Lateral Line System physiology
- Abstract
Both the lateral line and the inner ear contribute to near-field dipole source detection in fish. The precise roles these two sensory modalities provide in extracting information about the flow field remain of interest. In this study, evoked potentials (EP, 30-200 Hz) for blind Mexican cavefish were measured in response to a dipole source. Greatest sensitivity was observed at the lower and upper ends of the tested frequency range. To evaluate the relative contributions of the lateral line and inner ear, we measured the effects of neomycin on EP response characteristics at 40 Hz, and used the vital dye DASPEI to verify neuromast ablation. Neomycin increased the latency of the EP response up until 60 min post-treatment. DASPEI results confirmed that neuromast hair cell death was significant in treated fish over this timeframe. These results indicate that the inner ear, whether it is sound pressure or particle motion detection, makes a significant contribution to the dipole-induced EP in blind cavefish at near-field low frequencies where the lateral line contribution would be expected to be strongest. The results from this study imply that under some circumstances, lateral line function could be complemented by the inner ear.
- Published
- 2019
- Full Text
- View/download PDF
33. Ecology of fish hearing.
- Author
-
Putland RL, Montgomery JC, and Radford CA
- Subjects
- Adaptation, Physiological, Animals, Behavior, Animal, Environment, Fish Diseases physiopathology, Hearing Loss veterinary, Noise, Otolithic Membrane physiology, Sound, Stress, Physiological, Fishes physiology, Hearing
- Abstract
Underwater sound is directional and can convey important information about the surrounding environment or the animal emitting the sound. Therefore, sound is a major sensory channel for fishes and plays a key role in many life-history strategies. The effect of anthropogenic noise on aquatic life, which may be causing homogenisation or fragmentation of biologically important signals underwater is of growing concern. In this review we discuss the role sound plays in the ecology of fishes, basic anatomical and physiological adaptations for sound reception and production, the effects of anthropogenic noise and how fishes may be coping to changes in their environment, to put the ecology of fish hearing into the context of the modern underwater soundscape., (© 2018 The Fisheries Society of the British Isles.)
- Published
- 2019
- Full Text
- View/download PDF
34. Potential role of the anterior lateral line in sound localization in toadfish ( Opsanus tau ).
- Author
-
Cardinal EA, Radford CA, and Mensinger AF
- Subjects
- Animals, Electrophysiology, Female, Male, Mechanoreceptors physiology, Vibration, Batrachoidiformes physiology, Lateral Line System physiology, Sound Localization physiology
- Abstract
Male oyster toadfish ( Opsanus tau ) acoustically attract females to nesting sites using a boatwhistle call. The rapid speed of sound underwater combined with the close proximity of the otolithic organs makes inner ear interaural time differences an unlikely mechanism to localize sound. To determine the role that the mechanosensory lateral line may play in sound localization, microwire electrodes were bilaterally implanted into the anterior lateral line nerve to record neural responses to vibrational stimuli. Highest spike rates and strongest phase-locking occurred at distances close to the fish and decreased as the stimulus was moved further from the fish. Bilateral anterior lateral line neuromasts displayed differential directional sensitivity to incoming vibrational stimuli, which suggests the potential for the lateral line to be used for sound localization in the near field. The present study also demonstrates that the spatially separated neuromasts of the toadfish may provide sufficient time delays between sensory organs for determining sound localization cues. Multimodal sensory input processing through both the inner ear (far field) and lateral line (near field) may allow for effective sound localization in fish., Competing Interests: Competing interestsThe authors declare no competing or financial interests., (© 2018. Published by The Company of Biologists Ltd.)
- Published
- 2018
- Full Text
- View/download PDF
35. Barking mad: The vocalisation of the John Dory, Zeus faber.
- Author
-
Radford CA, Putland RL, and Mensinger AF
- Subjects
- Acoustics, Animals, New Zealand, Sound, Fishes physiology, Perciformes physiology, Vocalization, Animal physiology
- Abstract
Studies on the behavioural function of sounds are very rare within heterospecific interactions. John Dory (Zeus faber) is a solitary, predatory fish that produces sound when captured, but has not been documented to vocalize under natural conditions (i.e. in the wild). The present study provides the first in-situ recordings of John Dory vocalisations and correlates them to behavioural response of snapper (Pagrus auratus) a common species found through New Zealand. Vocalisations or 'barks', ranged between 200-600 Hz, with a peak frequency of 312 ± 10 Hz and averaged 139 ± 4 milliseconds in length. Baited underwater video (BUV) equipped with hydrophones determined that under natural conditions a John Dory vocalization induced an escape response in snapper present, causing them to exit the area opposite to the position of the John Dory. We speculate that the John Dory vocalisation may be used for territorial display towards both conspecifics and heterospecifics, asserting dominance in the area or heightening predatory status., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2018
- Full Text
- View/download PDF
36. The effect of motorboat sound on Australian snapper Pagrus auratus inside and outside a marine reserve.
- Author
-
Mensinger AF, Putland RL, and Radford CA
- Abstract
Human-generated sound affects hearing, movement, and communication in both aquatic and terrestrial animals, but direct natural underwater behavioral observations are lacking. Baited underwater video (BUV) were deployed in near shore waters adjacent to Goat Island in the Cape Rodney-Okakari Point Marine Reserve (protected) or outside the reserve approximately four km south in Mathesons Bay (open), New Zealand to determine the natural behavior of Australian snapper Pagrus auratus exposed to motorboat sound. BUVs worked effectively at bringing fish into video range to assess the effects of sound. The snapper inhabiting the protected area showed no behavioral response to motorboat transits; however, fish in the open zones either scattered from the video frame or decreased feeding activity during boat presence. Our study suggests that motorboat sound, a common source of anthropogenic activity in the marine environment can affect fish behavior differently depending on the status of their habitat (protected versus open).
- Published
- 2018
- Full Text
- View/download PDF
37. Vessel noise cuts down communication space for vocalizing fish and marine mammals.
- Author
-
Putland RL, Merchant ND, Farcas A, and Radford CA
- Subjects
- Acoustics, Animals, Oceans and Seas, Fishes physiology, Mammals physiology, Noise, Ships, Vocalization, Animal
- Abstract
Anthropogenic noise across the world's oceans threatens the ability of vocalizing marine species to communicate. Some species vocalize at key life stages or whilst foraging, and disruption to the acoustic habitat at these times could lead to adverse consequences at the population level. To investigate the risk of these impacts, we investigated the effect of vessel noise on the communication space of the Bryde's whale Balaenoptera edeni, an endangered species which vocalizes at low frequencies, and bigeye Pempheris adspersa, a nocturnal fish species which uses contact calls to maintain group cohesion while foraging. By combining long-term acoustic monitoring data with AIS vessel-tracking data and acoustic propagation modelling, the impact of vessel noise on their communication space was determined. Routine vessel passages cut down communication space by up to 61.5% for bigeyes and 87.4% for Bryde's whales. This influence of vessel noise on communication space exceeded natural variability for between 3.9 and 18.9% of the monitoring period. Additionally, during the closest point of approach of a large commercial vessel, <10 km from the listening station, the communication space of both species was reduced by a maximum of 99% compared to the ambient soundscape. These results suggest that vessel noise reduces communication space beyond the evolutionary context of these species and may have chronic effects on these populations. To combat this risk, we propose the application or extension of ship speed restrictions in ecologically significant areas, since our results indicate a reduction in sound source levels for vessels transiting at lower speeds., (© 2017 John Wiley & Sons Ltd.)
- Published
- 2018
- Full Text
- View/download PDF
38. Exploring spatial and temporal trends in the soundscape of an ecologically significant embayment.
- Author
-
Putland RL, Constantine R, and Radford CA
- Abstract
The Hauraki Gulf, a shallow embayment in north-eastern New Zealand, provides an interesting environment for ecological soundscape research. It is situated on a tectonic plate boundary, contains one of the busiest ports in the southern hemisphere and is home to a diverse range of soniferous animals. The underwater soundscape was monitored for spatial and temporal trends at six different listening stations using passive acoustic recorders. The RMS sound pressure level of ambient sound (50-24,000 Hz) at the six listening stations was similar, ranging from 90-110 dB re 1 μPa throughout the recording period. Biophony had distinct temporal patterns and biological choruses of urchins were significantly correlated to temperature. Geophony and biophony followed the acoustic niche hypothesis, where each sound exhibited both temporal and frequency partitioning. Vessel passage sound were identified in 1.9-35.2% of recordings from the different listening stations. Vessel sound recorded in the Hauraki Gulf has the potential to mask concurrent geophony and biophony, sounds that may be important to marine life. This study provides a baseline of ambient sound, useful for future management strategies in shallow embayments where anthropogenic pressure is likewise increasing.
- Published
- 2017
- Full Text
- View/download PDF
39. Marine bioacoustics.
- Author
-
Montgomery JC and Radford CA
- Subjects
- Animals, Sound, Acoustics, Aquatic Organisms physiology, Hearing physiology, Marine Biology methods, Oceans and Seas
- Abstract
The marine environment is the planet's largest, yet in many respects the least accessible. Our human sensory repertoire, with its emphasis on vision and air-adapted hearing, does not serve us well underwater. Underwater vision is often limited and as divers we find hearing of little, or no, use. Yet we know from the physics that underwater sound has properties well suited to serve as sensory and communication channels for suitably-adapted marine animals. The rapidly developing area of marine bioacoustics seeks to characterise underwater sound in relation to the acoustic capability of particular species (acoustic habitat), and discover the role of acoustics in the lives of marine animals (acoustic ecology) (Clarke et al., 2011)., (Copyright © 2017 Elsevier Ltd. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
40. Auditory sensitivity in aquatic animals.
- Author
-
Lucke K, Popper AN, Hawkins AD, Akamatsu T, André M, Branstetter BK, Lammers M, Radford CA, Stansbury AL, and Aran Mooney T
- Subjects
- Acoustics, Animals, Auditory Threshold, Noise adverse effects, Oceans and Seas, Perceptual Masking, Risk Factors, Time Factors, Auditory Pathways physiology, Auditory Perception, Behavior, Animal, Ecosystem, Hearing
- Abstract
A critical concern with respect to marine animal acoustics is the issue of hearing "sensitivity," as it is widely used as a criterion for the onset of noise-induced effects. Important aspects of research on sensitivity to sound by marine animals include: uncertainties regarding how well these species detect and respond to different sounds; the masking effects of man-made sounds on the detection of biologically important sounds; the question how internal state, motivation, context, and previous experience affect their behavioral responses; and the long-term and cumulative effects of sound exposure. If we are to better understand the sensitivity of marine animals to sound we must concentrate research on these questions. In order to assess population level and ecological community impacts new approaches can possibly be adopted from other disciplines and applied to marine fauna.
- Published
- 2016
- Full Text
- View/download PDF
41. Vocalisation Repertoire of Female Bluefin Gurnard (Chelidonichthys kumu) in Captivity: Sound Structure, Context and Vocal Activity.
- Author
-
Radford CA, Ghazali SM, Montgomery JC, and Jeffs AG
- Subjects
- Acoustics, Animals, Discriminant Analysis, Female, New Zealand, Sound, Fishes, Vocalization, Animal
- Abstract
Fish vocalisation is often a major component of underwater soundscapes. Therefore, interpretation of these soundscapes requires an understanding of the vocalisation characteristics of common soniferous fish species. This study of captive female bluefin gurnard, Chelidonichthys kumu, aims to formally characterise their vocalisation sounds and daily pattern of sound production. Four types of sound were produced and characterised, twice as many as previously reported in this species. These sounds fit two aural categories; grunt and growl, the mean peak frequencies for which ranged between 129 to 215 Hz. This species vocalized throughout the 24 hour period at an average rate of (18.5 ± 2.0 sounds fish-1 h-1) with an increase in vocalization rate at dawn and dusk. Competitive feeding did not elevate vocalisation as has been found in other gurnard species. Bluefin gurnard are common in coastal waters of New Zealand, Australia and Japan and, given their vocalization rate, are likely to be significant contributors to ambient underwater soundscape in these areas.
- Published
- 2016
- Full Text
- View/download PDF
42. Evidence for contact calls in fish: conspecific vocalisations and ambient soundscape influence group cohesion in a nocturnal species.
- Author
-
van Oosterom L, Montgomery JC, Jeffs AG, and Radford CA
- Subjects
- Animals, Behavior, Animal, Fishes, Social Behavior, Vocalization, Animal
- Abstract
Soundscapes provide a new tool for the study of fish communities. Bigeyes (Pempheris adspersa) are nocturnal planktivorous reef fish, feed in loose shoals and are soniferous. These vocalisations have been suggested to be contact calls to maintain group cohesion, however direct evidence for this is absent, despite the fact that contact calls are well documented for many other vertebrates, including marine mammals. For fish, direct evidence for group cohesion signals is restricted to the use of visual and hydrodynamic cues. In support of adding vocalisation as a contributing cue, our laboratory experiments show that bigeyes significantly increased group cohesion when exposed to recordings of ambient reef sound at higher sound levels while also decreasing vocalisations. These patterns of behaviour are consistent with acoustic masking. When exposed to playback of conspecific vocalisations, the group cohesion and vocalisation rates of bigeyes both significantly increased. These results provide the first direct experimental support for the hypotheses that vocalisations are used as contact calls to maintain group cohesion in fishes, making fish the evolutionarily oldest vertebrate group in which this phenomenon has been observed, and adding a new dimension to the interpretation of nocturnal reef soundscapes.
- Published
- 2016
- Full Text
- View/download PDF
43. Potential Competitive Dynamics of Acoustic Ecology.
- Author
-
Radford CA and Montgomery JC
- Subjects
- New Zealand, Sound Spectrography, Acoustics, Competitive Behavior, Ecosystem
- Abstract
The top predators in coastal marine ecosystems, such as whales, dolphins, seabirds, and large predatory fishes (including sharks), may compete with each other to exploit food aggregations. Finding these patchy food sources and being first to a food patch could provide a significant competitive advantage. Our hypothesis is that food patches have specific sound signatures that marine predators could detect and that acoustic sources and animal sensory capabilities may contribute to competition dynamics. Preliminary analysis shows that diving gannets have a distinct spectral signature between 80 and 200 Hz, which falls within the hearing sensitivity of large pelagic fishes. Therefore, we suggest that diving birds may contribute to the sound signatures of food aggregations, linking competition dynamics both above and below the water surface.
- Published
- 2016
- Full Text
- View/download PDF
44. Effects of Underwater Turbine Noise on Crab Larval Metamorphosis.
- Author
-
Pine MK, Jeffs AG, and Radford CA
- Subjects
- Animals, Geography, Larva growth & development, New Zealand, Time Factors, Brachyura growth & development, Metamorphosis, Biological, Noise, Seawater
- Abstract
The development of marine tidal turbines has advanced at a rapid rate over the last decade but with little detailed understanding of the potential noise impacts on invertebrates. Previous research has shown that underwater reef noise plays an important role in mediating metamorphosis in many larval crabs and fishes. New research suggests that underwater estuarine noise may also mediate metamorphosis in estuarine crab larvae and that the noise emitted from underwater tidal and sea-based wind turbines may significantly influence larval metamorphosis in estuarine crabs.
- Published
- 2016
- Full Text
- View/download PDF
45. The Potential Overlapping Roles of the Ear and Lateral Line in Driving "Acoustic" Responses.
- Author
-
Higgs DM and Radford CA
- Subjects
- Acoustic Stimulation, Animal Communication, Animals, Brain physiology, Models, Biological, Sound, Ear physiology, Fishes physiology, Hearing physiology, Lateral Line System physiology
- Abstract
Examination of fish responses to sound stimuli has a rich and varied history but it is not always clear when responses are true measures of hearing or the lateral-line. The central innervation of auditory and lateral-line sensory afferents lie in close proximity in the brainstem and both sets of receptors are, at heart, hair cell-based particle motion detectors. While it is possible to separately measure physiological activity of these two receptor subtypes, many studies of fish "hearing" use whole brain potentials or behavioural assays in complex sound fields where it is not possible to distinguish inputs. We argue here that, as often measured, what is thought of as fish "hearing" is often a multisensory response of both auditory and lateral line receptors. We also argue that in many situations where fish use sound stimuli, the behaviour is also an integrative response of both systems, due to the often close proximity of fish during sound communication. We end with a set of recommendations for better understanding the separate and combined roles of ear and lateral-line hair cells as well as an acknowledgment of the seminal and continuing contributions of Arthur N. Popper and Richard R. Fay to this field.
- Published
- 2016
- Full Text
- View/download PDF
46. Vocalisations of the bigeye Pempheris adspersa: characteristics, source level and active space.
- Author
-
Radford CA, Ghazali S, Jeffs AG, and Montgomery JC
- Subjects
- Acoustics, Animals, Circadian Rhythm, New Zealand, Sound Spectrography, Perciformes physiology, Vocalization, Animal
- Abstract
Fish sounds are an important biological component of the underwater soundscape. Understanding species-specific sounds and their associated behaviour is critical for determining how animals use the biological component of the soundscape. Using both field and laboratory experiments, we describe the sound production of a nocturnal planktivore, Pempheris adspersa (New Zealand bigeye), and provide calculations for the potential effective distance of the sound for intraspecific communication. Bigeye vocalisations recorded in the field were confirmed as such by tank recordings. They can be described as popping sounds, with individual pops of short duration (7.9±0.3 ms) and a peak frequency of 405±12 Hz. Sound production varied during a 24 h period, with peak vocalisation activity occurring during the night, when the fish are most active. The source level of the bigeye vocalisation was 115.8±0.2 dB re. 1 µPa at 1 m, which is relatively quiet compared with other soniferous fish. Effective calling range, or active space, depended on both season and lunar phase, with a maximum calling distance of 31.6 m and a minimum of 0.6 m. The bigeyes' nocturnal behaviour, characteristics of their vocalisation, source level and the spatial scale of its active space reported in the current study demonstrate the potential for fish vocalisations to function effectively as contact calls for maintaining school cohesion in darkness., (© 2015. Published by The Company of Biologists Ltd.)
- Published
- 2015
- Full Text
- View/download PDF
47. Anterior lateral line nerve encoding to tones and play-back vocalisations in free-swimming oyster toadfish, Opsanus tau.
- Author
-
Radford CA and Mensinger AF
- Subjects
- Animals, Auditory Pathways, Electrophysiology, Neural Conduction physiology, Neurons, Acoustic Stimulation, Batrachoidiformes physiology, Lateral Line System physiology, Mechanoreceptors physiology, Sound Localization
- Abstract
In the underwater environment, sound propagates both as a pressure wave and as particle motion, with particle motion dominating close to the source. At the receptor level, the fish ear and the neuromast hair cells act as displacement detectors, and both are potentially stimulated by the particle motion component of sound. The encoding of the anterior lateral line nerve to acoustic stimuli in freely behaving oyster toadfish, Opsanus tau, was examined. Nerve sensitivity and directional responses were determined using spike rate and vector strength analysis, a measure of phase-locking of spike times to the stimulus waveform. All units showed greatest sensitivity to 100 Hz stimulus. While sensitivity was independent of stimuli orientation, the neuron's ability to phase-lock was correlated with stimuli origin. Two different types of units were classified, type 1 (tonic), and type 2 (phasic). The type 1 fibres were further classified into two sub-types based on their frequency response (type 1-1 and type 1-2), which was hypothesised to be related to canal (type 1-1) and superficial (type 1-2) neuromast innervation. Lateral line units also exhibited sensitivity and phase locking to boatwhistle vocalisations, with greatest spike rates exhibited at the onset of the call. These results provide direct evidence that oyster toadfish can use their lateral line to detect behaviourally relevant acoustic stimuli, which could provide a sensory pathway to aid in sound source localisation.
- Published
- 2014
- Full Text
- View/download PDF
48. A proposed mechanism for the observed ontogenetic improvement in the hearing ability of hapuka (Polyprion oxygeneios).
- Author
-
Caiger PE, Montgomery JC, Bruce M, Lu J, and Radford CA
- Subjects
- Acoustic Stimulation, Acoustics, Analysis of Variance, Animals, Auditory Threshold, Electroencephalography, Magnetic Resonance Imaging, Evoked Potentials, Auditory physiology, Hearing physiology, Perciformes physiology
- Abstract
Swim bladder extensions and hearing ability were examined in the temperate reef fish Polyprion oxygeneios (hapuka). Using the auditory evoked potential (AEP) technique, hearing thresholds were determined in four age-classes of hapuka, from larvae to juveniles. The youngest age-class had poor hearing abilities, with lowest thresholds of 132 dB re 1 μPa, and a narrow auditory bandwidth (100-800 Hz). Hearing ability improved significantly throughout the remainder of their first year, including decreases in thresholds of up to 27 dB, and an increase in auditory bandwidth (up to 1,000 Hz). Magnetic resonance imaging (MRI) was used to investigate structural mechanisms that may account for this ontogenetic improvement in hearing. These showed rostral extensions of the swim bladder developing early in the juvenile stage, and extending with increasing age closer to the otic capsule. It is suggested that this indirect connection between the swim bladder and the otic capsule could impart pressure sensitivity closer to the inner ear, accounting for the increase in sensitivity seen during development, although further investigation of older fish is required for conclusive evidence. The improvement in hearing ability in hapuka could be potentially related to a unique life history of extended pelagic durations up to 4 years.
- Published
- 2013
- Full Text
- View/download PDF
49. A novel hearing specialization in the New Zealand bigeye, Pempheris adspersa.
- Author
-
Radford CA, Montgomery JC, Caiger P, Johnston P, Lu J, and Higgs DM
- Subjects
- Air Sacs anatomy & histology, Air Sacs diagnostic imaging, Animals, Magnetic Resonance Imaging, New Zealand, Perciformes anatomy & histology, Pressure, Sound, X-Ray Microtomography, Air Sacs physiology, Auditory Perception, Evoked Potentials, Auditory, Hearing, Perciformes physiology
- Abstract
The New Zealand bigeye, Pempheris adspersa, is a nocturnal planktivore and has recently been found to be an active sound producer. The rostral end of the swim bladder lies adjacent to Baudelot's ligament which spans between the bulla and the cleithrum bone of the pectoral girdle. The aim of this study was to use the auditory evoked potential technique to physiologically test the possibility that this structure provides an enhanced sensitivity to sound pressure in the bigeye. At 100 Hz, bigeye had hearing sensitivity similar to that of goldfish (species with a mechanical connection between the swim bladder and the inner ear mediated by the Weberian ossicles) and were much more sensitive than other teleosts without ancillary hearing structures. Severing Baudelot's ligament bilaterally resulted in a marked decrease in hearing sensitivity, as did swim bladder puncture or lateral line blockage. These results show that bigeye have an enhanced sensitivity to sound pressure and provide experimental evidence that the functional basis of this sensitivity represents a novel hearing specialization in fish involving the swim bladder, Baudelot's ligament and the lateral line.
- Published
- 2013
- Full Text
- View/download PDF
50. The contribution of the lateral line to 'hearing' in fish.
- Author
-
Higgs DM and Radford CA
- Subjects
- Acoustic Stimulation, Animals, Auditory Threshold drug effects, Hair Cells, Auditory drug effects, Hearing, Protein Synthesis Inhibitors metabolism, Streptomycin metabolism, Evoked Potentials, Auditory drug effects, Goldfish physiology, Hair Cells, Auditory physiology
- Abstract
In the underwater environment, sound propagates both as a pressure wave and as particle displacement, with particle displacement dominating close to the source (the nearfield). At the receptor level, both the fish ear and the neuromast hair cells act as displacement detectors and both are potentially stimulated by the particle motion component of sound sources, especially in the nearfield. A now common way to test 'hearing' in fish involves auditory evoked potentials (AEPs), with recordings made from electrodes implanted near the auditory brainstem. These AEP recordings are typically conducted in enclosed acoustic environments with the fish well within the nearfield, especially for lower frequencies. We tested the contribution of neuromast hair cells to AEP by first testing intact goldfish (Carassius auratus), then ablating their neuromasts with streptomycin sulphate--disabling superficial and canal neuromasts--and retesting the same goldfish. We performed a similar experiment where only the superficial neuromasts were physically ablated. At 100 and 200 Hz, there was a 10-15 dB increase in threshold after streptomycin treatment but no significant difference at higher frequencies. There was no difference in threshold in control fish or in fish that only had superficial neuromasts removed, indicating that the differential responses were driven by canal neuromasts. Taken together, these results indicate that AEP results at lower frequencies should be interpreted as multimodal responses, rather than as 'hearing'. The results also suggest that in natural situations both the ear and lateral line likely play an integrative role in detecting and localising many types of 'acoustic' stimuli.
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.