1. RIP1 inhibition reduces chondrocyte apoptosis through downregulating nuclear factor-kappa B signaling in a mouse osteoarthritis model.
- Author
-
Zhao, Hong, Wang, Chenzhong, Liu, Bo, Weng, Ziyu, Shi, Yi, and Zhang, Chi
- Abstract
Background: Excessive chondrocyte death is a critical player in the process of osteoarthritis (OA). The present study was aimed to study the role of receptor-interacting serine/threonine kinase (RIP) 1-mediated signaling for programmed cell death in OA. Methods: In the present study, RIP1 protein expression was evaluated in mouse OA cartilage and cultured primary murine chondrocytes exposed to tumor necrosis factor-alpha (TNF-α). Protein expression involved in necroptosis and apoptosis and chondrocyte-derived extracellular matrix were examined. Inhibition of RIP1 was conducted using the RNAi technique and pharmacological inhibition. Western blot, immunohistochemistry, and immunofluorescence examination were applied. Results: The protein presence of RIP1, but not RIP3, was increased in the mouse OA tissue and cultured chondrocytes exposed to TNF-α. Knockdown of RIP1 increased protein expression of collagen II and sex-determining region Y-box transcription factor 9, and reduced protein expression of matrix metallopeptidases 13 and a disintegrin and metalloproteinase with thrombospondin motifs 5. Inhibition of RIP1 reduced the phosphorylated NF-κB signals, decreased cell apoptosis, and restored extracellular matrix expression in cultured chondrocytes. Both RNAi and pharmacological inhibition of RIP1 decelerated the progress of OA in mice. Conclusion: RIP1 regulates chondrocyte apoptosis through NF-κB signaling. Inhibition of RIP1 provides a novel therapeutic approach for OA therapy. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF