1. Effect of environmental noise on charge diffusion in DNA: Towards modeling its potential epigenetic impact in live processes
- Author
-
Rossini, Mirko, Ammerpohl, Ole, Siebert, Reiner, and Ankerhold, Joachim
- Subjects
Physics - Biological Physics ,Quantum Physics - Abstract
Charge diffusion through desoxyribonucleic acid (DNA) is a physico-chemical phenomenon that on the one hand is being explored for technological purposes, on the other hand is applied by nature for various informational processes in life. With regard to the latter, increasing experimental and theoretical evidence indicates that charge diffusion through DNA is involved in basic steps of DNA replication and repair, as well as regulation of gene expression via epigenetic mechanisms such as DNA methylation or DNA binding of proteins. From the physics point of view, DNA supports a metallic-like behavior with long-range charge mobility. Nevertheless, particularly considering a living environment, charge mobility in DNA needs to take into account omnipresent noise and disorder. Here, we analyze quantum diffusion of single charges along DNA-inspired two-dimensional tight-binding lattices in presence of different sources of intrinsic and environmental fluctuations. It is shown that double-strand lattices, parametrized according to atomistic calculations of DNA sequences, offer a complex network of pathways between sites and may give rise to long-distance coherence phenomena. These effects strongly depend on carrier type (electrons, holes), the energetic profile of the lattice (composition) as well as the type of noise and disorder. Of particular interest are spatially correlated low-frequency fluctuations which may support coherent charge transfer over distances of a few sites. Our results may trigger further experimental activities aiming at investigating charge mobility in DNA both in the native in-vivo context as well as on artificial platforms., Comment: 11 pages (10 without bibliography), 10 figures
- Published
- 2024