1. Modeling of Short Fiber Reinforced Polymer Composites Subjected to Multi‐block Loading
- Author
-
Sahbi Tamboura, M. A. Laribi, R. Tie Bi, H. Ben Dali, Joseph Fitoussi, Mohammadali Shirinbayan, Abbas Tcharkhtchi, Institut Clément Ader (ICA), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Ecole Nationale d'Ingénieurs de Sousse (ENISo), Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), Laboratoire d'Ingénierie des Fluides et des Systèmes Énergétiques (LIFSE), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Arts et Métiers Sciences et Technologies, and FAURECIA
- Subjects
0301 basic medicine ,Materials science ,Matériaux [Sciences de l'ingénieur] ,030102 biochemistry & molecular biology ,Variable amplitude ,Composite number ,Modeling ,Context (language use) ,02 engineering and technology ,Fiber-reinforced composite ,Fibre-reinforced plastic ,021001 nanoscience & nanotechnology ,Microstructure ,Sciences de l'ingénieur ,Material flow ,03 medical and health sciences ,Amplitude ,Micromechanical ,[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph] ,Ceramics and Composites ,Sheet moulding compound ,Composite material ,0210 nano-technology ,Fatigue - Abstract
International audience; Short Fiber Reinforced Composite (SFRC) structures exhibit multiple microstructures (due to material flow during the process). They are generally subjected to variable amplitude loadings. In this context, a robust model is needed to predict fatigue life as a function of microstructure. In this paper, we propose a predictive micromechanical damage-based model allowing fatigue life prediction in the case of SFRC submitted to variable amplitude cyclic loading. An experimental study was firstly performed on Sheet Molding Compound (SMC) composite involving different microstructure configurations. Specimens were sub-jected to stress-controlled block loading. The influence of the order of the sequences was evaluated through Low-High amplitude (L-H) and High-Low amplitude (H-L) schemes. Damage accumulation is computed at the local scale to describe the evolution of the fiber-matrix interface damage until failure. A local failure criterion based on a critical damage state allowed predicting variable amplitude fatigue life as a function of microstructure. A good correlation was found between experimental and numerical results. Once the approach was validated, it has been used to model different useful variable amplitude loading schemes to emphasize the role of the loading sequence parameters and order.
- Published
- 2021
- Full Text
- View/download PDF