1. Global impacts of heat and water stress on food production and severe food insecurity
- Author
-
Tom Kompas, Tuong Nhu Che, and R. Quentin Grafton
- Subjects
Water stress ,Climate change ,Agricultural productivity ,Food security ,Irrigation ,Computable General Equilibrium (CGE) models ,Medicine ,Science - Abstract
Abstract In contrast to most integrated assessment models, with limited transparency on damage functions and recursive temporal dynamics, we use a unique large-dimensional computational global climate and trade model, GTAP-DynW, to directly project the possible intertemporal impacts of water and heat stress on global food supply and food security to 2050. The GTAP-DynW model uses GTAP production and trade data for 141 countries and regions, with varying water and heat stress baselines, and results are aggregated into 30 countries/regions and 30 commodity sectors. Blue water stress projections are drawn from WRI source material and a GTAP-Water database to incorporate dynamic changes in water resources and their availability in agricultural production and international trade, thus providing a more general measure for severe food insecurity from water and heat stress damages with global warming. Findings are presented for three representative concentration pathways: RCP4.5-SSP2, RCP8.5-SPP2, and RCP8.5-SSP3 (population growth only for SSPs) and project: (a) substantial declines, as measured by GCal, in global food production of some 6%, 10%, and 14% to 2050 and (b) the number of additional people with severe food insecurity by 2050, correspondingly, increases by 556 million, 935 million, and 1.36 billion compared to the 2020 model baseline.
- Published
- 2024
- Full Text
- View/download PDF