39 results on '"R. Noschese"'
Search Results
2. The temporal variability of Io’s hotspots
- Author
-
A. Mura, F. Zambon, F. Tosi, R. M. C. Lopes, J. Rathbun, M. Pettine, A. Adriani, F. Altieri, M. Ciarniello, A. Cicchetti, G. Filacchione, D. Grassi, R. Noschese, A. Migliorini, G. Piccioni, C. Plainaki, R. Sordini, G. Sindoni, and D. Turrini
- Subjects
Io ,Galilean moons of Jupiter ,volcanism ,infrared-IR ,Juno ,Astronomy ,QB1-991 ,Geophysics. Cosmic physics ,QC801-809 - Abstract
We investigate the variability of the power emission of Io’s hotspots by using recent Juno/JIRAM infrared observations. The Jovian Infrared Auroral Mapper (JIRAM) is an imaging spectrometer which began observing Jupiter in August 2016. Although observing Jupiter’s moons is not its primary objective, JIRAM can use the frequent opportunities to observe Io (up to once per orbit) to gather infrared images and spectra of its surface. The present study uses the data acquired by JIRAM during the last 2 years, including the location and morphology of Io’s hotspots, and the temporal variability of the total output. A new photometric model for the hotspots and the dayside surface has been developed, which permits us to disentangle the temporal variability from the changes in the observation geometry. While the latitudinal dependence of the power output is not well constrained, low-latitude hotspots show a significantly more intense temporal variability and greater temperature.
- Published
- 2024
- Full Text
- View/download PDF
3. Inner southern magnetosphere observation of Mercury via SERENA ion sensors in BepiColombo mission
- Author
-
S. Orsini, A. Milillo, H. Lichtenegger, A. Varsani, S. Barabash, S. Livi, E. De Angelis, T. Alberti, G. Laky, H. Nilsson, M. Phillips, A. Aronica, E. Kallio, P. Wurz, A. Olivieri, C. Plainaki, J. A. Slavin, I. Dandouras, J. M. Raines, J. Benkhoff, J. Zender, J.-J. Berthelier, M. Dosa, G. C. Ho, R. M. Killen, S. McKenna-Lawlor, K. Torkar, O. Vaisberg, F. Allegrini, I. A. Daglis, C. Dong, C. P. Escoubet, S. Fatemi, M. Fränz, S. Ivanovski, N. Krupp, H. Lammer, François Leblanc, V. Mangano, A. Mura, R. Rispoli, M. Sarantos, H. T. Smith, M. Wieser, F. Camozzi, A. M. Di Lellis, G. Fremuth, F. Giner, R. Gurnee, J. Hayes, H. Jeszenszky, B. Trantham, J. Balaz, W. Baumjohann, M. Cantatore, D. Delcourt, M. Delva, M. Desai, H. Fischer, A. Galli, M. Grande, M. Holmström, I. Horvath, K. C. Hsieh, R. Jarvinen, R. E. Johnson, A. Kazakov, K. Kecskemety, H. Krüger, C. Kürbisch, Frederic Leblanc, M. Leichtfried, E. Mangraviti, S. Massetti, D. Moissenko, M. Moroni, R. Noschese, F. Nuccilli, N. Paschalidis, J. Ryno, K. Seki, A. Shestakov, S. Shuvalov, R. Sordini, F. Stenbeck, J. Svensson, S. Szalai, K. Szego, D. Toublanc, N. Vertolli, R. Wallner, and A. Vorburger
- Subjects
Science - Abstract
Abstract Mercury’s southern inner magnetosphere is an unexplored region as it was not observed by earlier space missions. In October 2021, BepiColombo mission has passed through this region during its first Mercury flyby. Here, we describe the observations of SERENA ion sensors nearby and inside Mercury’s magnetosphere. An intermittent high-energy signal, possibly due to an interplanetary magnetic flux rope, has been observed downstream Mercury, together with low energy solar wind. Low energy ions, possibly due to satellite outgassing, were detected outside the magnetosphere. The dayside magnetopause and bow-shock crossing were much closer to the planet than expected, signature of a highly eroded magnetosphere. Different ion populations have been observed inside the magnetosphere, like low latitude boundary layer at magnetopause inbound and partial ring current at dawn close to the planet. These observations are important for understanding the weak magnetosphere behavior so close to the Sun, revealing details never reached before.
- Published
- 2022
- Full Text
- View/download PDF
4. Io Hot Spot Distribution Detected by Juno/JIRAM
- Author
-
F. Zambon, A. Mura, R. M. C. Lopes, J. Rathbun, F. Tosi, R. Sordini, R. Noschese, M. Ciarniello, A. Cicchetti, A. Adriani, L. Agostini, G. Filacchione, D. Grassi, G. Piccioni, C. Plainaki, G. Sindoni, D. Turrini, S. Brooks, C. Hansen‐Koharcheck, and S. Bolton
- Subjects
Io ,planetary volcanism ,hotspots ,remote sensing ,surfaces ,Geophysics. Cosmic physics ,QC801-809 - Abstract
Abstract In this work, we present the most updated catalog of Io hot spots based on Juno/JIRAM data. We find 242 hot spots, including 23 previously undetected. Over the half of the new hot spots identified, are located at high northern and southern latitudes (>70°). We observe a latitudinal variability and a larger concentration of hot spots in the polar regions, in particular in the North. The comparison between JIRAM and the most recent Io hot spot catalogs listing power output (Veeder et al., 2015, https://doi.org/10.1016/j.icarus.2014.07.028; de Kleer, de Pater, et al., 2019, https://doi.org/10.3847/1538-3881/ab2380), shows JIRAM detected 63% and 88% of the total number of hot spots, respectively. Furthermore, JIRAM observed 16 of the 34 faint hot spots previously identified. JIRAM data revealed thermal emission from 5 dark pateræ inferred to be active from color ratio images, thus confirming that these are hot spots.
- Published
- 2023
- Full Text
- View/download PDF
5. Variability of the Auroral Footprint of Io Detected by Juno‐JIRAM and Modeling of the Io Plasma Torus
- Author
-
A. Moirano, A. Mura, B. Bonfond, J. E. P. Connerney, V. Dols, D. Grodent, V. Hue, J.‐C. Gérard, F. Tosi, A. Migliorini, A. Adriani, F. Altieri, C. Castagnoli, A. Cicchetti, B. M. Dinelli, D. Grassi, M. L. Moriconi, R. Noschese, G. Piccioni, C. Plainaki, P. Scarica, G. Sindoni, R. Sordini, D. Turrini, and F. Zambon
- Published
- 2023
- Full Text
- View/download PDF
6. SERENA: Particle Instrument Suite for Determining the Sun-Mercury Interaction from BepiColombo
- Author
-
S. Orsini, S.A. Livi, H. Lichtenegger, S. Barabash, A. Milillo, E. De Angelis, M. Phillips, G. Laky, M. Wieser, A. Olivieri, C. Plainaki, G. Ho, R.M. Killen, J.A. Slavin, P. Wurz, J.-J. Berthelier, I. Dandouras, E. Kallio, S. McKenna-Lawlor, S. Szalai, K. Torkar, O. Vaisberg, F. Allegrini, I.A. Daglis, C. Dong, C.P. Escoubet, S. Fatemi, M. Fränz, S. Ivanovski, N. Krupp, H. Lammer, François Leblanc, V. Mangano, A. Mura, H. Nilsson, J.M. Raines, R. Rispoli, M. Sarantos, H.T. Smith, K. Szego, A. Aronica, F. Camozzi, A.M. Di Lellis, G. Fremuth, F. Giner, R. Gurnee, J. Hayes, H. Jeszenszky, F. Tominetti, B. Trantham, J. Balaz, W. Baumjohann, D. Brienza, U. Bührke, M.D. Bush, M. Cantatore, S. Cibella, L. Colasanti, G. Cremonese, L. Cremonesi, M. D’Alessandro, D. Delcourt, M. Delva, M. Desai, M. Fama, M. Ferris, H. Fischer, A. Gaggero, D. Gamborino, P. Garnier, W.C. Gibson, R. Goldstein, M. Grande, V. Grishin, D. Haggerty, M. Holmström, I. Horvath, K.-C. Hsieh, A. Jacques, R.E. Johnson, A. Kazakov, K. Kecskemety, H. Krüger, C. Kürbisch, F. Lazzarotto, Frederic Leblanc, M. Leichtfried, R. Leoni, A. Loose, D. Maschietti, S. Massetti, F. Mattioli, G. Miller, D. Moissenko, A. Morbidini, R. Noschese, F. Nuccilli, C. Nunez, N. Paschalidis, S. Persyn, D. Piazza, M. Oja, J. Ryno, W. Schmidt, J.A. Scheer, A. Shestakov, S. Shuvalov, K. Seki, S. Selci, K. Smith, R. Sordini, J. Svensson, L. Szalai, D. Toublanc, C. Urdiales, A. Varsani, N. Vertolli, R. Wallner, P. Wahlstroem, P. Wilson, and S. Zampieri
- Subjects
Space Sciences (General) - Abstract
The ESA-JAXA BepiColombo mission to Mercury will provide simultaneous measurements from two spacecraft, offering an unprecedented opportunity to investigate magnetospheric and exospheric particle dynamics at Mercury as well as their interactions with solar wind, solar radiation, and interplanetary dust. The particle instrument suite SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) is flying in space on-board the BepiColombo Mercury Planetary Orbiter (MPO) and is the only instrument for ion and neutral particle detection aboard the MPO. It comprises four independent sensors: ELENA for neutral particle flow detection, Strofio for neutral gas detection, PICAM for planetary ions observations, and MIPA, mostly for solar wind ion measurements. SERENA is managed by a System Control Unit located inside the ELENA box. In the present paper the scientific goals of this suite are described, and then the four units are detailed, as well as their major features and calibration results. Finally, the SERENA operational activities are shown during the orbital path around Mercury, with also some reference to the activities planned during the long cruise phase.
- Published
- 2021
- Full Text
- View/download PDF
7. First Estimate of Wind Fields in the Jupiter Polar Regions From JIRAM‐Juno Images
- Author
-
D. Grassi, A. Adriani, M. L. Moriconi, A. Mura, F. Tabataba‐Vakili, A. Ingersoll, G. Orton, C. Hansen, F. Altieri, G. Filacchione, G. Sindoni, B. M. Dinelli, F. Fabiano, S. J. Bolton, S. Levin, S. K. Atreya, J. I. Lunine, T. Momary, F. Tosi, A. Migliorini, G. Piccioni, R. Noschese, A. Cicchetti, C. Plainaki, A. Olivieri, D. Turrini, S. Stefani, R. Sordini, and M. Amoroso
- Published
- 2018
- Full Text
- View/download PDF
8. Explaining Bright Radar Reflections Below The South Pole of Mars Without Liquid Water
- Author
-
Sebastian Emanuel Lauro, Elena Pettinelli, Graziella Caprarelli, Luca Guallini, Angelo Pio Rossi, Elisabetta Mattei, Barbara Cosciotti, Andrea Cicchetti, Francesco Soldovieri, M. Cartacci, F. Di Paolo, R. Noschese, R. Orosei, and ITA
- Subjects
Astronomy and Astrophysics - Abstract
In their Matter Arising Lalich et al.1 simulate MARSIS echoes at the base of the South Polar Layered Deposits (SPLD) assuming three different layering scenarios (Fig. 1 in ref.1): (a) dusty water ice overlaying bedrock; (b) one CO2 ice layer between dusty water ice and bedrock; and, (c) two basal CO2 ice layers interbedded with one layer of dusty water ice. A surficial layer of CO2 ice ranging from 0 m (no layer) to 2 m in thickness is also considered. The first layer in each simulation is a semi-infinite half space assigned the permittivity of free space, and the bedrock is a semi-infinite half space with pure basaltic rock permittivity. These authors argue that constructive interference generated by some layered configurations produce waveforms (Fig. 2 in ref.1) with local maxima corresponding to the bright basal reflections observed by MARSIS at Ultimi Scopuli 2,3. They conclude that this explanation is more plausible than liquid brines being the source of the bright reflections, as posited instead by Orosei et al.2 and Lauro et al.3. In an earlier paper, however, Orosei et al.4 explored the same model and mathematics covering the entire range of possible parameters for two and three basal CO2 ice layers. Through the quantitative analysis of 3.45 x 108 simulation results, these authors demonstrated that local maxima at one of the MARSIS operating frequencies are not matched by local maxima at the other operating frequencies: that is, a layer stack producing constructive interference at one frequency, does not produce the same effect at the other frequencies, which is inconsistent with MARSIS real data. Thus, constructive interference by basal layers is not a viable mechanism to explain the bright basal reflections at Ultimi Scopuli. Because most of the points in Lalich et al.1 are superseded by Orosei et al.’s4 work, we refer interested readers to that earlier paper for a full discussion of the models and results. Here, we focus on three critical aspects: electromagnetic model; dielectric values used in the simulations; and materials and geology.
- Published
- 2022
- Full Text
- View/download PDF
9. Preliminary results on the composition of Jupiter's troposphere in hot spot regions from the JIRAM/Juno instrument
- Author
-
D. Grassi, A. Adriani, A. Mura, B. M. Dinelli, G. Sindoni, D. Turrini, G. Filacchione, A. Migliorini, M. L. Moriconi, F. Tosi, R. Noschese, A. Cicchetti, F. Altieri, F. Fabiano, G. Piccioni, S. Stefani, S. Atreya, J. Lunine, G. Orton, A. Ingersoll, S. Bolton, S. Levin, J. Connerney, A. Olivieri, and M. Amoroso
- Published
- 2017
- Full Text
- View/download PDF
10. First Observations of CH 4 and Spatially Resolved Emission Layers at Jupiter Equator, as Seen by JIRAM/Juno
- Author
-
A. Migliorini, B. M. Dinelli, C. Castagnoli, M. L. Moriconi, F. Altieri, S. Atreya, A. Adriani, A. Mura, F. Tosi, A. Moirano, G. Piccioni, D. Grassi, R. Sordini, R. Noschese, A. Cicchetti, S. J. Bolton, G. Sindoni, C. Plainaki, and A. Olivieri
- Subjects
Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) ,Jupiter atmosphere spectroscopy - Published
- 2023
- Full Text
- View/download PDF
11. Stability of the Jupiter Southern Polar Vortices Inspected Through Vorticity Using Juno/JIRAM Data
- Author
-
P. Scarica, D. Grassi, A. Mura, A. Adriani, A. Ingersoll, C. Li, G. Piccioni, G. Sindoni, M. L. Moriconi, C. Plainaki, F. Altieri, A. Cicchetti, B. M. Dinelli, G. Filacchione, A. Migliorini, R. Noschese, R. Sordini, S. Stefani, F. Tosi, D. Turrini, ITA, and USA
- Subjects
Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) - Abstract
The Jovian InfraRed Auroral Mapper (JIRAM) onboard the NASA Juno mission monitored the evolution of Jupiter’s polar cyclones since their first observation ever in February 2017. Data acquired by JIRAM have revealed cloudy cyclones organized in a complex, yet stable geometrical pattern at both poles. Several studies have investigated the dynamics and the structure of these cyclones, to understand the physical mechanisms behind their formation and evolution. In this work, we present vorticity maps deduced from the wind fields for the region poleward of ∼−80°, which has been extensively covered over the last four years of observations. The cyclonic features related to the stable polar cyclones are embedded in a slightly, but diffused anticyclonic circulation, in which short-living anticyclones emerge with respect to the surroundings. Although the general stability of both the cyclones and the whole system is strongly confirmed by this work, variations in the shape of the vortices, as well as changes in the local structures, have been observed.
- Published
- 2022
12. Five Years of Observations of the Circumpolar Cyclones of Jupiter
- Author
-
A. Mura, P. Scarica, D. Grassi, A. Adriani, A. Bracco, G. Piccioni, G. Sindoni, M. L. Moriconi, C. Plainaki, A. Ingersoll, F. Altieri, A. Cicchetti, B. M. Dinelli, G. Filacchione, A. Migliorini, R. Noschese, R. Sordini, S. Stefani, F. Tosi, D. Turrini, ITA, and USA
- Subjects
Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) - Abstract
The regular polygons of circumpolar cyclones, discovered by Juno in 2017, are one of the most puzzling features of Jupiter. Here we show new recent global pictures of the North polar cyclones' structure. These are the first simultaneous images of the whole structure since 2017, and we find that it remained almost unperturbed, just like the South one. The observation of these long-lasting structures poses questions regarding the formation mechanism of cyclones, and on their vertical structure. Data by Juno/JIRAM infrared camera collected over the last 5 years show that cyclones migrate around what may seem like equilibrium positions, with timescales of a few months but, aside from that, the cyclones systems are very stable. Our analysis of the observations shows that the motion of cyclones around their equilibrium position is uncorrelated with their position if a barotropic approximation (β-drift) is assumed. Thus, a different dynamical explanation than the barotropic β-drift is needed to explain the stability of the observed features. Each cyclone has a peculiar morphology, which differs from the others and is stable over the observed lapse of time in most cases.
- Published
- 2022
13. An investigation protocol to manage a foodborne outbreak in a disaster event
- Author
-
D Mandato, P Fraulo, A Romano, P Mazzone, G Colarusso, R Noschese, MF Peruzy, RL Ambrosio, G Galiero, and L Baldi
- Subjects
Public Health, Environmental and Occupational Health - Abstract
Background During disaster events, the displaced populations living in tent camps are at high risk from foodborne illness outbreaks (FBO) as in these circumstances it is difficult to follow proper hygienic procedures during food handling and storage. When an outbreak occurs, an epidemiological investigation able to identify the source(s) of the exposure is essential to rapidly establish control measures to prevent continuing episodes of illness. This work aimed to evaluate the effectiveness and the applicability under simulated field conditions of an investigation protocol to be used during a FBO. Moreover, the application of the software ‘TOSSINFO' for data analysis was evaluated. Methods In May 2018, a FBO associated with the consumption of a tuna affecting 46 out of 75 people present in a tent camp in southern Italy was simulated. During the simulation, two teams of doctors and veterinarians participated in the investigation. The investigation protocol involved three steps: environmental inspection, epidemiological investigation, and data analysis through TOSSINFO. This software allows calculating different epidemiological indicators, several measures of association, and the visualization of the progression of the outbreak through epidemic curves. Results At the end of the exercise, both teams were able to trace the source of the infection. After data collection and data analysis, the groups demonstrated a strong association between illness people and tuna consumption. Furthermore, the teams achieved similar Results RR (7.50 vs 7.01), OR (27 vs 28), and Chi-square (12.1 vs 10.1). Conclusions The results demonstrated the validity of the procedure and the simple execution of the software analysis. These guidelines represent an opportunity for the implementation of foodborne disease management strategies and could be used throughout the community, leading to an improvement of the Public Health surveillance system. Key messages These guidelines allow for effective management of a food toxinfection episode. The original software TOSSINFO used in this procedure enables quick and easy identification of infected food.
- Published
- 2021
- Full Text
- View/download PDF
14. The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta
- Author
-
F. Capaccioni, A. Coradini, G. Filacchione, S. Erard, G. Arnold, P. Drossart, M. C. De Sanctis, D. Bockelee-Morvan, M. T. Capria, F. Tosi, C. Leyrat, B. Schmitt, E. Quirico, P. Cerroni, V. Mennella, A. Raponi, M. Ciarniello, T. McCord, L. Moroz, E. Palomba, E. Ammannito, M. A. Barucci, G. Bellucci, J. Benkhoff, J. P. Bibring, A. Blanco, M. Blecka, R. Carlson, U. Carsenty, L. Colangeli, M. Combes, M. Combi, J. Crovisier, T. Encrenaz, C. Federico, U. Fink, S. Fonti, W. H. Ip, P. Irwin, R. Jaumann, E. Kuehrt, Y. Langevin, G. Magni, S. Mottola, V. Orofino, P. Palumbo, G. Piccioni, U. Schade, F. Taylor, D. Tiphene, G. P. Tozzi, P. Beck, N. Biver, L. Bonal, J.-Ph. Combe, D. Despan, E. Flamini, S. Fornasier, A. Frigeri, D. Grassi, M. Gudipati, A. Longobardo, K. Markus, F. Merlin, R. Orosei, G. Rinaldi, K. Stephan, M. Cartacci, A. Cicchetti, S. Giuppi, Y. Hello, F. Henry, S. Jacquinod, R. Noschese, G. Peter, R. Politi, J. M. Reess, and A. Semery
- Published
- 2015
- Full Text
- View/download PDF
15. Preliminary JIRAM results from Juno polar observations: 2. Analysis of the Jupiter southern H3 $\mathplus$ emissions and comparison with the north aurora
- Author
-
A. Adriani, A. Mura, M. L. Moriconi, B. M. Dinelli, F. Fabiano, F. Altieri, G. Sindoni, S. J. Bolton, J. E. P. Connerney, S. K. Atreya, F. Bagenal, J. -C. M. C. G\'erard, G. Filacchione, F. Tosi, A. Migliorini, D. Grassi, G. Piccioni, R. Noschese, A. Cicchetti, G. R. Gladstone, C. Hansen, W. S. Kurth, S. M. Levin, B. H. Mauk, D. J. McComas, A. Olivieri, D. Turrini, S. Stefani, M. Amoroso, A. Adriani, A. Mura, M. L. Moriconi, B. M. Dinelli, F. Fabiano, F. Altieri, G. Sindoni, S. J. Bolton, J. E. P. Connerney, S. K. Atreya, F. Bagenal, J.-C. M. C. G\'erard, G. Filacchione, F. Tosi, A. Migliorini, D. Grassi, G. Piccioni, R. Noschese, A. Cicchetti, G. R. Gladstone, C. Hansen, W. S. Kurth, S. M. Levin, B. H. Mauk, D. J. McComa, A. Olivieri, D. Turrini, S. Stefani, and M. Amoroso
- Subjects
Jupiter h3+ aurora infrared Juno Jiram - Abstract
The Jupiter InfraRed Auroral Mapper (JIRAM) aboard Juno observed the Jovian South Pole aurora during the first orbit of the mission. H 3+ (trihydrogen cation) and CH 4 (methane) emissions have been identified and measured. The observations have been carried out in nadir and slant viewing both by a L-filtered imager and a 2–5 μm spectrometer. Results from the spectral analysis of the all observations taken over the South Pole by the instrument are reported. The coverage of the southern aurora during these measurements has been partial, but sufficient to determine different regions of temperature and abundance of the H 3+ ion from its emission lines in the 3–4 μm wavelength range. Finally, the results from the southern aurora are also compared with those from the northern ones from the data taken during the same perijove pass and reported by Dinelli et al. (2017).
- Published
- 2017
16. Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions
- Author
-
M. L. Moriconi, A. Adriani, B. M. Dinelli, F. Fabiano, F. Altieri, F. Tosi, G. Filacchione, A. Migliorini, J. C. G'erard, A. Mura, D. Grassi, G. Sindoni, G. Piccioni, R. Noschese, A. Cicchetti, S. J. Bolton, J. E. P. Connerney, S. K. Atreya, F. Bagenal, G. R. Gladstone, C. Hansen, W. S. Kurth, S. M. Levin, B. H. Mauk, D. J. McComas, D. Turrini, S. Stefani, A. Olivieri, M. Amoroso, M. L. Moriconi, A. Adriani, B. M. Dinelli, F. Fabiano, F. Altieri, F. Tosi, G. Filacchione, A. Migliorini, J. C. G'erard, A. Mura, D. Grassi, G. Sindoni, G. Piccioni, R. Noschese, A. Cicchetti, S. J. Bolton, J. E. P. Connerney, S. K. Atreya, F. Bagenal, G. R. Gladstone, C. Hansen, W. S. Kurth, S. M. Levin, B. H. Mauk, D. J. McComa, D. Turrini, S. Stefani, A. Olivieri, and M. Amoroso
- Subjects
Jupiter aurora methane excitation infrared Juno Jiram - Abstract
Throughout the first orbit of the NASA Juno mission around Jupiter, the Jupiter InfraRed Auroral Mapper (JIRAM) targeted the northern and southern polar regions several times. The analyses of the acquired images and spectra confirmed a significant presence of methane (CH4) near both poles through its 3.3 μm emission overlapping the H3+ auroral feature at 3.31 μm. Neither acetylene (C2H2) nor ethane (C2H6) have been observed so far. The analysis method, developed for the retrieval of H3+ temperature and abundances and applied to the JIRAM-measured spectra, has enabled an estimate of the effective temperature for methane peak emission and the distribution of its spectral contribution in the polar regions. The enhanced methane inside the auroral oval regions in the two hemispheres at different longitude suggests an excitation mechanism driven by energized particle precipitation from the magnetosphere.
- Published
- 2017
17. Preliminary JIRAM results from Juno polar observations: 1. Methodology and analysis applied to the Jovian northern polar region
- Author
-
B. M. Dinelli, F. Fabiano, A. Adriani, F. Altieri, M. L. Moriconi, A. Mura, G. Sindoni, G. Filacchione, F. Tosi, A. Migliorini, D. Grassi, G. Piccioni, R. Noschese, A. Cicchetti, S. J. Bolton, J. E. P. Connerney, S. K. Atreya, F. Bagenal, G. R. Gladstone, C. J. Hansen, W. S. Kurth, S. M. Levin, B. H. Mauk, D. J. McComas, J. -C. G`erard, D. Turrini, S. Stefani, M. Amoroso, A. Olivieri, B. M. Dinelli, F. Fabiano, A. Adriani, F. Altieri, M. L. Moriconi, A. Mura, G. Sindoni, G. Filacchione, F. Tosi, A. Migliorini, D. Grassi, G. Piccioni, R. Noschese, A. Cicchetti, S. J. Bolton, J. E. P. Connerney, S. K. Atreya, F. Bagenal, G. R. Gladstone, C. J. Hansen, W. S. Kurth, S. M. Levin, B. H. Mauk, D. J. McComa, J.-C. G`erard, D. Turrini, S. Stefani, M. Amoroso, and A. Olivieri
- Subjects
Jupiter h3+ aurora infrared Juno Jiram - Abstract
During the first orbit around Jupiter of the NASA/Juno mission, the Jovian Auroral Infrared Mapper (JIRAM) instrument observed the auroral regions with a large number of measurements. The measured spectra show both the emission of the H3+ ion and of methane in the 3-4 μm spectral region. In this paper we describe the analysis method developed to retrieve temperature and column density (CD) of the H3+ ion from JIRAM spectra in the northern auroral region. The high spatial resolution of JIRAM shows an asymmetric aurora, with CD and temperature ovals not superimposed and not exactly located where models and previous observations suggested. On the main oval averaged H3+ CDs span between 1.8 × 1012 cm-2 and 2.8 × 1012 cm-2, while the retrieved temperatures show values between 800 and 950 K. JIRAM indicates a complex relationship among H3+ CDs and temperatures on the Jupiter northern aurora.
- Published
- 2017
18. Characterization of the white ovals on Jupiter extquotesingles southern hemisphere using the first data by the Juno/JIRAM instrument
- Author
-
G. Sindoni, D. Grassi, A. Adriani, A. Mura, M. L. Moriconi, B. M. Dinelli, G. Filacchione, F. Tosi, G. Piccioni, A. Migliorini, F. Altieri, F. Fabiano, D. Turrini, R. Noschese, A. Cicchetti, S. Stefani, S. J. Bolton, J. E. P. Connerney, S. K. Atreya, F. Bagenal, C. Hansen, A. Ingersoll, M. Janssen, S. M. Levin, J. I. Lunine, G. Orton, A. Olivieri, M. Amoroso, G. Sindoni, D. Grassi, A. Adriani, A. Mura, M. L. Moriconi, B. M. Dinelli, G. Filacchione, F. Tosi, G. Piccioni, A. Migliorini, F. Altieri, F. Fabiano, D. Turrini, R. Noschese, A. Cicchetti, S. Stefani, S. J. Bolton, J. E. P. Connerney, S. K. Atreya, F. Bagenal, C. Hansen, A. Ingersoll, M. Janssen, S. M. Levin, J. I. Lunine, G. Orton, A. Olivieri, and M. Amoroso
- Subjects
Jupiter troposphere white ovals Juno Jiram - Abstract
Throughout the first orbit of the NASA Juno mission around Jupiter, the Jupiter InfraRed Auroral Mapper (JIRAM) targeted the northern and southern polar regions several times. The analyses of the acquired images and spectra confirmed a significant presence of methane (CH 4 ) near both poles through its 3.3 μm emission overlapping the H 3+ auroral feature at 3.31 μm. Neither acetylene (C 2 H 2 ) nor ethane (C 2 H 6 ) have been observed so far. The analysis method, developed for the retrieval of H 3+ temperature and abundances and applied to the JIRAM-measured spectra, has enabled an estimate of the effective temperature for methane peak emission and the distribution of its spectral contribution in the polar regions. The enhanced methane inside the auroral oval regions in the two hemispheres at different longitude suggests an excitation mechanism driven by energized particle precipitation from the magnetosphere.
- Published
- 2017
19. Infrared observations of Jovian aurora from Juno\textquotesingles first orbits: Main oval and satellite footprints
- Author
-
A. Mura, A. Adriani, F. Altieri, J. E. P. Connerney, S. J. Bolton, M. L. Moriconi, J. -C. G\'erard, W. S. Kurth, B. M. Dinelli, F. Fabiano, F. Tosi, S. K. Atreya, F. Bagenal, G. R. Gladstone, HANSEN, ANN CAROLINE, S. M. Levin, B. H. Mauk, D. J. McComas, G. Sindoni, G. Filacchione, MIGLIORINI, ALICE, D. Grassi, G. Piccioni, R. Noschese, A. Cicchetti, TURRINI, DARIO, S. Stefani, M. Amoroso, A. Olivieri, A. Mura, A. Adriani, F. Altieri, J. E. P. Connerney, S. J. Bolton, M. L. Moriconi, J.-C. G\'erard, W. S. Kurth, B. M. Dinelli, F. Fabiano, F. Tosi, S. K. Atreya, F. Bagenal, G. R. Gladstone, C. Hansen, S. M. Levin, B. H. Mauk, D. J. McComa, G. Sindoni, G. Filacchione, A. Migliorini, D. Grassi, G. Piccioni, R. Noschese, A. Cicchetti, D. Turrini, S. Stefani, M. Amoroso, and A. Olivieri
- Subjects
Jupiter aurora infrared imager Juno Jiram - Abstract
The Jovian Infrared Auroral Mapper (JIRAM) is an imager/spectrometer on board NASA/Juno mission for the study of the Jovian aurorae. The first results of JIRAM's imager channel observations of the H 3+ infrared emission, collected around the first Juno perijove, provide excellent spatial and temporal distribution of the Jovian aurorae, and show the morphology of the main ovals, the polar regions, and the footprints of Io, Europa and Ganymede. The extended Io “tail” persists for ~3 hours after the passage of the satellite flux tube. Multi- arc structures of varied spatial extent appear in both main auroral ovals. Inside the main ovals, intense, localized emissions are observed. In the southern aurora, an evident circular region of strong depletion of H 3+ emissions is partially surrounded by an intense emission arc. The southern aurora is brighter than the north one in these observations. Similar, probably conjugate emission patterns are distinguishable in both polar regions.
- Published
- 2017
20. Ladies and Gentlemen, start your engines!' Analysis codes waiting for the first JIRAM-Juno data of Jupiter hot-spots
- Author
-
Grassi D., G. Sindoni, E. D'Aversa, F. Oliva, G. Filacchione, A. Adriani, A. Mura, M. L. Moriconi, R. Noschese, A. Cicchetti, G. Piccioni, N. Ignatiev, T. Maestri, and Grassi D., G. Sindoni, E. D'Aversa, F. Oliva, G. Filacchione, A. Adriani, A. Mura, M.L. Moriconi, R. Noschese, A. Cicchetti, G. Piccioni, N. Ignatiev, T. Maestri
- Subjects
retrieval scheme, JIRAM, atmospheric remote sensing, radiative transfer - Abstract
In this contribution, we detail the retrieval scheme that has been developed in the last few years for the analysis of the spectral data expected from the JIRAM experiment on board of the Juno NASA mission [1], beginning from the second half of 2016. Our focus is on the analysis of the thermal radiation in the 5 micron transparency window, in regions of lesser cloud opacity (namely, hot-spots). Moving from the preliminary analysis presented in Grassi et al., 2010 [2], a retrieval scheme has been developed and implemented as a complete end-to-end processing software. Performances in terms of fit quality and retrieval errors are discussed from tests on simulated spectra. Few examples of usage on VIMS-Cassini flyby data are also presented. Following the suggestion originally presented in Irwin et al., 1998 [3] for the analysis of the NIMS data, the state vector to be retrieved has been drastically simplified on physically sounding basis, aiming mostly to distinguish between the 'deep' content of minor gaseous component (water, ammonia, phosphine) and their relative humidity or fractional scale height in the upper troposphere. The retrieval code is based on a Bayesian scheme [4], complemented by a Metropolis algorithm plus simulated thermal annealing [5] for most problematic cases. The key parameters retrievable from JIRAM individual spectra are the ammonia and phosphine deep content, the water vapour relative humidity as well as the total aerosol opacity. We discuss in extent also the technical aspects related to the forward radiative transfer scheme: completeness of line databases used to generate correlated-k tables, comparison of different schemes for the treatment of aerosol scattering, assumption on clouds radiative properties and issues related to the analysis of dayside data. This work has been funded through ASI grants: I/010/10/0 and 2014-050-R.0.
- Published
- 2016
21. Spatial and Temporal Variability of Southern Auroral Emissions in the IR fromJIRAM/Juno Data
- Author
-
F. Altieri(1), M. L. Moriconi(2), A. Mura(1), A. Adriani(1), D. Grassi(1), A. Migliorini(1), J.-C. Gérard(3), B.M. Dinelli(2), F. Fabiano(2), G. Filacchione(1), G. Sindoni(1), F. Tosi(1), G. Piccioni(1), R. Noschese (1), A. Cicchetti(1), S.J. Bolton(3), J.E.P. Connerney(4), S.K. Atreya(5), F. Bagenal(6), G.R. Gladstone(3), C. Hansen (7), W.S. Kurth(8), S.M. Levin(9), J.I. Lunine(10), B.H. Maik(11), D.J. McComas (12), D. Turrini(1), S. Stefani(1), M. Amoroso(13), and A.Olivieri(13)
- Subjects
Space and Time Variability ,Juno Mission ,JIRAM experiment ,Jupiter aurorae - Abstract
JIRAM is the imaging spectrometer on board the NASA Juno mission. Data collected since August 2016 on both Jupiter Northern and Southern aurora have an unprecedent spatial resolution. Moreover, JIRAM scanning mirror allows observations of the same area at serveral adiacent time frames. In this work we focus on the spatial and temporal variability of the Southern aurora. JIRAM data of the L imager channel have been averaged in bins of 2.5°LAT × 2°LON and variations of the signal have been investigated for 17h50m < time < 19h45m, 27 August 2016. Time frames have been carefully selected in order to avoid possibile instrumental residuals in the signal (Mura et al., 2017). We find that on the South Pole, for -87.5°
- Published
- 2017
22. Characterization of the ovals in Jupiter's atmosphere using the first data by Juno/JIRAM instrument
- Author
-
G. Sindoni (1), D. Grassi (1), A. Adriani (1), A. Mura (1), M.L. Moriconi (1, B.M. Dinelli (2), G. Filacchione (1), F. Tosi (1), G. Piccioni (1), A. Migliorini (1), F. Altieri (1), F. Fabiano (2), D. Turrini (1), R. Noschese (1), A. Cicchetti (1), S. Stefani (1), S.J. Bolton (3), J.E.P. Connerney (4), S.K. Atreya (5), F. Bagenal (6), C. Hansen (7), A. Ingersoll (8), M. Janssen (9), S.M. Levin (9), J.I. Lunine (10), G. Orton (9), C. Plainaki (11), A. Olivieri (11), and M. Amoroso (11).
- Subjects
haze and clouds ,Jupiter atmosphere ,Juno/JIRAM spectral measurements - Abstract
During the first perijove passage of the Juno mission, the Jovian InfraRed Auroral Mapper (JIRAM) observed a line of closely spaced oval features in Jupiter's southern hemisphere, between 30° and 45°S (Fig. 1), as well as other persistent vortices. In this work, we focused on the longitudinal region covering the three ovals having higher contrast at 5 micron, i.e. between 120° W and 60° W in System III coordinates. We used the JIRAM's full spectral capability in the range 2.4-3 micron together with a Bayesian data inversion approach to retrieve maps of column densities and altitudes for an NH3 cloud and a N2H4 haze. The deep (under the saturation level) volume mixing ratio and the relative humidity for gaseous ammonia were also retrieved. Our results suggest different vortex activity for the three ovals. Updraft and downdraft together with considerations about the ammonia condensation could explain our maps providing evidences of cyclonic and anticyclonic structures.
- Published
- 2017
23. H3 + measurements in the Jovian atmosphere with JIRAM/Juno
- Author
-
A. Migliorini(1), B.M. Dinelli(2), M.L. Moriconi(2), F. Altieri(1), A. Adriani(1), A. Mura(1), F.Fabiano(2), G. Piccioni(1), F. Tosi(1), G. Filacchione(1), G. Sindoni(1), D. Grassi(1), R. Noschese (1), A. Cicchetti(1), R. Sordini(1), S.J. Bolton(3), J.E.P. Connerney(4), S.K. Atreya(5), S.M.Levin(6), J.I. Lunine(7), J.-C. Gérard(8), D. Turrini(1), S. Stefani(1), A.Olivieri(9), and C. Plainaki(9)
- Subjects
Juno mission ,Jupiter atmosphere ,Physics::Space Physics ,JIRAM experiment ,Astrophysics::Earth and Planetary Astrophysics ,H3+ vertical distribution - Abstract
The NASA Juno mission has been investigating Jupiter's atmosphere since August 2016, providing unprecedented insight on the atmosphere of the planet. The Jupiter Infrared Auroral Mapper (JIRAM) experiment, on board Juno, performed spectroscopic observations of the H3+ emissions both in the auroral regions (Dinelli et al., 2017; Adriani et al.,2017; Mura et al., 2017) and at mid latitudes. In the present work, we concentrate on the observations acquired by the JIRAM spectrometer during the first Jupiter passage on 26-27 August 2016, when the spacecraft was at about 500,000-1,200,000 km from the planet. During a portion of the observations, the slit of the spectrometer was sampling Jupiter's limb in the latitude range from 30 to 60 deg for both hemispheres. In the 3-4 ?m spectral region, the limb spectra show the typical features of the H3+ emission, usually used to retrieve concentration and temperature of this species in the auroral region. In this work we exploit this spectral region to provide new insight on the H3+ vertical distribution and, more generally, on thecomposition of the atmosphere of Jupiter. The spatial resolution of the limb observations of Jupiter, ranging between 50 and 130 km, is favourable for investigating the vertical distribution of H3+. The vertical profiles of the integrated H3+ intensity will be presented along with the preliminary results of the retrieval of the H3+ vertical volume mixing ratio (VMR) distribution and compared with predictions from available atmospheric models of the planet (Achilleos et al. 1998). Possible variability of the altitude distribution of the peak emission with respect to latitude and longitude will also be discussed.
- Published
- 2017
24. Cometary science. The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta
- Author
-
F, Capaccioni, A, Coradini, G, Filacchione, S, Erard, G, Arnold, P, Drossart, M C, De Sanctis, D, Bockelee-Morvan, M T, Capria, F, Tosi, C, Leyrat, B, Schmitt, E, Quirico, P, Cerroni, V, Mennella, A, Raponi, M, Ciarniello, T, McCord, L, Moroz, E, Palomba, E, Ammannito, M A, Barucci, G, Bellucci, J, Benkhoff, J P, Bibring, A, Blanco, M, Blecka, R, Carlson, U, Carsenty, L, Colangeli, M, Combes, M, Combi, J, Crovisier, T, Encrenaz, C, Federico, U, Fink, S, Fonti, W H, Ip, P, Irwin, R, Jaumann, E, Kuehrt, Y, Langevin, G, Magni, S, Mottola, V, Orofino, P, Palumbo, G, Piccioni, U, Schade, F, Taylor, D, Tiphene, G P, Tozzi, P, Beck, N, Biver, L, Bonal, J-Ph, Combe, D, Despan, E, Flamini, S, Fornasier, A, Frigeri, D, Grassi, M, Gudipati, A, Longobardo, K, Markus, F, Merlin, R, Orosei, G, Rinaldi, K, Stephan, M, Cartacci, A, Cicchetti, S, Giuppi, Y, Hello, F, Henry, S, Jacquinod, R, Noschese, G, Peter, R, Politi, J M, Reess, and A, Semery
- Abstract
The VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer) instrument on board the Rosetta spacecraft has provided evidence of carbon-bearing compounds on the nucleus of the comet 67P/Churyumov-Gerasimenko. The very low reflectance of the nucleus (normal albedo of 0.060 ± 0.003 at 0.55 micrometers), the spectral slopes in visible and infrared ranges (5 to 25 and 1.5 to 5% kÅ(-1)), and the broad absorption feature in the 2.9-to-3.6-micrometer range present across the entire illuminated surface are compatible with opaque minerals associated with nonvolatile organic macromolecular materials: a complex mixture of various types of carbon-hydrogen and/or oxygen-hydrogen chemical groups, with little contribution of nitrogen-hydrogen groups. In active areas, the changes in spectral slope and absorption feature width may suggest small amounts of water-ice. However, no ice-rich patches are observed, indicating a generally dehydrated nature for the surface currently illuminated by the Sun.
- Published
- 2015
25. Characterization of Mesoscale Waves in the Jupiter NEB by Jupiter InfraRed Auroral Mapper on board Juno.
- Author
-
A. Adriani, M. L. Moriconi, F. Altieri, G. Sindoni, A. P. Ingersoll, D. Grassi, A. Mura, S. K. Atreya, G. Orton, J. I. Lunine, L. N. Fletcher, A. A. Simon, H. Melin, F. Tosi, A. Cicchetti, R. Noschese, R. Sordini, S. Levin, J. Bolton, and C. Plainaki
- Published
- 2018
- Full Text
- View/download PDF
26. Preliminary results on the composition of Jupiter's troposphere in hot spot regions from the JIRAM/Juno instrument
- Author
-
John E. P. Connerney, Giuseppe Sindoni, Steven Levin, Federico Tosi, Gianrico Filacchione, Marilena Amoroso, F. Fabiano, Davide Grassi, Maria Luisa Moriconi, Andrew P. Ingersoll, A. Olivieri, Sushil K. Atreya, Giuseppe Piccioni, Francesca Altieri, Glenn S. Orton, Stefania Stefani, Bianca Maria Dinelli, Alessandra Migliorini, Raffaella Noschese, Diego Turrini, Scott Bolton, Jonathan I. Lunine, Alessandro Mura, Alberto Adriani, Andrea Cicchetti, D. Grassi, A. Adriani, A. Mura, B. M. Dinelli, G. Sindoni, D. Turrini, G. Filacchione, A. Migliorini, M. L. Moriconi, F. Tosi, R. Noschese, A. Cicchetti, F. Altieri, F. Fabiano, G. Piccioni, S. Stefani, S. Atreya, J. Lunine, G. Orton, A. Ingersoll, S. Bolton, S. Levin, J. Connerney, A. Olivieri, M. Amoroso, ITA, and USA
- Subjects
010504 meteorology & atmospheric sciences ,Opacity ,Microwave radiometer ,Astronomy ,Jupiter aurora h3+ Jiram Juno infrared ,Hot spot (veterinary medicine) ,Atmospheric sciences ,01 natural sciences ,Spectral line ,Troposphere ,Atmosphere ,Jupiter ,Geophysics ,0103 physical sciences ,General Earth and Planetary Sciences ,Upwelling ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences - Abstract
The Jupiter InfraRed Auroral Mapper (JIRAM) instrument on board the Juno spacecraft performed observations of two bright Jupiter hot spots around the time of the first Juno pericenter passage on 27 August 2016. The spectra acquired in the 4-5 µm spectral range were analyzed to infer the residual opacities of the uppermost cloud deck as well as the mean mixing ratios of water, ammonia, and phosphine at the approximate level of few bars. Our results support the current view of hot spots as regions of prevailing descending vertical motions in the atmosphere but extend this view suggesting that upwelling may occur at the southern boundaries of these structures. Comparison with the global ammonia abundance measured by Juno Microwave Radiometer suggests also that hot spots may represent sites of local enrichment of this gas. JIRAM also identifies similar spatial patterns in water and phosphine contents in the two hot spots.
- Published
- 2017
27. Exposed water ice on the nucleus of comet 67P/Churyumov-Gerasimenko
- Author
-
Giancarlo Bellucci, Katrin Stephan, Yves Langevin, Sergio Fonti, G. Peter, Gianrico Filacchione, Ulrich Schade, G. P. Tozzi, Jacques Crovisier, Costanzo Federico, Eleonora Ammannito, M. I. Blecka, S. Jacquinod, Jean-Michel Reess, M. Cartacci, Michael R. Combi, Vito Mennella, Federico Tosi, Marcello Fulchignoni, Armando Blanco, Giuseppe Piccioni, Roberto Orosei, Bernard Schmitt, Andrea Longobardo, Giovanna Rinaldi, Ralf Jaumann, Vincenzo Orofino, Alessandra Migliorini, Andrea Raponi, Pierre Drossart, M. Combes, David Kappel, Mauro Ciarniello, D. Despan, Murthy S. Gudipati, C. Leyrat, T. Encrenaz, Ernesto Palomba, Andrea Cicchetti, Fabrizio Capaccioni, Michelangelo Formisano, Maria Teresa Capria, Romolo Politi, Dominique Bockelée-Morvan, Stefano Mottola, Enrico Flamini, Pierre Beck, L. Moroz, Gianfranco Magni, U. Fink, Eric Quirico, Fredric W. Taylor, Sonia Fornasier, J-Ph. Combe, F. Merlin, Jean-Pierre Bibring, N. Biver, M. C. De Sanctis, Florence Henry, Uri Carsenty, M. A. Barucci, Gabriele Arnold, Y. Hello, Patrick G. J. Irwin, R. W. Carlson, Wing-Huen Ip, E. Kuehrt, Kathrin Markus, Davide Grassi, S. Giuppi, Raffaella Noschese, Alessandro Frigeri, F. Mancarella, Stéphane Erard, Luigi Colangeli, Lydie Bonal, T. B. McCord, J. Benkhoff, D. Tiphene, Priscilla Cerroni, G., Filacchione, M. C., De Sancti, F., Capaccioni, A., Raponi, F., Tosi, M., Ciarniello, P., Cerroni, G., Piccioni, M. T., Capria, E., Palomba, G., Bellucci, S., Erard, D., Bockelee Morvan, C., Leyrat, G., Arnold, M. A., Barucci, M., Fulchignoni, B., Schmitt, E., Quirico, R., Jaumann, K., Stephan, A., Longobardo, V., Mennella, A., Migliorini, E., Ammannito, J., Benkhoff, J. P., Bibring, Blanco, Armando, M. I., Blecka, R., Carlson, U., Carsenty, L., Colangeli, M., Combe, M., Combi, J., Crovisier, P., Drossart, T., Encrenaz, C., Federico, U., Fink, Fonti, Sergio, W. H., Ip, P., Irwin, E., Kuehrt, Y., Langevin, G., Magni, T., Mccord, L., Moroz, S., Mottola, Orofino, Vincenzo, U., Schade, F., Taylor, D., Tiphene, G. P., Tozzi, P., Beck, N., Biver, L., Bonal, Combe, J. P. h., D., Despan, E., Flamini, M., Formisano, S., Fornasier, A., Frigeri, D., Grassi, M. S., Gudipati, D., Kappel, Mancarella, Francesca, K., Marku, F., Merlin, R., Orosei, G., Rinaldi, M., Cartacci, A., Cicchetti, S., Giuppi, Y., Hello, F., Henry, S., Jacquinod, J. M., Ree, R., Noschese, R., Politi, G., Peter, Istituto di Astrofisica e Planetologia Spaziali - INAF (IAPS), Istituto Nazionale di Astrofisica (INAF), Max-Planck-Institut für Kernphysik (MPIK), Max-Planck-Gesellschaft, Istituto di Astrofisica Spaziale e Fisica cosmica - Roma (IASF-Roma), Istituto di Fisica dello Spazio Interplanetario (IFSI), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et Mécanique Textiles (LPMT), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), German Aerospace Center (DLR), Deutsches Zentrum für Luft- und Raumfahrt (DLR), European Space Research and Technology Centre (ESTEC), Agence Spatiale Européenne = European Space Agency (ESA), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Polska Akademia Nauk = Polish Academy of Sciences (PAN), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), INAF - Osservatorio Astronomico di Capodimonte (OAC), Department of Atmospheric, Oceanic, and Space Sciences [Ann Arbor] (AOSS), University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Instituto de Estudos Avançados (IEAV), Institut, Lunar and Planetary Laboratory [Tucson] (LPL), University of Arizona, Dipartimento di Fisica, Università degli studi di Lecce, Institute of Space Science [Taiwan], National Central University [Taiwan] (NCU), Department of Physics [Oxford], University of Oxford, Department of Earth and Space Sciences [Seattle], University of Washington [Seattle], DLR Institute of Planetary Research, Department of Physics [Lecce], Università del Salento [Lecce], INAF - Osservatorio Astrofisico di Arcetri (OAA), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Alenia Aerospazio, DLR Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), JDS Uniphase/Cronos, USA, JDS Uniphase/Cronos, CNR-IASF, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Observatoire de la Côte d'Azur (OCA), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 (LOG), Institut national des sciences de l'Univers (INSU - CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Nord]), Consiglio Nazionale delle Ricerche (CNR), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-ENSITM-Matériaux et nanosciences d'Alsace, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), European Space Agency (ESA), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Polska Akademia Nauk (PAN), University of Oxford [Oxford], Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA), Centre National de la Recherche Scientifique (CNRS), Université de Lille-Université du Littoral Côte d'Opale-Centre National de la Recherche Scientifique (CNRS), ENSITM-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and Institut national des sciences de l'Univers (INSU - CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,010504 meteorology & atmospheric sciences ,Extraterrestrial Environment ,Comet ,Mineralogy ,comet 67P ,01 natural sciences ,water ice ,Astrobiology ,Diffusion ,0103 physical sciences ,Rosetta ,medicine ,Diffusion (business) ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,[PHYS]Physics [physics] ,Multidisciplinary ,Meteoroid ,Spectrum Analysis ,Ice ,food and beverages ,Meteoroids ,VIRTIS ,Debris ,Asteroids ,Grain growth ,medicine.anatomical_structure ,13. Climate action ,comets and Kuiper belt Early solar system ,Gases ,Layering ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Nucleus ,Water vapor - Abstract
Although water vapour is the main species observed in the coma of comet 67P/Churyumov–Gerasimenko1, 2 and water is the major constituent of cometary nuclei3, 4, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far5, 6. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far7, 8, 9. The nucleus of 67P/Churyumov–Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material10. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations6, 7, 8, 9. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers6, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust10 is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov–Gerasimenko11, 12 is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet’s formation.
- Published
- 2016
- Full Text
- View/download PDF
28. The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta
- Author
-
Gabriele Arnold, Maria Teresa Capria, Y. Hello, Kathrin Markus, Vincenzo Orofino, A. Semery, Romolo Politi, Stéphane Erard, Roberto Orosei, Robert W. Carlson, Davide Grassi, M. Combes, J. Crovisier, Gianfranco Magni, Andrea Raponi, Michael R. Combi, Priscilla Cerroni, Yves Langevin, L. Moroz, Pierre Drossart, Ulrich Schade, G. P. Tozzi, Wing-Huen Ip, Luigi Colangeli, Fredric W. Taylor, Angioletta Coradini, J. Ph. Combe, Raffaella Noschese, Enrico Flamini, Giancarlo Bellucci, Ernesto Palomba, Sonia Fornasier, F. Merlin, Lydie Bonal, Andrea Longobardo, G. Peter, M. Cartacci, Alessandro Frigeri, Giuseppe Piccioni, Bernard Schmitt, Uwe Fink, Ralf Jaumann, Mauro Ciarniello, D. Despan, M. A. Barucci, Giovanna Rinaldi, Pierre Beck, M. C. De Sanctis, S. Giuppi, S. Jacquinod, Uri Carsenty, D. Bockelee-Morvan, Eric Quirico, Stefano Mottola, F. Henry, N. Biver, Jean-Pierre Bibring, Patrick G. J. Irwin, T. Encrenaz, Katrin Stephan, Andrea Cicchetti, Johannes Benkhoff, C. Leyrat, Gianrico Filacchione, D. Tiphene, J. M. Reess, T. B. McCord, Sergio Fonti, Costanzo Federico, Eleonora Ammannito, M. I. Blecka, Pasquale Palumbo, Armando Blanco, M. Gudipati, Fabrizio Capaccioni, Vito Mennella, Federico Tosi, E. Kuehrt, F., Capaccioni, A., Coradini, G., Filacchione, S., Erard, G., Arnold, P., Drossart, M. C., De Sancti, D., Bockelee Morvan, M. T., Capria, F., Tosi, C., Leyrat, B., Schmitt, E., Quirico, P., Cerroni, V., Mennella, A., Raponi, M., Ciarniello, T., Mccord, L., Moroz, E., Palomba, E., Ammannito, M. A., Barucci, G., Bellucci, J., Benkhoff, J. P., Bibring, Blanco, Armando, M., Blecka, R., Carlson, U., Carsenty, L., Colangeli, M., Combe, M., Combi, J., Crovisier, T., Encrenaz, C., Federico, U., Fink, Fonti, Sergio, W. H., Ip, P., Irwin, R., Jaumann, E., Kuehrt, Y., Langevin, G., Magni, S., Mottola, Orofino, Vincenzo, P., Palumbo, G., Piccioni, U., Schade, F., Taylor, D., Tiphene, G. P., Tozzi, P., Beck, N., Biver, L., Bonal, Combe, J. P. h., D., Despan, E., Flamini, S., Fornasier, A., Frigeri, D., Grassi, M., Gudipati, A., Longobardo, K., Marku, F., Merlin, R., Orosei, G., Rinaldi, K., Stephan, M., Cartacci, A., Cicchetti, S., Giuppi, Y., Hello, F., Henry, S., Jacquinod, R., Noschese, G., Peter, R., Politi, J. M., Ree, A., Semery, Istituto di Astrofisica Spaziale e Fisica cosmica - Roma (IASF-Roma), Istituto Nazionale di Astrofisica (INAF), Istituto di Astrofisica e Planetologia Spaziali - INAF (IAPS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), DLR Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Department of Earth and Space Sciences [Seattle], University of Washington [Seattle], Istituto di Fisica dello Spazio Interplanetario (IFSI), Consiglio Nazionale delle Ricerche (CNR), European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Polska Akademia Nauk (PAN), Jet Propulsion Laboratory (JPL), California Institute of Technology (CALTECH)-NASA, German Aerospace Center (DLR), Department of Physics [Imperial College London], Imperial College London, Instituto de Estudos Avançados (IEAV), Institut, Lunar and Planetary Laboratory [Tucson] (LPL), University of Arizona, Dipartimento di Fisica, Università degli studi di Lecce, Institute of Space Science [Taiwan], National Central University [Taiwan] (NCU), Department of Atmospheric, Oceanic and Planetary Physics [Oxford] (AOPP), University of Oxford [Oxford], DLR Institute of Planetary Research, Department of Physics [Lecce], Università del Salento [Lecce], INAF - Osservatorio Astrofisico di Arcetri (OAA), Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA), Alenia Aerospazio, JDS Uniphase/Cronos, USA, JDS Uniphase/Cronos, CNR-IASF, IASI (IASI), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG ), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Agence Spatiale Européenne = European Space Agency (ESA), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Polska Akademia Nauk = Polish Academy of Sciences (PAN), NASA-California Institute of Technology (CALTECH), University of Oxford, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), ITA, USA, GBR, FRA, DEU, TWN, NLD, and POL
- Subjects
67P/Churyumov-Gerasimenko ,010504 meteorology & atmospheric sciences ,Opacity ,Rosetta mission, VIRTIS, comets ,Infrared ,Comet ,Imaging spectrometer ,Astrophysics ,01 natural sciences ,Astrobiology ,comet ,0103 physical sciences ,Spectral slope ,Thermal ,Rosetta ,Rosetta mission ,comets ,Absorption (electromagnetic radiation) ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,[PHYS]Physics [physics] ,Multidisciplinary ,Chemistry ,Albedo ,VIRTIS ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,organic-rich - Abstract
The VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer) instrument on board the Rosetta spacecraft has provided evidence of carbon-bearing compounds on the nucleus of the comet 67P/Churyumov-Gerasimenko. The very low reflectance of the nucleus (normal albedo of 0.060 ± 0.003 at 0.55 micrometers), the spectral slopes in visible and infrared ranges (5 to 25 and 1.5 to 5% kÅ −1 ), and the broad absorption feature in the 2.9-to-3.6–micrometer range present across the entire illuminated surface are compatible with opaque minerals associated with nonvolatile organic macromolecular materials: a complex mixture of various types of carbon-hydrogen and/or oxygen-hydrogen chemical groups, with little contribution of nitrogen-hydrogen groups. In active areas, the changes in spectral slope and absorption feature width may suggest small amounts of water-ice. However, no ice-rich patches are observed, indicating a generally dehydrated nature for the surface currently illuminated by the Sun.
- Published
- 2015
- Full Text
- View/download PDF
29. The diurnal cycle of water ice on comet 67P/Churyumov-Gerasimenko
- Author
-
DE SANCTIS, MARIA CRISTINA, CAPACCIONI, FABRIZIO, CIARNIELLO, Mauro, FILACCHIONE, GIANRICO, FORMISANO, Michelangelo, Mottola, S., RAPONI, Andrea, TOSI, Federico, Bockelée-Morvan, D., Erard, S., Leyrat, C., Schmitt, B., Ammannito, E., Arnold, G., Barucci, M. A., Combi, M., Capria, M. T., Cerroni, P., Ip, W. -H., Kuehrt, E., McCord, T. B., PALOMBA, Ernesto, Beck, P., Quirico, E., VIRTIS Team, PICCIONI, GIUSEPPE, BELLUCCI, Giancarlo, Fulchignoni, M., Jaumann, R., Stephan, K., Longobardo, A., MENNELLA, Vito, MIGLIORINI, Alessandra, Benkhoff, J., Bibring, J. P., Blanco, A., Blecka, M., Carlson, R., Carsenty, U., Colangeli, L., Combes, M., Crovisier, J., Drossart, P., Encrenaz, T., Federico, C., Fink, U., Fonti, S., Irwin, P., Langevin, Y., Magni, G., Moroz, L., Orofino, V., Schade, U., Taylor, F., Tiphene, D., Tozzi, G. P., Biver, N., Bonal, L., Combe, J. -Ph., Despan, D., Flamini, E., Fornasier, S., FRIGERI, ALESSANDRO, GRASSI, Davide, Gudipati, M. S., Mancarella, F., Markus, K., Merlin, F., OROSEI, ROBERTO, RINALDI, GIOVANNA, CARTACCI, MARCO, Cicchetti, A., GIUPPI, Stefano, Hello, Y., Henry, F., Jacquinod, S., Rees, J. M., NOSCHESE, RAFFAELLA, POLITI, ROMOLO, Peter, G., M. C., De Sancti, F., Capaccioni, M., Ciarniello, G., Filacchione, M., Formisano, S., Mottola, A., Raponi, F., Tosi, D., Bockele´e Morvan, S., Erard, C., Leyrat, B., Schmitt, E., Ammannito, G., Arnold, M. A., Barucci, M., Combi, M. T., Capria, P., Cerroni, W. H., Ip, E., Kuehrt, T. B., Mccord, E., Palomba, P., Beck, E., Quirico, G., Piccioni, G., Bellucci, M., Fulchignoni, R., Jaumann, K., Stephan, A., Longobardo, V., Mennella, A., Migliorini, J., Benkhoff, J. P., Bibring, Blanco, Armando, M., Blecka, R., Carlson, U., Carsenty, L., Colangeli, M., Combe, J., Crovisier, P., Drossart, T., Encrenaz, C., Federico, U., Fink, Fonti, Sergio, P., Irwin, Y., Langevin, G., Magni, L., Moroz, Orofino, Vincenzo, U., Schade, F., Taylor, D., Tiphene, G. P., Tozzi, N., Biver, L., Bonal, Combe, J. P. h., D., Despan, E., Flamini, S., Fornasier, A., Frigeri, D., Grassi, M. S., Gudipati, Mancarella, Francesca, K., Marku, F., Merlin, R., Orosei, G., Rinaldi, M., Cartacci, A., Cicchetti, S., Giuppi, Y., Hello, F., Henry, S., Jacquinod, J. M., Ree, R., Noschese, R., Politi, G., Peter, Istituto di Astrofisica Spaziale e Fisica cosmica - Roma (IASF-Roma), Istituto Nazionale di Astrofisica (INAF), Istituto di Astrofisica e Planetologia Spaziali - INAF (IAPS), DLR Institute of Planetary Research, German Aerospace Center (DLR), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG ), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Istituto di Fisica dello Spazio Interplanetario (IFSI), Consiglio Nazionale delle Ricerche (CNR), DLR Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Department of Atmospheric, Oceanic, and Space Sciences [Ann Arbor] (AOSS), University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Institute of Astronomy [Taiwan] (IANCU), National Central University [Taiwan] (NCU), Department of Earth and Space Sciences [Seattle], University of Washington [Seattle], Laboratoire de Sciences de la Terre, ITA, USA, GBR, FRA, DEU, TWN, NLD, POL, and National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR)
- Subjects
67P/Churyumov-Gerasimenko ,Time Factors ,Extraterrestrial Environment ,010504 meteorology & atmospheric sciences ,Comet ,01 natural sciences ,water ice ,Astrobiology ,comet ,Diurnal cycle ,0103 physical sciences ,Sunrise ,Water cycle ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,[PHYS]Physics [physics] ,Multidisciplinary ,Meteoroid ,Ice ,Diurnal temperature variation ,Temperature ,food and beverages ,Meteoroids ,Environmental science ,Volatilization ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Surface water ,cycle of water ice ,Water vapor - Abstract
Observations of cometary nuclei have revealed a very limited amount of surface water ice, which is insufficient to explain the observed water outgassing. This was clearly demonstrated on comet 9P/Tempel 1, where the dust jets (driven by volatiles) were only partially correlated with the exposed ice regions. The observations of 67P/Churyumov-Gerasimenko have revealed that activity has a diurnal variation in intensity arising from changing insolation conditions. It was previously concluded that water vapour was generated in ice-rich subsurface layers with a transport mechanism linked to solar illumination, but that has not hitherto been observed. Periodic condensations of water vapour very close to, or on, the surface were suggested to explain short-lived outbursts seen near sunrise on comet 9P/Tempel 1. Here we report observations of water ice on the surface of comet 67P/Churyumov-Gerasimenko, appearing and disappearing in a cyclic pattern that follows local illumination conditions, providing a source of localized activity. This water cycle appears to be an important process in the evolution of the comet, leading to cyclical modification of the relative abundance of water ice on its surface.
- Published
- 2015
- Full Text
- View/download PDF
30. Inner southern magnetosphere observation of Mercury via SERENA ion sensors in BepiColombo mission.
- Author
-
Orsini S, Milillo A, Lichtenegger H, Varsani A, Barabash S, Livi S, De Angelis E, Alberti T, Laky G, Nilsson H, Phillips M, Aronica A, Kallio E, Wurz P, Olivieri A, Plainaki C, Slavin JA, Dandouras I, Raines JM, Benkhoff J, Zender J, Berthelier JJ, Dosa M, Ho GC, Killen RM, McKenna-Lawlor S, Torkar K, Vaisberg O, Allegrini F, Daglis IA, Dong C, Escoubet CP, Fatemi S, Fränz M, Ivanovski S, Krupp N, Lammer H, Leblanc F, Mangano V, Mura A, Rispoli R, Sarantos M, Smith HT, Wieser M, Camozzi F, Di Lellis AM, Fremuth G, Giner F, Gurnee R, Hayes J, Jeszenszky H, Trantham B, Balaz J, Baumjohann W, Cantatore M, Delcourt D, Delva M, Desai M, Fischer H, Galli A, Grande M, Holmström M, Horvath I, Hsieh KC, Jarvinen R, Johnson RE, Kazakov A, Kecskemety K, Krüger H, Kürbisch C, Leblanc F, Leichtfried M, Mangraviti E, Massetti S, Moissenko D, Moroni M, Noschese R, Nuccilli F, Paschalidis N, Ryno J, Seki K, Shestakov A, Shuvalov S, Sordini R, Stenbeck F, Svensson J, Szalai S, Szego K, Toublanc D, Vertolli N, Wallner R, and Vorburger A
- Abstract
Mercury's southern inner magnetosphere is an unexplored region as it was not observed by earlier space missions. In October 2021, BepiColombo mission has passed through this region during its first Mercury flyby. Here, we describe the observations of SERENA ion sensors nearby and inside Mercury's magnetosphere. An intermittent high-energy signal, possibly due to an interplanetary magnetic flux rope, has been observed downstream Mercury, together with low energy solar wind. Low energy ions, possibly due to satellite outgassing, were detected outside the magnetosphere. The dayside magnetopause and bow-shock crossing were much closer to the planet than expected, signature of a highly eroded magnetosphere. Different ion populations have been observed inside the magnetosphere, like low latitude boundary layer at magnetopause inbound and partial ring current at dawn close to the planet. These observations are important for understanding the weak magnetosphere behavior so close to the Sun, revealing details never reached before., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
31. Italian Tracing System for Water Buffalo Milk and Processed Milk Products.
- Author
-
Cappelli G, Di Vuolo G, Gerini O, Noschese R, Bufano F, Capacchione R, Rosini S, Limone A, and De Carlo E
- Abstract
This document describes the development of a tracing system for the buffalo supply chain, namely an online computer system in which farmers, dairies, and brokers must maintain records of the production of milk through to the production of derivatives. The system is jointly used throughout the Italian national territory by the Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM) and the Sistema Informativo Agricolo Nazionale Italiano (SIAN), after being made mandatory and regulated with the publication of the Ministerial Decree of 9 September 2014. Farmers are obligated to communicate their daily production of bulk milk, the number of animals milked, the number of the delivery note of the sale, and the name of the purchaser; within the first week of the month, they must communicate the milk production of each animal milked. Dairies are required to communicate the milk and the processed product (mozzarella, yogurt, etc.) purchased on a daily basis. The intermediaries are required to communicate the daily milk purchased, both fresh and frozen, the semi-finished product, and the sale of the same. The tracing system linked to the project authorized by the Ministry of Health, called "Development, validation and verification of the applicability of an IT system to be used for the management of traceability in the buffalo industry", provides operators with the monitoring of production and sales in real time through alerts and access logs. Currently, there are 1531 registered farmers, 601 non-PDO dairies, 102 PDO dairies, 68 non-PDO intermediaries, and 17 PDO intermediaries in Italy. The system provides support for the recovery of the buffalo sector; from the analysis of the data extrapolated from the tracing system of the buffalo supply chain for the years 2016 to 2019, this paper highlights that the application of the Ministerial Decree No. 9406 of 9 September 2014 and the tracing of the supply chain have increased the price of buffalo milk at barns from EUR 1.37/kg to EUR 1.55/kg from 2016 to 2019.
- Published
- 2021
- Full Text
- View/download PDF
32. SERENA: Particle Instrument Suite for Determining the Sun-Mercury Interaction from BepiColombo.
- Author
-
Orsini S, Livi SA, Lichtenegger H, Barabash S, Milillo A, De Angelis E, Phillips M, Laky G, Wieser M, Olivieri A, Plainaki C, Ho G, Killen RM, Slavin JA, Wurz P, Berthelier JJ, Dandouras I, Kallio E, McKenna-Lawlor S, Szalai S, Torkar K, Vaisberg O, Allegrini F, Daglis IA, Dong C, Escoubet CP, Fatemi S, Fränz M, Ivanovski S, Krupp N, Lammer H, Leblanc F, Mangano V, Mura A, Nilsson H, Raines JM, Rispoli R, Sarantos M, Smith HT, Szego K, Aronica A, Camozzi F, Di Lellis AM, Fremuth G, Giner F, Gurnee R, Hayes J, Jeszenszky H, Tominetti F, Trantham B, Balaz J, Baumjohann W, Brienza D, Bührke U, Bush MD, Cantatore M, Cibella S, Colasanti L, Cremonese G, Cremonesi L, D'Alessandro M, Delcourt D, Delva M, Desai M, Fama M, Ferris M, Fischer H, Gaggero A, Gamborino D, Garnier P, Gibson WC, Goldstein R, Grande M, Grishin V, Haggerty D, Holmström M, Horvath I, Hsieh KC, Jacques A, Johnson RE, Kazakov A, Kecskemety K, Krüger H, Kürbisch C, Lazzarotto F, Leblanc F, Leichtfried M, Leoni R, Loose A, Maschietti D, Massetti S, Mattioli F, Miller G, Moissenko D, Morbidini A, Noschese R, Nuccilli F, Nunez C, Paschalidis N, Persyn S, Piazza D, Oja M, Ryno J, Schmidt W, Scheer JA, Shestakov A, Shuvalov S, Seki K, Selci S, Smith K, Sordini R, Svensson J, Szalai L, Toublanc D, Urdiales C, Varsani A, Vertolli N, Wallner R, Wahlstroem P, Wilson P, and Zampieri S
- Abstract
The ESA-JAXA BepiColombo mission to Mercury will provide simultaneous measurements from two spacecraft, offering an unprecedented opportunity to investigate magnetospheric and exospheric particle dynamics at Mercury as well as their interactions with solar wind, solar radiation, and interplanetary dust. The particle instrument suite SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) is flying in space on-board the BepiColombo Mercury Planetary Orbiter (MPO) and is the only instrument for ion and neutral particle detection aboard the MPO. It comprises four independent sensors: ELENA for neutral particle flow detection, Strofio for neutral gas detection, PICAM for planetary ions observations, and MIPA, mostly for solar wind ion measurements. SERENA is managed by a System Control Unit located inside the ELENA box. In the present paper the scientific goals of this suite are described, and then the four units are detailed, as well as their major features and calibration results. Finally, the SERENA operational activities are shown during the orbital path around Mercury, with also some reference to the activities planned during the long cruise phase., (© The Author(s) 2021.)
- Published
- 2021
- Full Text
- View/download PDF
33. Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter.
- Author
-
Mura A, Adriani A, Connerney JEP, Bolton S, Altieri F, Bagenal F, Bonfond B, Dinelli BM, Gérard JC, Greathouse T, Grodent D, Levin S, Mauk B, Moriconi ML, Saur J, Waite JH Jr, Amoroso M, Cicchetti A, Fabiano F, Filacchione G, Grassi D, Migliorini A, Noschese R, Olivieri A, Piccioni G, Plainaki C, Sindoni G, Sordini R, Tosi F, and Turrini D
- Abstract
Jupiter's aurorae are produced in its upper atmosphere when incoming high-energy electrons precipitate along the planet's magnetic field lines. A northern and a southern main auroral oval are visible, surrounded by small emission features associated with the Galilean moons. We present infrared observations, obtained with the Juno spacecraft, showing that in the case of Io, this emission exhibits a swirling pattern that is similar in appearance to a von Kármán vortex street. Well downstream of the main auroral spots, the extended tail is split in two. Both of Ganymede's footprints also appear as a pair of emission features, which may provide a remote measure of Ganymede's magnetosphere. These features suggest that the magnetohydrodynamic interaction between Jupiter and its moon is more complex than previously anticipated., (Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2018
- Full Text
- View/download PDF
34. Radar evidence of subglacial liquid water on Mars.
- Author
-
Orosei R, Lauro SE, Pettinelli E, Cicchetti A, Coradini M, Cosciotti B, Di Paolo F, Flamini E, Mattei E, Pajola M, Soldovieri F, Cartacci M, Cassenti F, Frigeri A, Giuppi S, Martufi R, Masdea A, Mitri G, Nenna C, Noschese R, Restano M, and Seu R
- Abstract
The presence of liquid water at the base of the martian polar caps has long been suspected but not observed. We surveyed the Planum Australe region using the MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) instrument, a low-frequency radar on the Mars Express spacecraft. Radar profiles collected between May 2012 and December 2015 contain evidence of liquid water trapped below the ice of the South Polar Layered Deposits. Anomalously bright subsurface reflections are evident within a well-defined, 20-kilometer-wide zone centered at 193°E, 81°S, which is surrounded by much less reflective areas. Quantitative analysis of the radar signals shows that this bright feature has high relative dielectric permittivity (>15), matching that of water-bearing materials. We interpret this feature as a stable body of liquid water on Mars., (Copyright © 2018, American Association for the Advancement of Science.)
- Published
- 2018
- Full Text
- View/download PDF
35. Clusters of cyclones encircling Jupiter's poles.
- Author
-
Adriani A, Mura A, Orton G, Hansen C, Altieri F, Moriconi ML, Rogers J, Eichstädt G, Momary T, Ingersoll AP, Filacchione G, Sindoni G, Tabataba-Vakili F, Dinelli BM, Fabiano F, Bolton SJ, Connerney JEP, Atreya SK, Lunine JI, Tosi F, Migliorini A, Grassi D, Piccioni G, Noschese R, Cicchetti A, Plainaki C, Olivieri A, O'Neill ME, Turrini D, Stefani S, Sordini R, and Amoroso M
- Abstract
The familiar axisymmetric zones and belts that characterize Jupiter's weather system at lower latitudes give way to pervasive cyclonic activity at higher latitudes. Two-dimensional turbulence in combination with the Coriolis β-effect (that is, the large meridionally varying Coriolis force on the giant planets of the Solar System) produces alternating zonal flows. The zonal flows weaken with rising latitude so that a transition between equatorial jets and polar turbulence on Jupiter can occur. Simulations with shallow-water models of giant planets support this transition by producing both alternating flows near the equator and circumpolar cyclones near the poles. Jovian polar regions are not visible from Earth owing to Jupiter's low axial tilt, and were poorly characterized by previous missions because the trajectories of these missions did not venture far from Jupiter's equatorial plane. Here we report that visible and infrared images obtained from above each pole by the Juno spacecraft during its first five orbits reveal persistent polygonal patterns of large cyclones. In the north, eight circumpolar cyclones are observed about a single polar cyclone; in the south, one polar cyclone is encircled by five circumpolar cyclones. Cyclonic circulation is established via time-lapse imagery obtained over intervals ranging from 20 minutes to 4 hours. Although migration of cyclones towards the pole might be expected as a consequence of the Coriolis β-effect, by which cyclonic vortices naturally drift towards the rotational pole, the configuration of the cyclones is without precedent on other planets (including Saturn's polar hexagonal features). The manner in which the cyclones persist without merging and the process by which they evolve to their current configuration are unknown.
- Published
- 2018
- Full Text
- View/download PDF
36. Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/Churyumov-Gerasimenko.
- Author
-
Filacchione G, Raponi A, Capaccioni F, Ciarniello M, Tosi F, Capria MT, De Sanctis MC, Migliorini A, Piccioni G, Cerroni P, Barucci MA, Fornasier S, Schmitt B, Quirico E, Erard S, Bockelee-Morvan D, Leyrat C, Arnold G, Mennella V, Ammannito E, Bellucci G, Benkhoff J, Bibring JP, Blanco A, Blecka MI, Carlson R, Carsenty U, Colangeli L, Combes M, Combi M, Crovisier J, Drossart P, Encrenaz T, Federico C, Fink U, Fonti S, Fulchignoni M, Ip WH, Irwin P, Jaumann R, Kuehrt E, Langevin Y, Magni G, McCord T, Moroz L, Mottola S, Palomba E, Schade U, Stephan K, Taylor F, Tiphene D, Tozzi GP, Beck P, Biver N, Bonal L, Combe JP, Despan D, Flamini E, Formisano M, Frigeri A, Grassi D, Gudipati MS, Kappel D, Longobardo A, Mancarella F, Markus K, Merlin F, Orosei R, Rinaldi G, Cartacci M, Cicchetti A, Hello Y, Henry F, Jacquinod S, Reess JM, Noschese R, Politi R, and Peter G
- Abstract
Carbon dioxide (CO
2 ) is one of the most abundant species in cometary nuclei, but because of its high volatility, CO2 ice is generally only found beneath the surface. We report the infrared spectroscopic identification of a CO2 ice-rich surface area located in the Anhur region of comet 67P/Churyumov-Gerasimenko. Spectral modeling shows that about 0.1% of the 80- by 60-meter area is CO2 ice. This exposed ice was observed a short time after the comet exited local winter; following the increased illumination, the CO2 ice completely disappeared over about 3 weeks. We estimate the mass of the sublimated CO2 ice and the depth of the eroded surface layer. We interpret the presence of CO2 ice as the result of the extreme seasonal changes induced by the rotation and orbit of the comet., (Copyright © 2016, American Association for the Advancement of Science.)- Published
- 2016
- Full Text
- View/download PDF
37. Exposed water ice on the nucleus of comet 67P/Churyumov-Gerasimenko.
- Author
-
Filacchione G, De Sanctis MC, Capaccioni F, Raponi A, Tosi F, Ciarniello M, Cerroni P, Piccioni G, Capria MT, Palomba E, Bellucci G, Erard S, Bockelee-Morvan D, Leyrat C, Arnold G, Barucci MA, Fulchignoni M, Schmitt B, Quirico E, Jaumann R, Stephan K, Longobardo A, Mennella V, Migliorini A, Ammannito E, Benkhoff J, Bibring JP, Blanco A, Blecka MI, Carlson R, Carsenty U, Colangeli L, Combes M, Combi M, Crovisier J, Drossart P, Encrenaz T, Federico C, Fink U, Fonti S, Ip WH, Irwin P, Kuehrt E, Langevin Y, Magni G, McCord T, Moroz L, Mottola S, Orofino V, Schade U, Taylor F, Tiphene D, Tozzi GP, Beck P, Biver N, Bonal L, Combe JP, Despan D, Flamini E, Formisano M, Fornasier S, Frigeri A, Grassi D, Gudipati MS, Kappel D, Mancarella F, Markus K, Merlin F, Orosei R, Rinaldi G, Cartacci M, Cicchetti A, Giuppi S, Hello Y, Henry F, Jacquinod S, Reess JM, Noschese R, Politi R, and Peter G
- Subjects
- Diffusion, Gases analysis, Gases chemistry, Spectrum Analysis, Extraterrestrial Environment chemistry, Ice analysis, Meteoroids
- Abstract
Although water vapour is the main species observed in the coma of comet 67P/Churyumov-Gerasimenko and water is the major constituent of cometary nuclei, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far. The nucleus of 67P/Churyumov-Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov-Gerasimenko is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet's formation.
- Published
- 2016
- Full Text
- View/download PDF
38. Cometary science. The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta.
- Author
-
Capaccioni F, Coradini A, Filacchione G, Erard S, Arnold G, Drossart P, De Sanctis MC, Bockelee-Morvan D, Capria MT, Tosi F, Leyrat C, Schmitt B, Quirico E, Cerroni P, Mennella V, Raponi A, Ciarniello M, McCord T, Moroz L, Palomba E, Ammannito E, Barucci MA, Bellucci G, Benkhoff J, Bibring JP, Blanco A, Blecka M, Carlson R, Carsenty U, Colangeli L, Combes M, Combi M, Crovisier J, Encrenaz T, Federico C, Fink U, Fonti S, Ip WH, Irwin P, Jaumann R, Kuehrt E, Langevin Y, Magni G, Mottola S, Orofino V, Palumbo P, Piccioni G, Schade U, Taylor F, Tiphene D, Tozzi GP, Beck P, Biver N, Bonal L, Combe JP, Despan D, Flamini E, Fornasier S, Frigeri A, Grassi D, Gudipati M, Longobardo A, Markus K, Merlin F, Orosei R, Rinaldi G, Stephan K, Cartacci M, Cicchetti A, Giuppi S, Hello Y, Henry F, Jacquinod S, Noschese R, Peter G, Politi R, Reess JM, and Semery A
- Abstract
The VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer) instrument on board the Rosetta spacecraft has provided evidence of carbon-bearing compounds on the nucleus of the comet 67P/Churyumov-Gerasimenko. The very low reflectance of the nucleus (normal albedo of 0.060 ± 0.003 at 0.55 micrometers), the spectral slopes in visible and infrared ranges (5 to 25 and 1.5 to 5% kÅ(-1)), and the broad absorption feature in the 2.9-to-3.6-micrometer range present across the entire illuminated surface are compatible with opaque minerals associated with nonvolatile organic macromolecular materials: a complex mixture of various types of carbon-hydrogen and/or oxygen-hydrogen chemical groups, with little contribution of nitrogen-hydrogen groups. In active areas, the changes in spectral slope and absorption feature width may suggest small amounts of water-ice. However, no ice-rich patches are observed, indicating a generally dehydrated nature for the surface currently illuminated by the Sun., (Copyright © 2015, American Association for the Advancement of Science.)
- Published
- 2015
- Full Text
- View/download PDF
39. Specific DNA recognition mediated by a type IV pilin.
- Author
-
Cehovin A, Simpson PJ, McDowell MA, Brown DR, Noschese R, Pallett M, Brady J, Baldwin GS, Lea SM, Matthews SJ, and Pelicic V
- Subjects
- Blotting, Western, Chromatography, Affinity, Electrophoresis, Polyacrylamide Gel, Fimbriae Proteins isolation & purification, Nuclear Magnetic Resonance, Biomolecular, Protein Binding, DNA, Bacterial metabolism, Fimbriae Proteins metabolism, Neisseria meningitidis genetics
- Abstract
Natural transformation is a dominant force in bacterial evolution by promoting horizontal gene transfer. This process may have devastating consequences, such as the spread of antibiotic resistance or the emergence of highly virulent clones. However, uptake and recombination of foreign DNA are most often deleterious to competent species. Therefore, model naturally transformable gram-negative bacteria, including the human pathogen Neisseria meningitidis, have evolved means to preferentially take up homotypic DNA containing short and genus-specific sequence motifs. Despite decades of intense investigations, the DNA uptake sequence receptor in Neisseria species has remained elusive. We show here, using a multidisciplinary approach combining biochemistry, molecular genetics, and structural biology, that meningococcal type IV pili bind DNA through the minor pilin ComP via an electropositive stripe that is predicted to be exposed on the filaments surface and that ComP displays an exquisite binding preference for DNA uptake sequence. Our findings illuminate the earliest step in natural transformation, reveal an unconventional mechanism for DNA binding, and suggest that selective DNA uptake is more widespread than previously thought.
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.