125 results on '"R. Magne"'
Search Results
2. Athapaskan Migrations
- Author
-
R. G. Matson and Martin P. R. Magne
- Published
- 2019
3. Autonomic activation and pain in response to low-grade mental stress in fibromyalgia and shoulder/neck pain patients
- Author
-
Nilsen, Kristian Bernhard, Sand, Trond, Westgaard, Rolf Harald, Stovner, Lars Jacob, White, Linda R., Leistad, Rune Bang, Helde, Grethe, and R, Magne
- Published
- 2007
- Full Text
- View/download PDF
4. Evolution of the Tore Supra Lower Hybrid Current Drive System for WEST
- Author
-
M. Prou, R. Magne, Lena Delpech, Dominique Guilhem, Annika Ekedahl, J. Achard, S. Poli, A. Saille, Julien Hillairet, Gilles Berger-By, A. Armitano, Marc Goniche, P. Piluso, L. Gargiulo, Patrick Mollard, Franck Samaille, and P. Hertout
- Subjects
Physics ,Tokamak ,Toroid ,Klystron ,Mechanical Engineering ,Divertor ,Ripple ,Plasma ,Mechanics ,Tore Supra ,Curvature ,law.invention ,Nuclear Energy and Engineering ,law ,General Materials Science ,Civil and Structural Engineering - Abstract
The WEST-project ( W -tungsten E nvironment in S teady-state T okamak) involves equipping Tore Supra with a full tungsten divertor, capable of withstanding heat load of 10 MW/m2 in steady-state conditions, in discharges sustained by Lower Hybrid Current Drive (LHCD). The LHCD generator, recently upgraded to deliver 9.2 MW/1000 s, is equipped with sixteen TH2103C klystrons powering two launchers. The WEST transformation involves reducing the plasma volume, thus moving the launchers ∼10 cm closer to the tokamak centre. The toroidal curvature of the launchers no longer fits the plasma curvature due to the strong magnetic field ripple effect, leading to a degradation of the LH wave coupling, especially with the Full Active Multijunction Launcher (FAM). The toroidal curvature radius of the FAM launcher mouth will therefore be reshaped from 1700 mm to 2300 mm. The machining process is described in this article. In order to improve the coupling of the LH wave, the local gas injection has been modified to help to meet the requirement of 7 MW/1000 s of LH power coupled to the plasma in the WEST scenarios. Finally, the curvature radius of the waveguide septa are rounded to minimize the excitation of suprathermal electrons near the plasma edge, which can induce high power loads on the plasma facing components.
- Published
- 2015
5. Development and Application of 3.7GHz LHCD system on HL-2A and Development of RF Heating system on HL-2M
- Author
-
Mei Huang, A. Ekedahl, Julien Hillairet, Y.P. Zhang, Didier Mazon, Yan Zhou, Jun Liang, Xingyu Bai, Jun Cheng, Hao Zeng, G.L. Xiao, Gerardo Giruzzi, Shi Zhongbing, Jieqiong Wang, D.L. Yu, Kun Feng, Chen Yali, Yves Peysson, Bo Lu, Xianming Song, He Wang, Emmanuel Bertrand, Rui Mao, Shaodong Song, Chao Wang, Lena Delpech, Jun Rao, Tuong Hoang, Xiao-Lan Zou, and R. Magne
- Subjects
Engineering ,Tokamak ,business.industry ,Nuclear engineering ,Physics ,QC1-999 ,Electrical engineering ,Plasma ,01 natural sciences ,010305 fluids & plasmas ,Power (physics) ,law.invention ,law ,0103 physical sciences ,Dielectric heating ,010306 general physics ,business ,Power coupling - Abstract
The first Lower Hybrid (LH) experiments were carried out with a Passive-Active Multijunction (PAM) launcher in H-mode plasmas. The experiments were performed on the HL-2A tokamak with the new 3.7 GHz LHCD system, installed and tested by SWIP in collaboration with CEA/RFM. The ELMs and local gas impact on LH power coupling was studied in the experiments. The coupled LH power in HL-2A was 200-500kW at large gap at the first experiments and reaches 900 kW now in H-mode, while it reaches 1MW in L-mode. The LH experiments on HL-2A show that the PAM launcher is a viable concept for high performance scenarios. The LH power can be coupled at large plasma-launcher gap, and assist in triggering and sustaining H-modes. Finally, an overview of the RF heating systems for the tokamak HL-2M is given. HL-2M will dispose of a 4 MW LH system and a 8 MW ECRH system, both of which are currently under installation at SWIP.
- Published
- 2017
6. Implications of the tore-supra west-project on radio-frequency additionnal heating systems
- Author
-
Jonathan Jacquot, Gilles Berger-By, Laurent Colas, J. Achard, Frédéric Durodié, A. Armitano, Patrick Mollard, M. Prou, E. Wittebol, A. Argouarch, Marc Goniche, E. Joffrin, Nicolas Charabot, X. Litaudon, R. Magne, Elodie Traisnel-Corbel, Francis Bouquey, Jean-Michel Bernard, Jovita Gerardus Maria Moerel, Dominique Guilhem, Jan van Helvoirt, Daniele Milanesio, Annika Ekedahl, Karl Vulliez, R. Volpe, Julien Hillairet, Lena Delpech, Gilles Lombard, and Electrical Engineering
- Subjects
radio-frequency ,Nuclear and High Energy Physics ,Tokamak ,Materials science ,Nuclear engineering ,Divertor ,RF power amplifier ,Tore-Supra ,Superconducting magnet ,Tore Supra ,Condensed Matter Physics ,radio-frequency (RF) ,Electron cyclotron resonance ,law.invention ,Plasma additional heating systems ,ASDEX Upgrade ,law ,WEST-project ,Radio frequency ,Atomic physics - Abstract
This year Tore-Supra celebrated its 25 years of operation. During this long time, a number of technologies have been developed. First of all, it was mandatory to develop reliable superconducting magnets at ∼1.8 K, with superfluid helium as an efficient coolant. For the production of steady state discharge, three types of radio frequency (RF) additional heating systems have been developed: 1) lower hybrid current drive; 2) ion cyclotron resonance heating; and 3) electron cyclotron resonance heating. To cope with long lasting discharges (up to 380 s × 2.8 MW) and large RF additional heating power (12.3 MW × 3 s), actively cooled (AC) plasma facing components were deployed in Tore-Supra for the first time in a tokamak environment. Tore-Supra is now being modified into a D-shape axisymmetric tokamak with AC tungsten main chamber walls and a divertor, the WEST project (W-for tungsten-environment in steady-state tokamak). This new facility has the objective to offer ITER a test bed for validating the relevant AC metallic technologies in D-shape H-mode plasmas. In contrast to other metallic devices, such as JET and ASDEX Upgrade, WEST will rely only on the RF additional power systems. A set of plasma scenarios have been identified, ranging from a high total RF power scenario up to 15 MW in 30 s, to a high fluence scenario of 1000 s with up to 10 MW of injected RF power. These scenarios are able to reproduce ITER relevant conditions of steady state heat loads of 10-20 MW/m2, to test tungsten AC divertor technologies with relevant power heat fluxes and particle fluence.
- Published
- 2014
7. Progress of KSTAR 5-GHz Lower Hybrid Current Drive System
- Author
-
Hyeon K. Park, Lena Delpech, Jong-Gu Kwak, Won Namkung, Moo-Hyun Cho, H. T. Kim, J. Doody, Julien Hillairet, R. Magne, Syun'ichi Shiraiwa, Seungil Park, H. L. Yang, X. Litaudon, H. K. Kim, H. J. Kim, Jeehyun Kim, Young-Soon Bae, R.F. Vieira, G.M. Wallace, K. M. Kim, Heejin Do, G. T. Hoang, and W. S. Han
- Subjects
Physics ,Nuclear and High Energy Physics ,Tokamak ,Klystron ,Mechanical Engineering ,Nuclear engineering ,Plasma ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Superconducting tokamak ,Nuclear Energy and Engineering ,law ,KSTAR ,0103 physical sciences ,General Materials Science ,Antenna (radio) ,Current (fluid) ,010306 general physics ,Civil and Structural Engineering - Abstract
A 5-GHz steady-state lower hybrid (LH) current drive (LHCD) system is planned to support steady-state and advanced tokamak operation on the Korea Superconducting Tokamak Advanced Research (KSTAR) e...
- Published
- 2013
8. Test result of 5 GHz, 500 kW CW prototype klystron for KSTAR LHCD system
- Author
-
H.L. Yang, Lena Delpech, Moo-Hyun Cho, R. Magne, Y.S. Bae, Won Namkung, Hyeon K. Park, Heejin Do, J.H. Jeong, G. T. Hoang, and Seungil Park
- Subjects
Materials science ,Klystron ,business.industry ,Mechanical Engineering ,Voltage divider ,Electrical engineering ,Thyristor ,High voltage ,Traveling-wave tube ,law.invention ,Nuclear Energy and Engineering ,law ,KSTAR ,General Materials Science ,Zener diode ,business ,Low voltage ,Civil and Structural Engineering - Abstract
A 5 GHz LHCD system is being designed for current drive and profile modification necessary for AT mode and steady-state operation of the KSTAR tokamak. A prototype 500 kW CW klystron operating at 5 GHz was developed for the steady-state RF source. In this klystron, a multi-cell cavity is introduced to reduce cavity voltage and ohmic power loss. The klystron is designed with a triode system for optimization of gain, efficiency and beam control. The high voltage for the cathode is turned by using a thyristor switching system at the low voltage transformer unit. For anode voltage control, a mod-anode voltage divider system is used which utilize the parallel-circuit of the FET switch and Zener diodes. The RF output power of the klystron was 300 kW for 800 s and 450 kW for 20 s. The maximal temperature at collector top surface was 83 °C and power loss at the tube body did not exceed 10 kW, the interlock level for the protection of the klystron. Detailed results of the klystron system test and commissioning are presented.
- Published
- 2011
9. Thermal and mechanical analysis of ITER-relevant LHCD antenna elements
- Author
-
Y.S. Bae, J. Garcia, M. Goniche, Q. Zeng, Jia Hua, L. Panaccione, R. Magne, C. Hamlyn-Harris, S.H. Kim, A. Saille, O. Tudisco, J. Belo, Gilles Berger-By, Karl Vulliez, M. Schneider, Lara Pajewski, C. Castaldo, Giuseppe Schettini, Julien Hillairet, J.F. Artaud, D. Guilhem, Riccardo Maggiora, Frederic Imbeaux, Ph. Cara, F. Kazarian, A. Ekedahl, Daniele Milanesio, J. Decker, Q.Y. Huang, P. Garibaldi, Lena Delpech, S. Meschino, Angelo A. Tuccillo, Y. Peysson, J.M. Bernard, Silvio Ceccuzzi, A. Cardinali, G. Vecchi, R. Cesario, Francesco Mirizzi, G. T. Hoang, P.K. Sharma, Won Namkung, Y. Wu, L. Marfisi, R. Villari, Y. Lausenaz, Marfisi, L., Goniche, M., Hamlyn Harris, C., Hillairet, J., Artaud, J. F., Bae, Y. S., Belo, J., Berger By, G., Bernard, J. M., Cara, Ph, Cardinali, A., Castaldo, C., Ceccuzzi, Silvio, Cesario, R., Decker, J., Delpech, L., Ekedahl, A., Garcia, J., Garibaldi, P., Guilhem, D., Hoang, G. T., Jia, H., Huang, Q. V., Imbeaux, F., Kazarian, F., Kim, S. H., Lausenaz, Y., Maggiora, R., Magne, R., Meschino, S., Milanesio, D., Mirizzi, F., Namkung, W., Pajewski, Lara, Panaccione, L., Peysson, Y., Saille, A., Schettini, Giuseppe, Schneider, M., Sharma, P. K., Tuccillo, A. A., Tudisco, O., Vecchi, G., Villari, R., Vulliez, K., Wu, Y., and Zeng, Q.
- Subjects
Materials science ,Nuclear Fusion ,RF heating ,Nuclear engineering ,chemistry.chemical_element ,engineering.material ,Radio-Frequency Heating ,Coating ,ITER ,Dielectric heating ,Thermal ,Nuclear fusion ,General Materials Science ,Lower hybrid ,Civil and Structural Engineering ,Front face ,Mechanical Engineering ,Plasma ,Passive-active ,RF windows ,Line (electrical engineering) ,Nuclear Energy and Engineering ,chemistry ,engineering ,Antenna (radio) ,Beryllium - Abstract
A 20 MW Lower Hybrid Current Drive system using an antenna based on the Passive-Active Multijunction (PAM) concept is envisaged on ITER. This paper gives an overview of the mechanical analysis, modeling and design carried out on two major elements of the antenna: the grill front face, and the RF feed-through or windows. The front face will have to withstand high heat and fast neutrons fluxes directly from the plasma. It will be actively cooled and present a beryllium coating upon ITER requirement. The RF window being a critical safety importance class component (SIC) because of its tritium confinement function, two of them will be put in series on each line to achieve a double barrier. A design of a water cooled 5 GHz CW RF “pillbox” window capable of sustaining 500 kW of transmitted power is proposed. Both studies allow to move forward, and focus on critical issues, such as manufacturing processes and R&D associated programs including tests of mock-ups.
- Published
- 2011
10. Manufacturing process and tests of a Lower Hybrid Passive–Active Multijunction launcher for long pulse experiments on Tore-Supra
- Author
-
D. Guilhem, F. Samaille, B. Bertrand, M. Lipa, J. Achard, G. Agarici, A. Argouarch, A. Armitano, J.H. Belo, Z. Bej, G. Berger-By, F. Bouquey, C. Brun, M. Chantant, null E.Corbel, E. Delmas, L. Delpech, L. Doceul, A. Ekedahl, F. Faisse, P. Fejoz, C. Goletto, M. Goniche, J.C. Hatchressian, J. Hillairet, M. Houry, J.P. Joanard, P. Joubert, R. Lambert, G. Lombard, M. Lyonne, S. Madeleine, R. Magne, L. Marfisi, A. Martinez, M. Maury, M. Missirlian, P. Mollard, S. Poli, C. Portafaix, M. Preynas, M. Prou, D. Raulin, E. Rousset, A. Saille, B. Soler, D. Thouvenin, J.M. Verger, D. Volpe, K. Vulliez, and B. Zago
- Subjects
Nuclear Energy and Engineering ,Mechanical Engineering ,General Materials Science ,Civil and Structural Engineering - Published
- 2011
11. Feasibility study of an actively cooled tungsten divertor in Tore Supra for ITER technology testing
- Author
-
F. Faisse, S. Hacquin, X. Courtois, P. Monier-Garbet, J. Garcia, Patrick Maget, A. Argouarch, Yannick Marandet, T. Loarer, R. Magne, R.A. Pitts, M. Jouve, O. Baulaigue, Yann Corre, Marina Becoulet, Sylvain Brémond, L. Gargiulo, Ph. Cara, A. Martinez, Eric Nardon, B. Pégourié, P. Bayetti, P. Hertout, A. Ekedahl, V. Basiuk, Bernard Bertrand, Roland Sabot, G. T. A. Huysmans, James Paul Gunn, C. Grisolia, P. Moreau, Marc Missirlian, M. Chantant, M. Joanny, O. Meyer, M. Richou, G. Jiolat, Didier Mazon, S. Lisgo, L. Jourd’heuil, Frederic Imbeaux, Jérôme Bucalossi, M. Lipa, A. Saille, E. Tsitrone, A. Simonin, A.S. Kukushkin, F. Samaille, C. Portafaix, S. Panayotis, F. Saint-Laurent, M. Firdaouss, L. Doceul, and C. Gil
- Subjects
Materials science ,Tokamak ,Mechanical Engineering ,Divertor ,Nuclear engineering ,chemistry.chemical_element ,Blanket ,Tore Supra ,Tungsten ,Heat sink ,law.invention ,Nuclear Energy and Engineering ,Heat flux ,chemistry ,law ,Limiter ,General Materials Science ,Civil and Structural Engineering - Abstract
In order to reduce the risks for ITER Plasma Facing Components (PFCs), it is proposed to equip Tore Supra with a full tungsten divertor, benefitting from the unique long pulse capabilities, the high installed RF power and the long experience with actively cooled high heat flux components of the Tore Supra platform. The transformation from the current circular limiter geometry to the required X-point configuration will be achieved by installing a set of copper poloidal coils inside the vacuum vessel. The new configuration will allow for H-mode access, providing relevant plasma conditions for PFC technology validation. Furthermore, attractive steady-state regimes are expected to be achievable. The lower divertor target design will be closely based on that currently envisaged for ITER (W monoblocks), while the upper divertor region will be used to qualify the main first wall heat sink technology adopted for the ITER blanket modules (CuCrZr copper/stainless steel) with a tungsten coating (in place of the Be tiles which ITER will use). Extended plasma exposure will provide access to ITER critical issues such as PFC lifetime (melting, cracking, etc.), tokamak operation on damaged metallic surfaces, real time heat flux control through PFC monitoring, fuel retention and dust production.
- Published
- 2011
12. Ferroelectric materials and metamaterials for a new approach to ITER–ICRH loads
- Author
-
Stephanie Champeaux, X. Litaudon, Ph. Gouard, R. Magne, M. Primout, A. Bécoulet, and H. Bottollier-Curtet
- Subjects
Permittivity ,Tokamak ,Materials science ,Mechanical Engineering ,Metamaterial ,Fusion power ,Laboratory testing ,Engineering physics ,Ferroelectricity ,law.invention ,Antenna array ,Nuclear Energy and Engineering ,law ,General Materials Science ,Antenna (radio) ,Civil and Structural Engineering - Abstract
This paper presents a new approach for ICRH loads used in laboratory testing. Classical “water” loads are convenient but strongly limited in terms of performances. Development of high permittivity loads is under investigation to improve ICRF antenna laboratory testing. Ferroelectric BaTiO3 ceramic materials along with metamaterials are shown to be promising candidates.
- Published
- 2011
13. Manufacturing process and tests of a lower hybrid passive active multi-junction launcher for long pulse experiments on Tore-Supra
- Author
-
C. Goletto, J. C. Hatchressian, R. Lambert, C. Brun, M. Maury, J.H. Belo, B. Soler, L. Marfisi, A. Ekedahl, D. Guilhem, M. Chantant, M. Lyonne, M. Houry, Lena Delpech, Gilles Lombard, E. Delmas, C. Portafaix, J. Achard, A. Saille, M. Prou, A. Martinez, Julien Hillairet, D. Thouvenin, Bernard Bertrand, F. Bouquey, M. Preynas, P. Joubert, R. Magne, B. Zago, A. Argouarch, E. Rousset, E. Corbel, Gilles Berger-By, A. Armitano, J.M. Verger, S. Poli, D. Volpe, J.P. Joanard, F. Samaille, P. Fejoz, L. Doceul, F. Faisse, G. Agarici, Z. Bej, Marc Missirlian, M. Lipa, D. Raulin, S. Madeleine, Karl Vulliez, Patrick Mollard, and M. Goniche
- Subjects
Coupling ,Tokamak ,Materials science ,Mechanical Engineering ,Nuclear engineering ,Plasma ,Tore Supra ,law.invention ,Power (physics) ,Nuclear Energy and Engineering ,law ,Dielectric heating ,Active cooling ,General Materials Science ,Radio frequency ,Civil and Structural Engineering - Abstract
A new Passive Active Multijunction (PAM) Lower Hybrid heating and Current Drive (LHCD) launcher, has been successfully manufactured and tested on Tore-Supra (TS). The design and the fabrication of this new actively cooled launcher based on the PAM concept, as the present ITER LHCD design, is a major component of the TS CIMES project (Components for the Injection of Matter and Energy in Steady-state), and will play a key role in the TS near term program. To achieve 1000 s pulses with a power flux of 25 MW/m 2 the PAM launcher has been designed for steady state (CW) operation (active cooling) with the objective of coupling 2.7 MW of LHCD power to the plasma at 3.7 GHz with a parallel index N ∥ = 1.7 ± 0.2. The launcher has achieved its qualifications tests, i.e. low power Radio Frequency measurements, vacuum and hydraulic leak tests, and has been installed on Tore-Supra tokamak in September 2009. It is commissioning on plasma started a month later, quickly achieving its design performance of 2.7 MW on a 35 s pulse. After a technical description of the PAM, this paper presents an overview of the project phases (RF optimization, manufacturing and qualification) and concludes with the first experimental results of the PAM.
- Published
- 2011
14. Microblade Cores from the Northwestern Plains at High River, Alberta, Canada
- Author
-
Martin P. R. Magne, Michael C. Wilson, and John Visser
- Subjects
geography ,geography.geographical_feature_category ,Manufacturing process ,Ridge ,Anthropology ,Alberta canada ,Microblade technology ,Blade (archaeology) ,Archaeology ,Geology - Abstract
In the late 1950s, some 69 microblades and microblade fragments were collected from a small prairie blowout east of High River, Alberta (EdPk-1). In 1968, David Sanger analyzed these specimens, including distinctive ridge flakes, and attempted to reconstruct their manufacturing process without the benefit of any cores. The first microblade core recognized from the High River area was found in 1981 at site EdPk-3, approximately 2 km southeast of the original microblade discovery site. A second core was recovered at EdPk-3 in 1982 and two more cores from the High River area were subsequently recognized in existing collections. All four cores represent the same microblade technology and their morphology is essentially consistent with Sanger’s earlier interpretation, though they reveal new details. This technology is characterized by the use of ridge flakes to initiate blade detachment and by platform preparation with burin-like blows against a transversely flaked, upward curving platform ridge. The E...
- Published
- 2011
15. The 118-GHz Electron Cyclotron Heating System on Tore Supra
- Author
-
F. Bouquey, H. O. Prinz, R. Lambert, Manfred Thumm, C. Darbos, R. Magne, M. Lennholm, E. Traisnel, Christophe Lievin, Andreas Arnold, and Jean-Philippe Hogge
- Subjects
Nuclear and High Energy Physics ,Materials science ,020209 energy ,Cyclotron ,02 engineering and technology ,Sawtooth wave ,Tore Supra ,01 natural sciences ,Electron cyclotron resonance ,010305 fluids & plasmas ,law.invention ,Nuclear magnetic resonance ,Optics ,Transmission line ,law ,Gyrotron ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,General Materials Science ,Civil and Structural Engineering ,business.industry ,Mechanical Engineering ,Magnetic confinement fusion ,Electric power transmission ,Nuclear Energy and Engineering ,business - Abstract
An electron cyclotron resonance heating (ECRH) system capable of delivering 2.4 MW cw has been designed to be built at Commissariat a l'Energie Atomique, Cadarache, for the Tore Supra (TS) experiment, to provide plasma heating and current drive by electron cyclotron resonance interaction. The planned system was composed of a generator using six gyrotrons 500 kW for 5 s or 400 kW cw working at 118 GHz. Six transmission lines made of corrugated waveguide, 63.5-mm diameter, carry the HE11 mode to one antenna composed of six fixed mirrors and three independently movable mirrors for the adjustment of the injection angles of the rf beams. The antenna was built and installed in TS, and all transmission line components ordered and installed between the gyrotron locations and the antenna. In the same way, the required six oil tanks, the six cryomagnets, and the six modulating anode devices were designed and manufactured. In parallel, after demonstration in the factory of proper operation of the prototype gyrotron, the manufacture of a first so-called series gyrotron was made. But this gyrotron experienced hard limitations (overheating inducing prohibited outgassing, parasitic oscillations) during the long-pulse tests in Cadarache, and the achieved performance was 300 kW for 110 s. A new study was then carried out in collaboration with Thales Electron Devices, the EURATOM-CEA Association, and the EURATOM-Confederation Suisse Association to understand and overcome the limitations, which led to the construction of a new modified gyrotron. During the tests in factory of this new gyrotron, the output beam showed two peaks, a pattern never predicted by simulations. The gyrotron was nevertheless transferred to Cadarache for long-pulse testing, but an arc on the windows definitely stopped the tests. To understand the cause of the observed two peaks, various low-level tests were then performed on a model of the mode converter with different shapes for the launcher, but without real improvement. Besides measurements, the use of a new software, Surf3D, based on integral equations and providing a complete three-dimensional modeling, showed that the problem mainly comes from the third mirror, whose curvature is too high and consequently not well taken into account by the calculation. These technological problems have seriously delayed the development of the gyrotrons; as a consequence, only two tubes (intermediate developments) are presently available on TS to inject 700 kW in 5-s pulses. In spite of this relatively low power, the localized absorption property of electron cyclotron waves has been used on TS in a wide variety of experiments, such as stabilization and control of the sawtooth period, perturbative transport studies by ECRH modulations, and ECRH-assisted plasma start-up.
- Published
- 2009
16. Closed Loop Sawtooth Period Control Using Variable ECCD Injection Angles on Tore Supra
- Author
-
Francesca Turco, F.G. Rimini, R. Lambert, F. Bouquey, D. Molina, P. Moreau, R. Magne, J. L. Segui, R. J. Dumont, C. Darbos, M. Lennholm, M. Jung, G. Giruzzi, S. Song, L.-G. Eriksson, and E. Traisnel
- Subjects
Nuclear and High Energy Physics ,Materials science ,020209 energy ,Mechanical Engineering ,Cyclotron ,Magnetic confinement fusion ,02 engineering and technology ,Radius ,Sawtooth wave ,Electron ,Tore Supra ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Ion ,Nuclear Energy and Engineering ,law ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,General Materials Science ,Atomic physics ,Ion cyclotron resonance ,Civil and Structural Engineering - Abstract
Closed loop control ofthe period offast ion stabilized sawtooth has been demonstrated for the first time on Tore Supra by varying the electron cyclotron current drive (ECCD) injection angles in real time. Fast ions generated by up to 4 MW of central ion cyclotron resonance heating (ICRH) increased the sawtooth period from the ohmic value of 25 ms to 60 to 100 ms. This sawtooth period was reduced to 30 ms by the addition of only 300 kW of ECCD. In ICRH heated shots where the normalized minor radius of the ECCD absorption location was swept from 0.4 to 0.05 in 4 s, the sawtooth period showed an abrupt change from 70 to 30 ms when the ECCD deposition normalized minor radius reached ∼0.2. This short period was then maintained until the absorption location moved well inside the sawtooth inversion radius at which point it abruptly returned to 70 ms. A closed loop controller was implemented that allowed the sawtooth period to be switched in real time between short and long sawteeth with a response time of the order of I s.
- Published
- 2009
17. Radio-frequency electrical design of the WEST long pulse and load-resilient ICRH launchers
- Author
-
F. Durodié, Jean-Marc Delaplanche, X. Litaudon, Walid Helou, Zhaoxi Chen, Gilles Lombard, K. Winkler, Marc Goniche, Laurent Colas, A. Argouarch, Patrick Mollard, Daniele Milanesio, Annika Ekedahl, Pierre Dumortier, R. Volpe, F. Ferlay, Riccardo Maggiora, Jean-Michel Bernard, M. Prou, Gilles Berger-By, R. Magne, Jonathan Jacquot, Nicolas Fedorczak, Karl Vulliez, J. C. Patterlini, Julien Hillairet, and E. Joffrin
- Subjects
Physics ,Coupling ,Long pulse ,Tokamak ,Mechanical Engineering ,Nuclear engineering ,Impedance matching ,Plasma ,law.invention ,Power (physics) ,Nuclear Energy and Engineering ,law ,General Materials Science ,Radio frequency ,Civil and Structural Engineering ,Electronic circuit - Abstract
Three new ion cyclotron resonance heating (ICRH) launchers have been designed for the WEST project (W-Tungsten Environment in Steady-state Tokamak) in order to operate at 3 MW/launcher for 30 s and 1 MW/launcher for 1000 s on H-mode plasmas. These new launchers will be to date the first ICRH launchers to offer the unique combination of continuous-wave (CW) operation at high power and load tolerance capabilities for coupling on H-mode edge. The radio-frequency (RF) design optimization process has been carried out using full-wave electromagnetic solvers combined with electric circuit calculations. Cavity modes occurring between the launchers structures and the vacuum vessel ports have been evaluated and cleared out.
- Published
- 2015
18. SIDON: A simulator of radio-frequency networks. Application to WEST ICRF launchers
- Author
-
Gilles Berger-By, Daniele Milanesio, Gilles Lombard, Patrick Mollard, Jean-Michel Bernard, Frédéric Durodié, Walid Helou, Julien Hillairet, Pierre Dumortier, Marc Goniche, Laurent Colas, R. Magne, Riccardo Maggiora, and D. Moreau
- Subjects
Engineering ,Matching (graph theory) ,business.industry ,Impedance matching ,Electrical engineering ,Solver ,law.invention ,Capacitor ,Software ,law ,Electronic engineering ,Radio frequency ,business ,Simulation ,Voltage ,Electronic circuit - Abstract
SIDON (SImulator of raDiO-frequency Networks) is an in-house developed Radio-Frequency (RF) network solver that has been implemented to cross-validate the design of WEST ICRF launchers and simulate their impedance matching algorithm while considering all mutual couplings and asymmetries. In this paper, the authors illustrate the theory of SIDON as well as results of its calculations. The authors have built time-varying plasma scenarios (a sequence of launchers front-faces L-mode and H-mode Z-matrices), where at each time step (1 millisecond here), SIDON solves the RF network. At the same time, when activated, the impedance matching algorithm controls the matching elements (vacuum capacitors) and thus their corresponding S-matrices. Typically a 1-second pulse requires around 10 seconds of computational time on a desktop computer. These tasks can be hardly handled by commercial RF software. This innovative work allows identifying strategies for the launchers future operation while insuring the limitations on the currents, voltages and electric fields, matching and Load-Resilience, as well as the required straps voltage amplitude/phase balance. In this paper, a particular attention is paid to the simulation of the launchers behavior when arcs appear at several locations of their circuits using SIDON calculator. This latter work shall confirm or identify strategies for the arc detection using various RF electrical signals. One shall note that the use of such solvers in not limited to ICRF launchers simulations but can be employed, in principle, to any linear or linearized RF problem.
- Published
- 2015
19. Design and RF measurements of a 5 GHz 500 kW window for the ITER LHCD system
- Author
-
Lena Delpech, Jeehyun Kim, J. Achard, Won Namkung, N. Dechambre, L. Marfisi, Y.S. Bae, M. Goniche, J.M. Bernard, S. Poli, S. Larroque, SooHwan Park, Julien Hillairet, R. Magne, A. Ekedahl, H. Park, Karl Vulliez, N. Faure, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), PMB/ALCEN, National Fusion Research Institute (NFRI), and Department of Physics, Pohang University of Science and Technology
- Subjects
Lower Hybrid Current Drive ,Physics - Instrumentation and Detectors ,Materials science ,Nuclear engineering ,RF power amplifier ,[SPI.PLASMA]Engineering Sciences [physics]/Plasmas ,BeO ,Window (computing) ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Rf components ,5 GHz ,Physics - Plasma Physics ,Power (physics) ,Plasma Physics (physics.plasm-ph) ,[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism ,Power test ,LHCD ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,ITER ,Return loss ,Insertion loss ,RF Window - Abstract
CEA/IRFM is conducting R\&D efforts in order to validate the critical RF components of the 5 GHz ITER LHCD system, which is expected to transmit 20 MW of RF power to the plasma. Two 5 GHz 500 kW BeO pill-box type window prototypes have been manufactured in 2012 by the PMB Company, in close collaboration with CEA/IRFM. Both windows have been validated at low power, showing good agreement between measured and modeling, with a return loss better than 32 dB and an insertion loss below 0.05 dB. This paper reports on the window RF design and the low power measurements. The high power tests up to 500kW have been carried out in March 2013 in collaboration with NFRI. Results of these tests are also reported. In the current ITER LHCD design, 20 MW Continuous Wave (CW) of Radio-Frequency power at 5 GHz are expected to be generated and transmitted to the plasma. In order to separate the vacuum vessel pressure from the cryostat waveguide pressure, forty eight 5 GHz 500kW CW windows are to be assembled on the waveguides at the equatorial port flange. For nuclear safety reasons, forty eight additional windows could be located in the cryostat section, to separate and monitor the cryostat waveguide pressure from the exterior transmission line pressure. These windows are identified as being one of the main critical components for the ITER LHCD system since first ITER LHCD studies [1] [2] [3] or more recently [4] [5] , and clearly require an important R\&D effort. In this context and even if the LHCD system is not part of the construction baseline, the CEA/IRFM is conducting a R\&D effort in order to validate a design and the performances of these RF windows. In order to begin the assessment of this need, two 5 GHz 500 kW/5 s pill-box type windows prototypes have been manufactured in 2012 by the PMB Company in close collaboration with the CEA/IRFM [6]. The section 2 of this paper reports the RF and mechanical design of a 5 GHz window. Some features of the mechanical design and the experimental RF measurements at low power are reported in section 3. High power results, made in collaboration with NFRI, are detailed in section 4. The development of CW windows is discussed in the conclusion. 2-RF AND MECHANICAL DESIGN The proposed 5 GHz RF window is based on a pill-box design [2] , i.e. a ceramic brazed in portion of a circular waveguide, connected on either side to a rectangular waveguide section. Typical design rules of thumb of such device are circular section diameter about the same size of the diagonal of the rectangular waveguide (cf. FIGURE 1). Without taking into account the ceramic, the circular section length is approximately half a guided wavelength of the circular TE 11 mode, in order for the device to act as a half-wave transformer. Once optimized, taking into account the ceramic, matching is correct only for a narrow band of frequency and is very sensitive to the device dimensions and the ceramic relative permittivity. The heat losses in the ceramic, which have to be extracted by an active water cooling, depends on the inside electric field topology and of ceramic dielectric loss (loss tangent). Undesirable modes due to parasitic resonances can be excited in the ceramic volume, raising the electric field and, 20th Topical Conference on Radio Frequency Power in Plasmas, Jun 2013, Sorrento, Italy. 2014
- Published
- 2015
- Full Text
- View/download PDF
20. Lower Hybrid antennas for nuclear fusion experiments
- Author
-
J. Decker, E. Delmas, Xuantong Ding, X. Courtois, V. Basiuk, J. Achard, Yu.F. Baranov, C. Balorin, R. Cesario, S. Poli, Pankaj Sharma, Sylvain Brémond, E. Corbel, Lena Delpech, Francesco Mirizzi, G.T. Hoang, M. Preynas, C. Goletto, T. Oosako, B. Saoutic, X. Y. Bai, J. P. Gunn, P. Hertout, V. Petrzilka, M. Prou, D. Douai, C. Castaldo, Julien Hillairet, J. Belo, D. Guilhem, Gilles Berger-By, R. Magne, Frederic Imbeaux, Y. Peysson, A. Bécoulet, A. Ekedahl, K. Kirov, J. Mailloux, F. Samaille, Silvio Ceccuzzi, Patrick Mollard, Y.S. Bae, F. Saint-Laurent, Didier Mazon, X. Litaudon, Ph. Moreau, M. Goniche, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), National Fusion Research Institute (NFRI), Southwestern Institute of Physics (SWIP), Euratom/CCFE Fusion Association, Associacao Euratom-IST, Universidade Tecnica de Lisboa, Associazione Euratom-ENEA sulla Fusione, Association Euratom/IPP.CR, Czech Academy of Sciences [Prague] (CAS), and Southwestern Institute of Physics
- Subjects
Tokamak ,Nuclear Fusion ,Phased array ,Nuclear engineering ,FOS: Physical sciences ,Tore Supra ,01 natural sciences ,7. Clean energy ,010305 fluids & plasmas ,law.invention ,Current Drive ,law ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,ITER ,0103 physical sciences ,Nuclear fusion ,Lower Hybrid ,010306 general physics ,Physics ,business.industry ,[SPI.PLASMA]Engineering Sciences [physics]/Plasmas ,Electrical engineering ,Plasma ,Fusion power ,high power ,Physics - Plasma Physics ,Power (physics) ,Plasma Physics (physics.plasm-ph) ,[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism ,phased array ,rectangular waveguide ,business - Abstract
International audience; The nuclear fusion research goal is to demonstrate the feasibility of fusion power for peaceful purposes. In order to achieve the conditions similar to those expected in an electricity-generating fusion power plant, plasmas with a temperature of several hundreds of millions of degrees must be generated and sustained for long periods. For this purpose, RF antennas delivering multi-megawatts of power to magnetized confined plasma are commonly used in experimental tokamaks. In the gigahertz range of frequencies, high power phased arrays known as " Lower Hybrid " (LH) antennas are used to extend the plasma duration. This paper reviews some of the technological aspects of the LH antennas used in the Tore Supra tokamak and presents the current design of a proposed 20 MW LH system for the international experiment ITER.
- Published
- 2015
- Full Text
- View/download PDF
21. Development of long pulse RF heating and current drive for H-mode scenarios with metallic walls in WEST
- Author
-
Jean-Francois Artaud, West Team, Jean-Michel Bernard, Annika Ekedahl, Emmanuelle Tsitrone, Yves Peysson, Laurent Colas, Eric Nardon, Walid Helou, Hugo Bufferand, Marc Goniche, Clarisse Bourdelle, Joan Decker, Julien Hillairet, R. J. Dumont, R. Magne, Patrick Mollard, Lena Delpech, and Gilles Lombard
- Subjects
Coupling ,Tokamak ,business.industry ,Chemistry ,Nuclear engineering ,Electrical engineering ,Plasma ,Tore Supra ,law.invention ,Heat flux ,law ,Dielectric heating ,Radio frequency ,Current (fluid) ,business - Abstract
The longstanding expertise of the Tore Supra team in long pulse heating and current drive with radiofrequency (RF) systems will now be exploited in the WEST device (tungsten-W Environment in Steady-state Tokamak) [1]. WEST will allow an integrated long pulse tokamak programme for testing W-divertor components at ITER-relevant heat flux (10-20 MW/m2), while treating crucial aspects for ITER-operation, such as avoidance of W-accumulation in long discharges, monitoring and control of heat fluxes on the metallic plasma facing components (PFCs) and coupling of RF waves in H-mode plasmas. Scenario modelling using the METIS-code shows that ITER-relevant heat fluxes are compatible with the sustainment of long pulse H-mode discharges, at high power (up to 15 MW / 30 s at IP = 0.8 MA) or high fluence (up to 10 MW / 1000 s at IP = 0.6 MA) [2], all based on RF heating and current drive using Ion Cyclotron Resonance Heating (ICRH) and Lower Hybrid Current Drive (LHCD). This paper gives a description of the ICRH and LH...
- Published
- 2015
22. Ion cyclotron resonance heating systems upgrade toward high power and CW operations in WEST
- Author
-
Jean-Michel Bernard, Laurent Colas, Nicolas Fedorczak, Frédéric Durodié, J. C. Hatchressian, Jean-Marc Delaplanche, Jonathan Jacquot, Karl Vulliez, M. Prou, X. Litaudon, J.M. Verger, J. C. Patterlini, Zhaoxi Chen, R. Magne, Walid Helou, Pierre Dumortier, Gilles Lombard, Shuai Yuan, Yuntao Song, Yanping Zhao, A. Argouarch, F. Ferlay, Julien Hillairet, E. Joffrin, Annika Ekedahl, Riccardo Maggiora, K. Winkler, Gen Chen, Patrick Mollard, Nicolas Charabot, Marc Goniche, R. Volpe, Qingxi Yang, Yongsheng Wang, Daniele Milanesio, Gilles Berger-By, Institut de Recherche sur la Fusion par confinement Magnétique ( IRFM ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Institute of Plasma Physics, Chinese Academy of Sciences ( ASIPP ), Ecole Royale Militaire / Koninklijke Militaire School ( ERM KMS ), Department of Electronics [Torino] ( DELEN ), Politecnico di Torino [Torino] ( Polito ), Max-Planck-Institut, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Ecole Royale Militaire / Koninklijke Militaire School (ERM KMS), Department of Electronics [Torino] (DELEN), Politecnico di Torino = Polytechnic of Turin (Polito), Laboratoire de physique des plasmas de l'ERM, Laboratorium voor plasmafysica van de KMS (LPP ERM KMS), Max-Planck-Institut für Plasmaphysik [Garching] (IPP), Department of Electronics, and Laboratoire d'Etanchéité (LE)
- Subjects
Physics - Instrumentation and Detectors ,Materials science ,Tokamak ,Nuclear engineering ,FOS: Physical sciences ,7. Clean energy ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,law ,0103 physical sciences ,Water cooling ,Breakdown voltage ,Standing wave ratio ,010306 general physics ,Coupling ,[SPI.PLASMA]Engineering Sciences [physics]/Plasmas ,Instrumentation and Detectors (physics.ins-det) ,[ PHYS.PHYS.PHYS-PLASM-PH ] Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,Physics - Plasma Physics ,Plasma Physics (physics.plasm-ph) ,[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism ,Capacitor ,[ SPI.ELEC ] Engineering Sciences [physics]/Electromagnetism ,Continuous wave ,[ SPI.PLASMA ] Engineering Sciences [physics]/Plasmas ,Antenna (radio) - Abstract
International audience; The design of the WEST (Tungsten-W Environment in Steady-state Tokamak) Ion cyclotron resonance heating antennas is based on a previously tested conjugate-T Resonant Double Loops prototype equipped with internal vacuum matching capacitors. The design and construction of three new WEST ICRH antennas are being carried out in close collaboration with ASIPP, within the framework of the Associated Laboratory in the fusion field between IRFM and ASIPP. The coupling performance to the plasma and the load-tolerance have been improved, while adding Continuous Wave operation capability by introducing water cooling in the entire antenna. On the generator side, the operation class of the high power tetrodes is changed from AB to B in order to allow high power operation (up to 3 MW per antenna) under higher VSWR (up to 2:1). Reliability of the generators is also improved by increasing the cavity breakdown voltage. The control and data acquisition system is also upgraded in order to resolve and react on fast events, such as ELMs. A new optical arc detection system comes in reinforcement of the V r /V f and SHAD systems.
- Published
- 2015
23. Status of the ECRH system on Tore Supra
- Author
-
Jean-Philippe Hogge, M. Jung, R. Lambert, E. Traisnel, M. Lennholm, R. Magne, G. Giruzzi, C. Darbos, J. Clary, F. Bouquey, and D. Roux
- Subjects
Dummy load ,Cryostat ,History ,Engineering ,business.industry ,Nuclear engineering ,Cyclotron resonance ,Electrical engineering ,Tore Supra ,Electron cyclotron resonance ,Computer Science Applications ,Education ,law.invention ,law ,Gyrotron ,Water cooling ,Electric heating ,business - Abstract
An ECRH (Electron Cyclotron Resonance Heating) system capable of delivering 2.4 MW CW is presently under construction at CEA (Commissariat a l'Energie Atomique) Cadarache, for the Tore Supra experiment to provide plasma heating and current drive by Electron Cyclotron Resonance interaction. Due to some limitations observed on the first series tube which achieved 300 kW output power for 110 s, a new study carried out in a collaboration between TED (Thales Electron Devices), the Association Euratom-CEA and the Association Euratom-Confederation Suisse has led to the construction of a new modified gyrotron. The new gyrotron, with a new launcher profile and a better cooling system is now installed in this test bed. A clear improvement in the time required to condition the tube has been observed. On the other hand poor mode purity in the output beam has resulted in the need to implement a cooling system for the waveguides transmitting the power to the dummy load. The gyrotron tests have been temporarily suspended while a new system for the automatic filling of the cryostats with liquid nitrogen and helium is being installed. The experience gained from tests operations including some of the problems related both to auxiliary equipment and to the control of the gyrotrons will be presented with a special focus on long pulse related issues.
- Published
- 2005
24. The Tore Supra Front Steering Long Pulse ECRH Antenna. Past Experience - Present Evolution - Future Experiments
- Author
-
R. Lambert, M Chantant, A Montecot, L. Doceul, R. Magne, J. Clary, E. Villedieu, F. Samaille, C. Darbos, E. Traisnel, P Chappuis, D. Roux, M. Lennholm, M. Jung, S Poli, F. Bouquey, and F. Faisse
- Subjects
History ,Engineering ,Frequency response ,business.industry ,Tore Supra ,Computer Science Applications ,Education ,Bellows ,Control theory ,Real-time Control System ,Control system ,Ideal machine ,Antenna (radio) ,Stepper ,business ,Simulation - Abstract
The long pulse capability of Tore Supra and its ECRH system makes it an ideal machine to prove steady state feedback control as required in ITER. Although Neoclassical Tearing Modes (NTMs) have not yet been observed on Tore Supra, the control of other MHD modes represents a very similar task from a control point of view and the stabilisation of such modes for long periods using ECRH will provide essential experience for the implementation of such control schemes on ITER. For this work to progress on Tore Supra, it must be possible to vary the injection angles in real time under feedback control from measured plasma parameters. At Tore Supra the front mirror position - and hence the injection angles - is adjusted using stepper motors controlled through a serial link. The use of a serial link limiting the sampling time for the control system to 50-100 ms and the dynamic response of the stepper motors results in a system frequency response
- Published
- 2005
25. Technological Correlates of Gwaii Haanas Microblades
- Author
-
Martin P. R. Magne
- Subjects
010506 paleontology ,Archeology ,Artifact (archaeology) ,060102 archaeology ,High resolution ,06 humanities and the arts ,01 natural sciences ,Archaeology ,Paleontology ,Lithic technology ,Sea level rise ,Anthropology ,0601 history and archaeology ,Bay ,Geology ,Holocene ,0105 earth and related environmental sciences - Abstract
Microblade technology in Gwaii Haanas appears to develop from a lithic technology based on bifaces and unifacial scraperplane tools. At the high resolution Richardson Island site, there are char temporal trends in artifact frequencies, particularly among bifaces, microblades and scraperplane classes, as well as raw material types, that strongly support a model of in-situ change. These changes are gradual, not sudden. The trends continue at the two slightly later and geographically separate microblade-bearing sites of Arrow Creek I and Lyell Bay, indicating they are not isolated to one location. Some morphological clues among the scraperplane classes and microblade cores are perhaps revealing of consistencies in manufacturing behaviour in pre-miaroblade and microblade phases.The initial phases of widespread, indeed pervasive, microblade manufacture coincide with peak Holocene sea level rise and stabilization at about 9000 B.P. Therefore, in-situ technological change could relate directly to stabili...
- Published
- 2004
26. Steady state long pulse tokamak operation using Lower Hybrid Current Drive
- Author
-
Bécoulet, A., Hoang, G. T., Artaud, J. F., Bae, Y. S., Belo, J., Berger By, G. , Bernard, J. M. , Cara, P. , Cardinali, A. , Castaldo, S. , Cesario, R. , Cho, M. H. , Decker, J. , Delpech, L. , Do, H. J. , Ekedahl, A. , Garcia, J. , Garibaldi, P. , Goniche, M. , Guilhem, Hamlyn Harris, C. , Hillairet, J. , Huang, Q. Y. , Imbeaux, F. , Jia, H. , Kazarian, F. , Kim, S. H. , Lausenaz, Y. , Litaudon, X. , Maggiora, R. , Magne, R. , Marfisi, L. , Meschino, S. , Milanesio, D. , Mirizzi, F. , Mollard, P. , Namkung, L. , Panaccione, L. , Park, S. , Park, H. , Peysson, Y. , Saille, A. , Samaille, Schneider, M., Sharma, P. K., Tuccillo, A., Tudisco, O., Vecchi, G., Villari, R., Vulliez, K., Wu, Y., Yang, H. L., Zeng, Q., CECCUZZI, SILVIO, PAJEWSKI, LARA, SCHETTINI, Giuseppe, Bécoulet, A., Hoang, G. T., Artaud, J. F., Bae, Y. S., Belo, J., Berger, By, G., Bernard, J. M., Cara, P., Cardinali, A., Castaldo, Ceccuzzi, Silvio, S., Cesario, R., Cho, M. H., Decker, J., Delpech, L., Do, H. J., Ekedahl, A., Garcia, J., Garibaldi, P., Goniche, M., Guilhem, Hamlyn, Harri, C., Hillairet, J., Huang, Q. Y., Imbeaux, F., Jia, H., Kazarian, F., Kim, S. H., Lausenaz, Y., Litaudon, X., Maggiora, R., Magne, R., Marfisi, L., Meschino, S., Milanesio, D., Mirizzi, F., Mollard, P., Namkung, Pajewski, Lara, L., Panaccione, L., Park, S., Park, H., Peysson, Y., Saille, A., Samaille, Schettini, Giuseppe, Schneider, M., Sharma, P. K., Tuccillo, A., Tudisco, O., Vecchi, G., Villari, R., Vulliez, K., Wu, Y., Yang, H. L., and Zeng, Q.
- Subjects
Physics ,Lower Hybrid Current Drive ,Steady state (electronics) ,Long pulse ,Tokamak ,Steady-state long pulse tokamak ,ITER ,Heating and current drive ,Mechanical Engineering ,Nuclear engineering ,Iter tokamak ,Tore Supra ,law.invention ,Nuclear Energy and Engineering ,Conceptual design ,law ,General Materials Science ,Current (fluid) ,Civil and Structural Engineering - Abstract
"" Steady-state long pulse operation of tokamaks requires fully non-inductive current drive, thus an external current drive method. Lower Hybrid Current Drive is recognized as one of the most efficient technique used in the present day tokamaks. Progress of the conceptual design of the LHCD ITER relevant system is reported, as well as critical technology issues. © 2011 Elsevier B.V. All rights reserved.""
- Published
- 2011
27. Electron heat transport and ECRH modulation experiments in Tore Supra tokamak
- Author
-
J. L. Segui, A. Clémençon, X.L. Zou, R. J. Dumont, M. Lennholm, G. Giruzzi, C. Darbos, R. Magne, F. Bouquey, Céline Guivarch, and Jean-Francois Artaud
- Subjects
Physics ,Nuclear and High Energy Physics ,Diffusion equation ,Tokamak ,Magnetic confinement fusion ,Tore Supra ,Condensed Matter Physics ,Thermal diffusivity ,Computational physics ,law.invention ,Physics::Plasma Physics ,law ,Heat transfer ,Atomic physics ,Convection–diffusion equation ,Joule heating - Abstract
An analytical solution has been found for the simplified time-dependent transport equation in a finite cylinder. This solution represents a decomposition of the heat source in eigenmodes. Their eigenvalues represent the effectiveness of the response to temperature for each eigenmode, which are different in the stationary regime: the higher the order, the lower the effectiveness. In this case, the response to temperature appears as non-local. On the other hand, the profile resilience mainly results from two effects: the first one is that the lower order eigenmodes are more favoured than the higher order; the second one (volume effect) is that the central source (Ohmic heating) is favoured with respect to the off-axis source (electron cyclotron resonance heating, ECRH) in the contribution to the temperature profile shape. This resilience effect on the temperature profile is a basic and natural property of the diffusion equation in cylindrical geometry. The above analytical solution has been used for the determination of the heat diffusivity χ and the damping time τd for the ECRH modulation experiments in the Tore Supra tokamak. The results obtained by this analytical method have been compared to those obtained by two other methods: the FFT and the power balance methods. The FFT is the easiest and the fastest method compared to the others, but it is too sensitive to perturbations such as the sawteeth, which may cause inaccurate results. The analytical solution is the most robust method, because it simulates the whole temperature modulation; hence, the results are less sensitive to other perturbations. Furthermore it contains more information than the FFT method. For 0.2 ≤ r/a ≤ 0.7, the values of χANA are very close to those of χPB during the ECRH phase. Generally, the values of χHP, which is more 'transient', are larger than those of χANA and χPB (ECRH).
- Published
- 2003
28. The ECRH/ECCD system on Tore Supra, a major step towards continuous operation
- Author
-
G. Agarici, C. Darbos, Gilles Berger-By, X.L. Zou, E. Cellier, F. Bouquey, M. Jung, P. Bosia, M. Lennholm, M. Clapit, R. Magne, E. Traisnel, D. Roux, J. L. Segui, G. Giruzzi, and J. Clary
- Subjects
Physics ,Nuclear and High Energy Physics ,Tokamak ,Toroid ,business.industry ,Cyclotron ,Magnetic confinement fusion ,Tore Supra ,Condensed Matter Physics ,Electron cyclotron resonance ,law.invention ,Optics ,Nuclear magnetic resonance ,law ,Gyrotron ,Antenna (radio) ,business - Abstract
The 118 GHz electron cyclotron heating and current drive (ECRH/ECCD) system under development in Cadarache, France, for use on the Tore Supra tokamak (Pain M. et al 1994 Proc. 18th SOFT (Karlsruhe) pp 481–4: Darbos C. et al 2000 Proc. 21st SOFT (Madrid) pp 605–9), is designed to launch 2.4 MW of power for up to 10 min into the plasma. At present two out of six gyrotrons are installed and available for injection of up to 800 kW. This paper concentrates on the generation and transmission of the ECRH/ECCD power for very long pulse operation. The power is injected into the plasma as Gaussian beams by an antenna which, using actively cooled mirrors inside the Tore Supra vacuum vessel, allows extensive control of both the poloidal and toroidal injection angles. The toroidal field on Tore Supra is normally in the range of 3.8–4 T, which for 118 GHz gives almost central deposition at the fundamental electron cyclotron resonance. A pair of actively cooled corrugated mirrors is installed in each matching optics unit at the output of each gyrotron allowing complete control of the polarization of the wave transmitted to the antenna, with the result that pure O-mode—or pure X-mode—power injection can be achieved for all injection angles. In tokamak experiments, a world record energy of 17.8 MJ has been injected into the plasma. New upgraded gyrotrons specified to produce 400 kW for up to 10 min will be introduced over the next 3–4 years.
- Published
- 2003
29. Spin-off from Euratom-CEA association in fusion magnetic research
- Author
-
B. Gravil, B. Beaumont, F. Escourbiac, Ph. Chappuis, P. Libeyre, R. Magne, B. Couturier, G. Rey, M. Lipa, G. Agarici, P. Garin, P. Magaud, A. Durocher, J.L. Duchateau, Gilles Berger-By, F. Kazarian, J.J. Cordier, C. Portafaix, P. Bibet, and J. Schlosser
- Subjects
Nuclear physics ,Engineering ,Engineering management ,Magnetic fusion ,Nuclear Energy and Engineering ,business.industry ,Acceptance testing ,Process (engineering) ,Mechanical Engineering ,General Materials Science ,Tore Supra ,business ,Civil and Structural Engineering - Abstract
Significant spin-off from magnetic fusion research in Euratom-CEA association, over the last 40 years, has been induced and developed through a continuous process of exchange of scientific, technology and managerial expertise between the fusion scientists and manufacturing engineers. The growth in shared expertise, associated innovative applications and cooperative efforts with industry can be clearly identified (i) in the frame of the European Fusion Development Agreement (EFDA) and underlying technology programme, (ii) by the industrial applications induced from Tore Supra programme and the associated joint development of large test bed facilities for control and acceptance test, (iii) by the appreciation of the expected impacts of ITER from the companies involved in the Tore Supra construction.
- Published
- 2003
30. Benchmark of Coupling Codes (ALOHA, TOPLHA, and GRILL3D) with ITER Lower Hybrid Antenna
- Author
-
D. Milanesio, J. Hillairet, L. Panaccione, R. Maggiora, J. F. Artaud, Y. S. Bae, J. Belo, G. Berger By, J. M. Bernard, P.h. Cara, A. Cardinali, C. Castaldo, S. Ceccuzzi, R. Cesario, J. Decker, L. Delpech, A. Ekedahl, J. Garcia, P. Garibaldi, M. Goniche, D. Guilhem, C. Hamlyn Harris, G. T. Hoang, J. Hua, Q. Y. Huang, F. Imbeaux, F. Kazarian, S. H. Kim, Y. Lausenaz, R. Magne, L. Marfisi, S. Meschino, F. Mirizzi, W. Namkung, Y. Peysson, A. Saille, SCHETTINI, Giuseppe, M. Schneider, P. K. Sharma, O. Tudisco, S. R. Villari, K. Vulliez, Y. Wu, Q. Zeng, PAJEWSKI, LARA, D., Milanesio, J., Hillairet, L., Panaccione, R., Maggiora, J. F., Artaud, Y. S., Bae, J., Belo, G., Berger By, J. M., Bernard, Cara, P. h., A., Cardinali, C., Castaldo, S., Ceccuzzi, R., Cesario, J., Decker, L., Delpech, A., Ekedahl, J., Garcia, P., Garibaldi, M., Goniche, D., Guilhem, C., Hamlyn Harri, G. T., Hoang, J., Hua, Q. Y., Huang, F., Imbeaux, F., Kazarian, S. H., Kim, Y., Lausenaz, R., Magne, L., Marfisi, S., Meschino, F., Mirizzi, W., Namkung, Pajewski, Lara, Y., Peysson, A., Saille, Schettini, Giuseppe, M., Schneider, P. K., Sharma, O., Tudisco, S. R., Villari, K., Vulliez, Y., Wu, and Q., Zeng
- Subjects
Nuclear Fusion ,Lower Hybrid Antenna ,ITER - Abstract
In order to assist the design of the future ITER Lower Hybrid launcher, coupling codes ALOHA, from CEA Cadarache, TOPLHA, from Politecnico di Torino, and GRILL3D (Dr.Mikhail Irzak, A.F.Ioffe Physico-Technical Institute, St. Petersburg, Russia), from ENEA Frascati, have been compared with the initial (3 modules with 8 active waveguides per module) and updated (6 modules with 4 active waveguides per module) Passive-Active Multijunction (PAM) Lower Hybrid antennas. Both ALOHA and GRILL3D formulate the problem in terms of rectangular waveguides modes, while TOPLHA is based on boundary-value problem with the adoption of a triangular cell-mesh to represent the relevant waveguides surfaces. Several plasma profiles, with varying edge density and density increase, have been adopted to provide a complete description of the simulated launcher in terms of reflection coefficient, computed at the beginning of each LH module, and of power spectra. Good agreement can be observed among codes for all the simulated profiles.
- Published
- 2010
31. Bends in Oversized Rectangular Waveguide for the ITER Relevant LHCD System
- Author
-
S. Meschino, S. Ceccuzzi, F. Mirizzi, SCHETTINI, Giuseppe, J. F. Artaud, Y. S. Bae, J. H. Belo, G. Berger By, J. M. Bernard, P.h. Cara, A. Cardinali, C. Castaldo, R. Cesario, J. Decker, L. Delpech, A. Ekedahl, J. Garcia, P. Garibaldi, M. Goniche, D. Guilhem, J. Hillairet, G. T. Hoang, Q. Y. Huang, F. Imbeaux, H. Jia, S. H. Kim, Y. Lausenaz, R. Maggiora, R. Magne, L. Marfisi, D. Milanesio, W. Namkung, L. Panaccione, Y. Peysson, A. Saille, M. Schneider, P. K. Sharma, A. A. Tuccillo, O. Tudisco, G. Vecchi, R. Villari, K. Vulliez, Y. Wu, Q. Zeng, PAJEWSKI, LARA, S., Meschino, S., Ceccuzzi, F., Mirizzi, Pajewski, Lara, Schettini, Giuseppe, J. F., Artaud, Y. S., Bae, J. H., Belo, G., Berger By, J. M., Bernard, Cara, P. h., A., Cardinali, C., Castaldo, R., Cesario, J., Decker, L., Delpech, A., Ekedahl, J., Garcia, P., Garibaldi, M., Goniche, D., Guilhem, J., Hillairet, G. T., Hoang, Q. Y., Huang, F., Imbeaux, H., Jia, S. H., Kim, Y., Lausenaz, R., Maggiora, R., Magne, L., Marfisi, D., Milanesio, W., Namkung, L., Panaccione, Y., Peysson, A., Saille, M., Schneider, P. K., Sharma, A. A., Tuccillo, O., Tudisco, G., Vecchi, R., Villari, K., Vulliez, Y., Wu, and Q., Zeng
- Subjects
Nuclear Fusion ,ITER ,Oversized Waveguide - Abstract
The present work has been developed within the frame of the EFDA task “HCD-08-03-01: LH4IT, EU contribution to the ITER LHCD Development Plan” The use of rectangular oversized waveguides in the Main Transmission Lines (MTLs) of the Lower Hybrid Current Drive (LHCD) system of ITER, requires to investigate the problem of bends. The high number of involved waveguides (from 24 to 48) must be also taken into account. Thus, it has to consider not only the best choice in terms of curved framework, but also the proper allocation of all the waveguides. In this context, the principal specifications that characterize the design of the bends are: a) to minimize the reflection of the fundamental TE10 mode; b) to maximize the transmission of the fundamental TE10 mode; c) to minimize the coupling between the TE10 mode and other spurious modes that propagate at 5 GHz. This paper presents an overview about the bend options, and it compares the performances of several frameworks analyzed by using the Finite Element Method (FEM) commercial software, HFSS®. First of all, simple circular trajectory curves with different angulations, are considered. Then, the so called Mitre Bends alternatives are deeply analyzed. These curves are studied by several authors in the mono-modal configuration, with different techniques but the propagation in an oversized environment is a topic not much attended in literature. The only design parameter of the simple circular trajectory bend is the bending radius, so that the design is not flexible; the Mitre Bend structure is at least more flexible than the previous one and it is of great interest to study this type of bend to check the possible advantages. Finally an innovative modified Mitre Bend solution based on a cascade of trapezoidal elements is proposed.
- Published
- 2010
32. Mechanical Design Analysis of ITER-Relevant LHCD Antenna Elements
- Author
-
L. Marfisi, M. Goniche, C. Hamlyn Harris, J. Hillairet, J. F. Artaud, Y. S. Bae, J. Belo, G. Berger By, J. M. Bernard, P.h. Cara, A. Cardinali, C. Castaldo, S. Ceccuzzi, R. Cesario, J. Decker, L. Delpech, A. Ekedahl, J. Garcia, P. Garibaldi, D. Guilhem, G. T. Hoang, J. Hua, Q. Y. Huang, F. Imbeaux, F. Kazarian, S. H. Kim, Y. Lausenaz, R. Maggiora, R. Magne, S. Meschino, D. Milanesio, F. Mirizzi, W. Namkung, L. Panaccione, Y. Peysson, A. Saille, SCHETTINI, Giuseppe, M. Schneider, P. K. Sharma, A. A. Tuccillo, O. Tudisco, G. Vecchi, S. R. Villari, K. Vulliez, Y. Wu, Q. Zeng, PAJEWSKI, LARA, L., Marfisi, M., Goniche, C., Hamlyn Harri, J., Hillairet, J. F., Artaud, Y. S., Bae, J., Belo, G., Berger By, J. M., Bernard, Cara, P. h., A., Cardinali, C., Castaldo, S., Ceccuzzi, R., Cesario, J., Decker, L., Delpech, A., Ekedahl, J., Garcia, P., Garibaldi, D., Guilhem, G. T., Hoang, J., Hua, Q. Y., Huang, F., Imbeaux, F., Kazarian, S. H., Kim, Y., Lausenaz, R., Maggiora, R., Magne, S., Meschino, D., Milanesio, F., Mirizzi, W., Namkung, Pajewski, Lara, L., Panaccione, Y., Peysson, A., Saille, Schettini, Giuseppe, M., Schneider, P. K., Sharma, A. A., Tuccillo, O., Tudisco, G., Vecchi, S. R., Villari, K., Vulliez, Y., Wu, and Q., Zeng
- Subjects
Nuclear Fusion ,ITER ,Lower Hybrid Current Drive Antenna - Abstract
A 20 MW Lower Hybrid Current Drive system using an antenna based on the Passive Active Multijunction (PAM) concept is envisaged on ITER for steady state operation, including the current ramp-up phase. In the frame of an EFDA task, a conceptual design of such a system has been performed. This paper gives an insight of the mechanical analysis, modeling and design carried out on two elements of the antenna: the front face, and the RF windows which constitute the first tritium barrier. The front face of the antenna will have to withstand high heat and fast neutrons fluxes directly from the plasma. It will be actively cooled and present a beryllium coating upon ITER requirement. The main issues were to ensure a reasonable margin versus a maximum temperature fixed by safety concerns (650 °C for plasma facing beryllium), and to understand and assess resistance of the assembly while in operation. Analyses were conducted on some variants of this PAM. Manufacturing scenarios considering ITER requirements and involving various techniques (brazing, high isostatic pressure bonding, explosion bonding) were explored, and simulations over subsequent residual stresses were conducted. Analyses showed that surface temperatures do not exceed 500°C, and stresses should not affect the integrity of the antenna mouth. The RF window is a critical component since it also has a safety function. We planed to design a water cooled 5 GHz CW RF “pillbox” window capable of sustaining 500 kW of transmitted power. An RF optimization conducted on this concept allowed to combine good RF properties and low dielectric losses. It resulted in a maximum thermal stress in the ceramic of 31 MPa, well below the static fatigue limit of 50 MPa. The residual stresses resulting from the brazing methods involved in the manufacturing of this multi-material assembly (copper, copper alloys and ceramic) were also analyzed. Both studies allow us to move forward and focus on critical issues, such as manufacturing processes (beryllium, bonding techniques…) and R&D associated programs including test of mock-ups.
- Published
- 2010
33. Design of the Main Transmission Line for the ITER Relevant LHCD System
- Author
-
F. Mirizzi, S. Ceccuzzi, S. Meschino, J. F. Artaud, J. H. Belo, G. Berger By, J. M. Bernard, A. Cardinali, C. Castaldo, R. Cesario, J. Decker, L. Delpech, A. Ekedahl, J. Garcia, P. Garibaldi, M. Goniche, D. Guilhem, J. Hua, Q. Y. Huang, J. Hillairet, G. T. Hoang, F. Imbeaux, F. Kazarian, S. H. Kim, X. Litaudon, R. Maggiora, R. Magne, L. Marfisi, D. Milanesio, W. Namkung, L. Panaccione, Y. Peysson, P. K. Sharma, SCHETTINI, Giuseppe, M. Schneider, A. A. Tuccillo, O. Tudisco, G. Vecchi, R. Villari e. K. Vulliez, PAJEWSKI, LARA, F., Mirizzi, S., Ceccuzzi, S., Meschino, J. F., Artaud, J. H., Belo, G., Berger By, J. M., Bernard, A., Cardinali, C., Castaldo, R., Cesario, J., Decker, L., Delpech, A., Ekedahl, J., Garcia, P., Garibaldi, M., Goniche, D., Guilhem, J., Hua, Q. Y., Huang, J., Hillairet, G. T., Hoang, F., Imbeaux, F., Kazarian, S. H., Kim, X., Litaudon, R., Maggiora, R., Magne, L., Marfisi, D., Milanesio, W., Namkung, Pajewski, Lara, L., Panaccione, Y., Peysson, P. K., Sharma, Schettini, Giuseppe, M., Schneider, A. A., Tuccillo, O., Tudisco, G., Vecchi, and R. Villari e. K., Vulliez
- Subjects
Lower Hybrid Current Drive ,Nuclear Fusion ,ITER - Abstract
A very preliminary design of the Lower Hybrid Current Drive system for ITER was developed in the early years of the 2000's. Many parameters of the system were defined on the base of knowledge and technology of those times. Experimental results obtained in the last few years, like the successful tests of a PAM launcher on FTU and on Tore Supra have definitely indicated this concept as a possible candidate for the LHCD launcher for ITER. The successful development of a prototype klystron at 5GHz with a target RF power of 500kW CW has indicated this power as an upper limit for the present high vacuum electron tubes technology at this frequency. From the physics point of view the ITER operational scenarios have been well defined, while the last experiments have pointed out the effectiveness of the LHCD waves at high plasma density. All these results imposed a revision of the existing design of the LHCD system. The RF power limited to a maximum of 500kW per klystron has determined a new modularity of the whole system and of the PAM launcher. In addition a relatively shorter distance between klystrons and ITER machine suggested the possibility of using rectangular oversized waveguides, excited in the fundamental TE01 mode, for the realization of the Main Transmission Lines (MTLs). Therefore all the main microwave components of the system have been revised on these basis and different and more suitable solutions have been investigated. In particular this paper compares the performances of the two different MTLs, based respectively on circular and rectangular waveguides, describes the main components of the proposed rectangular MTL and analyzes their main microwave characteristics. Companion papers in this Conference cover all the other aspects of the updated design of the LHCD system for ITER. The present revision has been carried out in the frame of the EFDA task “HCD-08-03-01: EU Contribution to the ITER LHCD Development Plan (LH4IT)”.
- Published
- 2010
34. Development of a 140-ghz 1-mw continuous wave gyrotron for the w7-x stellarator
- Author
-
W. Kasparek, G. Dammertz, G. Neffe, W. Leonhardt, R. Magne, M. Q. Tran, K. Koppenburg, C. Lievin, G. Gantenbein, E. Giguet, S. Alberti, E. Borie, G. LeCloarec, A. Arnold, Y. LeGoff, H. P. Laqua, G. Michel, K. Schworer, S. Illy, Manfred Thumm, V. Erckmann, B. Piosczyk, R. Heidinger, G. A. Müller, M. Schmid, M. Kuntze, and Jean-Philippe Hogge
- Subjects
Physics ,Nuclear and High Energy Physics ,business.industry ,Electrical engineering ,Magnetic confinement fusion ,Pulse duration ,Condensed Matter Physics ,law.invention ,Optics ,law ,Gyrotron ,Continuous wave ,business ,Stellarator ,Diode ,Voltage ,Electron gun - Abstract
The development of high-power gyrotrons (118 GHz, 140 GHz) in continuous-wave (CW) operation for heating nuclear fusion plasmas has been in progress for several years in a joint collaboration between different European research institutes and industrial partners. The 140-GHz gyrotron being under development for the installation at the W7-X stellarator now under construction at the IPP Greifswald, Germany, operates in the TE/sub 28,8/ mode and is equipped with a diode type magnetron injection electron gun, an improved beam tunnel, a high mode-purity low-Ohmic loss cavity, an optimized nonlinear up-taper, a highly efficient internal quasi-optical mode converter, a single-stage depressed collector and an edge-cooled, single disk CVD-diamond window. RF measurements at pulse duration of a few milliseconds yielded an RF output power of 1.15 MW at a beam current of 40 A and a beam voltage of 84 kV. Depressed collector operation has been possible up to decelerating voltages of 33 kV without any reduction of the output power. Long pulse operation (10 s at 1 MW) was possible without any signs of a limitation caused by the tube. For this output power the efficiency of the tube could be increased from about 30% without to about 50% with depression voltage. The best performance reached so far has produced an energy per pulse as high as 90 MJ (power 0.64 MW, pulse length 140 s) which is the highest value achieved in gyrotrons operating at this frequency and power level. The pulse-length limitations so far are mainly due to the external system.
- Published
- 2002
35. RF heating systems evolution for the WEST project
- Author
-
A. Armitano, A. Ekedahl, D. Guilhem, Karl Vulliez, E. Wittebol, F. Durodié, A. Argouarch, J. Moerel, L. Colas, M. Goniche, M. Prou, J. Achard, R. Magne, Gilles Berger-By, J. van Helvoirt, Nicolas Charabot, R. Volpe, Patrick Mollard, Daniele Milanesio, Lena Delpech, Gilles Lombard, Julien Hillairet, J. Jacquot, F. Bouquey, E. Corbel, J.M. Bernard, E. Joffrin, and X. Litaudon
- Subjects
Engineering ,Tokamak ,Klystron ,business.industry ,Nuclear engineering ,Divertor ,RF power amplifier ,Electrical engineering ,chemistry.chemical_element ,Tore Supra ,Tungsten ,Electron cyclotron resonance ,law.invention ,chemistry ,law ,Dielectric heating ,business - Abstract
Tore Supra is dedicated to long pulse operation at high power, with a record in injected energy of 1 GJ (2.8 MW × 380 s) and an achieved capability of 12 MW injected power delivered by 3 RF systems: Lower Hybrid Current Drive (LHCD), Ion Cyclotron Resonance Heating (ICRH) and Electron Cyclotron Resonance Heating (ECRH). The new WEST project (W [tungsten] Environment in Steady-state Tokamak) aims at fitting Tore Supra with an actively cooled tungsten coated wall and a bulk tungsten divertor. This new device will offer to ITER a test bed for validating the relevant technologies for actively cooled metallic components, with D-shaped H-mode plasmas. For WEST operation, different scenarii able to reproduce ITER relevant conditions in terms of steady state heat loads have been identified, ranging from a high RF power scenario (15 MW, 30 s) to a high fluence scenario (10 MW, 1000 s). This paper will focus on the evolution of the RF systems required for WEST. For the ICRH system, the main issues are its ELM resilience and its CW compatibility, three new actively cooled antennas are being designed, with the aim of reducing their sensitivity to the load variations induced by ELMs. The LH system has been recently upgraded with new klystrons and the PAM antenna, the possible reshaping of the antenna mouths is presently studied for matching with the magnetic field line in the WEST configuration. For the ECRH system, the device for the poloidal movement of the mirrors of the antenna is being changed for higher accuracy and speed.Tore Supra is dedicated to long pulse operation at high power, with a record in injected energy of 1 GJ (2.8 MW × 380 s) and an achieved capability of 12 MW injected power delivered by 3 RF systems: Lower Hybrid Current Drive (LHCD), Ion Cyclotron Resonance Heating (ICRH) and Electron Cyclotron Resonance Heating (ECRH). The new WEST project (W [tungsten] Environment in Steady-state Tokamak) aims at fitting Tore Supra with an actively cooled tungsten coated wall and a bulk tungsten divertor. This new device will offer to ITER a test bed for validating the relevant technologies for actively cooled metallic components, with D-shaped H-mode plasmas. For WEST operation, different scenarii able to reproduce ITER relevant conditions in terms of steady state heat loads have been identified, ranging from a high RF power scenario (15 MW, 30 s) to a high fluence scenario (10 MW, 1000 s). This paper will focus on the evolution of the RF systems required for WEST. For the ICRH system, the main issues are its ELM resil...
- Published
- 2014
36. LHCD and ICRF heating experiments in H-mode plasmas on EAST
- Author
-
Xianzu Gong, Ryuhei Kumazawa, Hiroshi Kasahara, S.J. Wukitch, X. Litaudon, Guang Xu, Jiuyuan Li, Yuanzhe Zhao, F. Braun, Bing Ding, B. N. Wan, R. Magne, Xueyang Zhang, East Team, G. Taylor, Yuxuan Lin, J.-M. Noterdaeme, EAST Team, Tuccillo, AA, and Ceccuzzi, S
- Subjects
Technology and Engineering ,H-Mode ,Tokamak ,Hydrogen ,Chemistry ,Nuclear engineering ,chemistry.chemical_element ,Plasma ,Electron ,ICRH ,Ion ,law.invention ,LHCD ,Deuterium ,EAST ,law ,TOKAMAK ,Hydrogen concentration ,Atomic physics ,Ion cyclotron resonance - Abstract
An ICRF system with power up to 6.0 MW and a LHCD system up to 4MW have been applied for heating and current drive experiments on EAST. Intensive lithium wall coating was intensively used to reduce particle recycling and Hydrogen concentration in Deuterium plasma, which is needed for effective ICRF and LHCD power absorption in high density plasmas. Significant progress has been made with ICRF heating and LHW current drive for realizing the H-mode plasma operation in EAST. In 2010, H-mode was generated and sustained by LHCD alone, where lithium coating and gas puffing launcher mouth were applied to improve the LHCD power coupling and penetration into the core plasmas at high density of H-modes. During the last two experimental campaigns, ICRF Heating experiments were carried out at the fixed frequency of 27MHz, achieving effective ions and electrons heating with the H Minority Heating (H-MH) mode, where electrons are predominantly heated by collisions with high energy minority ions. The H-MH mode gave the best plasma performance, and realized H-mode alone in 2012. Combination of ICRF and LHW power injection generated the H-mode plasmas with various ELMy characteristics. The first successful application of the ICRF Heating in the D (He3) plasma was also achieved. The progress on ICRF heating, LHCD experiments and their application in achieving H-mode operation from last two years will be discussed in this report.
- Published
- 2014
37. Development of a 140 GHz, 1 MW, Continuous Wave Gyrotron for the W7-X Stellarator
- Author
-
W. Leonhardt, Jean-Philippe Hogge, Bernhard Piosczyk, E. Giguet, H. P. Laqua, Georg Müller, Manfred Thumm, Edith Borie, W. Kasparek, K. Koppenburg, Andreas Arnold, G. Neffe, Christophe Lievin, Stefano Alberti, R. Magne, M. Kuntze, Minh Quang Tran, G. Gantenbein, G. Le Cloarec, G. Dammertz, Martin Schmid, S. Illy, V. Erckmann, G. Michel, and Y. Le Goff
- Subjects
Engineering ,business.industry ,Electrical engineering ,Pulse duration ,law.invention ,Optics ,law ,Gyrotron ,Continuous wave ,Electrical and Electronic Engineering ,business ,Beam (structure) ,Stellarator ,Electron gun ,Diode ,Voltage - Abstract
The development of high power gyrotrons in continuous wave (CW) operation for heating of plasmas used in nuclear fusion research has been in progress for several years in a joint collaboration between different European research institutes and industrial partners. A recent R&D program aims at the development of 140 GHz gyrotrons with an output power of 1 MW in CW operation for the 10 MW ECRH system of the new stellarator plasma physics experiment Wendelstein 7-X at IPP Greifswald, Germany. The work is performed under responsibility of FZK Karlsruhe in collaboration with CRPP Lausanne, IPF Stuttgart, IPP Garching and Greifswald, CEA Cadarache and TED Velizy. The gyrotron operates in the TE28.8 mode and is equipped with a diode type magnetron injection electron gun, an improved beam tunnel, a high-mode purity low-ohmic loss cavity, an optimized non-linear up-taper, a highly efficient internal quasi-optical mode converter, a single-stage depressed collector and an edge-cooled, single disk CVD-diamond window. RF measurements at pulse duration of a few milliseconds yielded an RF output power of 1.15 MW at a beam current of 40 A and a beam voltage of 84 kV. Depressed collector operation has been possible up to decelerating voltages of 33 kV without any reduction of the output power, and an efficiency of 49 % has been achieved. Long pulse operation of the gyrotron was possible with an output power of 1 MW at a pulse length of 10 s without any signs of a limitation caused by the tube. For this output power the efficiency of the tube could be increased from about 30 % without depression voltage to about 50% with depression voltage. At an output power of 640 kW, a pulse length of 140 s could be achieved.
- Published
- 2001
38. European high-power CW gyrotron development for ECRH systems
- Author
-
Edith Borie, E. Giguet, D. Wagner, Manfred Thumm, R. Magne, Bernhard Piosczyk, G. Le Cloarec, P. Garin, G. Michel, C. Tran, S Albertia, Y. Le Goff, A. Arnold, G. Dammertz, V. Erckmann, Stefan Illy, and Minh Quang Tran
- Subjects
Physics ,Tokamak ,business.industry ,Mechanical Engineering ,Pulse duration ,Tore Supra ,Fusion power ,law.invention ,Nuclear magnetic resonance ,Optics ,Nuclear Energy and Engineering ,law ,Gyrotron ,General Materials Science ,business ,Beam (structure) ,Stellarator ,Civil and Structural Engineering ,Diode - Abstract
The development of high power CW gyrotrons for ECRH heating of fusion relevant plasmas has been in progress for several years in a joint collaboration between different European research institutes and an industrial partner. Two development are on going, aiming, respectively, towards a 0.51-MW-210-s gyrotron at 118 GHz for the tokamaks TCV of CRPP (2 s pulse length) and Tore Supra of CEA (210 s pulse length), and towards a 1 MW-CW gyrotron at 140 GHz for the stellarator W7-X under construction in Greifswald. Series 118 GHz gyrotrons have been delivered to CRPP and CEA. Long pulse results (15.5 s at 400 kW) as well as considerations on power modulation capabilities of the tube and on long pulse effects are discussed. In a second development program, a 1-MW/CW 140 GHz gyrotron with a CVD diamond window and a single-stage depressed collector has been designed and constructed as a first prototype for the 10-MW ECRH (Elecron Cyclotion Resonance Heating) system of the new stellarator experiment Wendelstein 7-X of IPP Greifswald/Germany. The gyrotron operates in the TE28.8 cavity mode and provides a linearly polarized, TEM0.0 Gaussian RF beam. It is composed of a diode MIG gun, an improved beam tunnel, a high-mode purity low-ohmic loss cavity, an optimized non-linear up-taper, a highly efficient internal quasi-optical mode converter employing an improved launcher together with one quasi-elliptical and two beam shaping reflectors, a large single stage depressed collector at ground potential with a beam sweeping magnet, and a horizontal RF output. (C) 2001 Elsevier Science B.V. All rights reserved.
- Published
- 2001
39. On the impact of electron spectroscopies (versus optical techniques) to study organized organic layers and their interfaces
- Author
-
R. Magne´e, Z. Mekhalif, C. Doneux, A.-S. Duwez, C. Gregoire, J. Riga, J. Delhalle, and J.J. Pireaux
- Subjects
Excitation function ,chemistry.chemical_classification ,Radiation ,Intermolecular force ,Analytical chemistry ,Infrared spectroscopy ,Electron ,Polymer ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Crystallinity ,X-ray photoelectron spectroscopy ,chemistry ,Physical and Theoretical Chemistry ,Spectroscopy - Abstract
When preparing and characterizing ordered organic layers, knowledge of the structure of the ultra-thin films is often missing or difficult to gather. For different self-assembled layers of the thiol and car☐ylic acid families, we show that this valuable type of information is obtainable with X-ray photoelectron spectroscopy (XPS) and high-resolution electron energy-loss spectroscopy (HREELS). Indeed, information on the film order and superficial composition is available through analysis of the core-level peak positions and widths (in XPS), and through study of the elastic peak width and angular distribution and analysis of the material excitation function (in HREELS). However, for some insight into the crystallinity of the layer and intermolecular interactions, infrared spectroscopy in the grazing-angle absorption-reflection mode (IRAS) appears to be complementary.
- Published
- 1998
40. Radio frequency additional heating systems issues for the TORE-SUPRA WEST project
- Author
-
A. Armitano, Annika Ekedahl, Lena Delpech, Gilles Lombard, L. Colas, Gilles Berger-By, E. Wittebol, F. Bouquey, X. Litaudon, M. Prou, Daniele Milanesio, R. Volpe, M. Goniche, Dominique Guilhem, J. Achard, R. Magne, J. Helvoirt, E. Traisnel-Corbel, J.M. Bernard, P. Mollard, Julien Hillairet, J. Jacquot, Karl Vulliez, J. Moerel, F. Durodie, Nicolas Charabot, A. Argouarch, and E. Joffrin
- Subjects
Engineering ,Tokamak ,Radio-Frequency ,Nuclear engineering ,High Tech Systems & Materials ,Superconducting magnet ,Tore Supra ,Electron cyclotron resonance ,law.invention ,WEST-Project ,law ,TS - Technical Sciences ,Energy ,Industrial Innovation ,Klystron ,Plasma Additional heating ,TORE-SUPRA ,business.industry ,Divertor ,RF power amplifier ,Electrical engineering ,2013 Mechatronics, Mechanics & Materials ,EAM - Equipment for Additive Manufacturing ,Radio frequency ,business - Abstract
This year TORE-SUPRA celebrated its 25 years of operation. During this long time a number of technologies have been developed [1]. First of all it was mandatory to develop reliable superconducting magnets at ∼ - 4 K, with superfluid helium as efficient coolant. For the production of steady state discharge, 3 types of Radio Frequency (RF) additional heating systems have been developed: Lower Hybrid Current Drive (LHCD), Ion Cyclotron Resonance Heating (ICRH) and Electron Cyclotron Resonance Heating (ECRH) [2]. To cope with long lasting discharges (up to 380 s × 2.8 MW) and large RF additional heating power (12.3 MW × 3 s), Actively Cooled (AC) Plasma Facing Components (PFC) were deployed in TORE-SUPRA for the first time in a Tokamak environment. TORE-SUPRA is now being modified into an axisymmetric tokamak with actively cooled tungsten main chamber walls and a divertor, the WEST project (W - for tungsten - Environment in Steady-state Tokamak) [3]. This new facility has the objective to offer ITER a test bed for validating the relevant actively cooled metallic technologies in D-shape H-mode plasmas. In contrast to other metallic devices such as JET and ASDEX, WEST will rely only on RF additional power systems. A set of plasma scenarios have been identified, ranging from a high total RF power scenario up to 15 MW during 30 seconds, to a high fluence scenario of 1000 seconds with up to 10 MW of injected RF power. These scenarios are able to reproduce ITER relevant conditions of steady state heat loads of 10 to 20 MW/m, to test tungsten actively cooled divertor technologies with relevant power heat fluxes and particle fluence. The paper presents the main issues regarding WEST project and especially the additional RF power injection systems (2 LHCD antennas, 3 + 4 = 7 MW continuous wave and 3 ICRH antennas, 3 × 3 = 9 MW-30 s or 3 MW-1000 s) for WEST. The front face of the LHCD antennas will be modified to account for the different plasma position and smaller toroidal field ripple, due to the more inward antenna position in the vessel. No other modifications are needed on the Passive-Active Multijunction (PAM) or the Fully-Active Multijunction (FAM) LHCD antennas, or the associated generator (2 × 8 klystrons, 600 kW each CW). Concerning the ICRH system, the main challenges are its ELM-resilience, its compatibility with continuous operation, and the interaction of the RF near fields with neighbouring plasma facing components. 3 new actively cooled antennas are being designed to be matched with an ELMs resilient electric circuit. The proposed solution is based on the JET-EP antenna and CEA prototype tested in 2007, both having identical internal conjugate-T electrical layout and a demonstrated load resilience capacity to plasma edge transients during ELMs. © 2013 IEEE.
- Published
- 2013
41. RF modeling of the ITER-relevant lower hybrid antenna
- Author
-
S.H. Kim, O. Tudisco, Gilles Berger-By, Pankaj Sharma, R. Magne, Daniele Milanesio, Won Namkung, Y. Wu, Y. Lausenaz, A. A. Tuccillo, L. Marfisi, Giuseppe Schettini, J. Belo, R. Villari, C. Castaldo, Julien Hillairet, L. Panaccione, G. T. Hoang, J.F. Artaud, M. Schneider, A. Cardinali, Ph. Cara, G. Vecchi, Frederic Imbeaux, P. Garibaldi, Riccardo Maggiora, J. Garcia, M. Goniche, Q.Y. Huang, Y.S. Bae, Y. Peysson, Jia Hua, J. Decker, Karl Vulliez, A. Ekedahl, Silvio Ceccuzzi, J.M. Bernard, Lara Pajewski, R. Cesario, S. Meschino, Lena Delpech, D. Guilhem, F. Kazarian, Francesco Mirizzi, Q. Zeng, A. Saille, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Italian National agency for new technologies, Energy and sustainable economic development [Frascati] (ENEA), Associacao Euratom-IST, Universidade Tecnica de Lisboa, National Fusion Research Institute (NFRI), Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Politecnico di Torino = Polytechnic of Turin (Polito), Department of Physics, Pohang University of Science and Technology, Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], European Project: 25887,EFDA, Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA), Hillairet, J., Ceccuzzi, Silvio, Belo, J., Marfisi, L., Artaud, J. F., Bae, Y. S., Berger By, G., Bernard, J. M., Cara, Ph, Cardinali, A., Castaldo, C., Cesario, R., Decker, J., Delpech, L., Ekedahl, A., Garcia, J., Garibaldi, P., Goniche, M., Guilhem, D., Hoang, G. T., Jia, H., Huang, Q. Y., Imbeaux, F., Kazarian, F., Kim, S. H., Lausenaz, Y., Maggiora, R., Magne, R., Meschino, S., Milanesio, D., Mirizzi, F., Namkung, W., Pajewski, Lara, Panaccione, L., Peysson, Y., Saille, A., Schettini, Giuseppe, Schneider, M., Sharma, P. K., Tuccillo, A. A., Tudisco, O., Vecchi, G., Villari, R., Vulliez, K., Wu, Y., and Zeng, Q.
- Subjects
Lower hybrid ,Current Drive ,LHCD ,PAM ,ITER ,Nuclear Fusion ,Computer science ,Wave propagation ,Mechanical Engineering ,Nuclear engineering ,Frame (networking) ,[SPI.PLASMA]Engineering Sciences [physics]/Plasmas ,01 natural sciences ,010305 fluids & plasmas ,[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism ,Nuclear Energy and Engineering ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,Hybrid system ,0103 physical sciences ,General Materials Science ,Lower Hybrid ,Antenna (radio) ,010306 general physics ,High heat ,Civil and Structural Engineering - Abstract
"In the frame of the EFDA task HCD-08-03-01, a 5 GHz Lower Hybrid system which should be able to deliver 20 MW CW on ITER and sustain the expected high heat fluxes has been reviewed. The design and overall dimensions of the key RF elements of the launcher and its subsystem has been updated from the 2001 design in collaboration with ITER organization. Modeling of the LH wave propagation and absorption into the plasma shows that the optimal parallel index must be chosen between 1.9 and 2.0 for the ITER steady-state scenario. The present study has been made with n|| = 2.0 but can be adapted for n|| = 1.9. Individual components have been studied separately giving confidence on the global RF design of the whole antenna. © 2011 Elsevier B.V. All Rights Reserved."
- Published
- 2011
42. Contribution of Tore Supra in preparation of ITER
- Author
-
B. Saoutic, J. Abiteboul, L. Allegretti, S. Allfrey, J.M. Ané, T. Aniel, A. Argouarch, J.F. Artaud, M.H. Aumenier, S. Balme, V. Basiuk, O. Baulaigue, P. Bayetti, A. Bécoulet, M. Bécoulet, M.S. Benkadda, F. Benoit, G. Berger-by, J.M. Bernard, B. Bertrand, P. Beyer, A. Bigand, J. Blum, D. Boilson, G. Bonhomme, H. Bottollier-Curtet, C. Bouchand, F. Bouquey, C. Bourdelle, S. Bourmaud, C. Brault, S. Brémond, C. Brosset, J. Bucalossi, Y. Buravand, P. Cara, V. Catherine-Dumont, A. Casati, M. Chantant, M. Chatelier, G. Chevet, D. Ciazynski, G. Ciraolo, F. Clairet, M. Coatanea-Gouachet, L. Colas, L. Commin, E. Corbel, Y. Corre, X. Courtois, R. Dachicourt, M. Dapena Febrer, M. Davi Joanny, R. Daviot, H. De Esch, J. Decker, P. Decool, P. Delaporte, E. Delchambre, E. Delmas, L. Delpech, C. Desgranges, P. Devynck, T. Dittmar, L. Doceul, D. Douai, H. Dougnac, J.L. Duchateau, B. Dugué, N. Dumas, R. Dumont, A. Durocher, F.X. Duthoit, A. Ekedahl, D. Elbeze, M. El Khaldi, F. Escourbiac, F. Faisse, G. Falchetto, M. Farge, J.L. Farjon, M. Faury, N. Fedorczak, C. Fenzi-Bonizec, M. Firdaouss, Y. Frauel, X. Garbet, J. Garcia, J.L. Gardarein, L. Gargiulo, P. Garibaldi, E. Gauthier, O. Gaye, A. Géraud, M. Geynet, P. Ghendrih, I. Giacalone, S. Gibert, C. Gil, G. Giruzzi, M. Goniche, V. Grandgirard, C. Grisolia, G. Gros, A. Grosman, R. Guigon, D. Guilhem, B. Guillerminet, R. Guirlet, J. Gunn, O. Gurcan, S. Hacquin, J.C. Hatchressian, P. Hennequin, C. Hernandez, P. Hertout, S. Heuraux, J. Hillairet, G.T. Hoang, C. Honore, M. Houry, T. Hutter, P. Huynh, G. Huysmans, F. Imbeaux, E. Joffrin, J. Johner, L. Jourd'Heuil, Y.S. Katharria, D. Keller, S.H. Kim, M. Kocan, M. Kubic, B. Lacroix, V. Lamaison, G. Latu, Y. Lausenaz, C. Laviron, F. Leroux, L. Letellier, M. Lipa, X. Litaudon, T. Loarer, P. Lotte, S. Madeleine, P. Magaud, P. Maget, R. Magne, L. Manenc, Y. Marandet, G. Marbach, J.L. Maréchal, L. Marfisi, C. Martin, G. Martin, V. Martin, A. Martinez, J.P. Martins, R. Masset, D. Mazon, N. Mellet, L. Mercadier, A. Merle, D. Meshcheriakov, O. Meyer, L. Million, M. Missirlian, P. Mollard, V. Moncada, P. Monier-Garbet, D. Moreau, P. Moreau, L. Morini, M. Nannini, M. Naiim Habib, E. Nardon, H. Nehme, C. Nguyen, S. Nicollet, R. Nouilletas, T. Ohsako, M. Ottaviani, S. Pamela, H. Parrat, P. Pastor, A.L. Pecquet, B. Pégourié, Y. Peysson, I. Porchy, C. Portafaix, M. Preynas, M. Prou, J.M. Raharijaona, N. Ravenel, C. Reux, P. Reynaud, M. Richou, H. Roche, P. Roubin, R. Sabot, F. Saint-Laurent, S. Salasca, F. Samaille, A. Santagiustina, Y. Sarazin, A. Semerok, J. Schlosser, M. Schneider, M. Schubert, F. Schwander, J.L. Ségui, G. Selig, P. Sharma, J. Signoret, A. Simonin, S. Song, E. Sonnendruker, F. Sourbier, P. Spuig, P. Tamain, M. Tena, J.M. Theis, D. Thouvenin, A. Torre, J.M. Travère, E. Tsitrone, J.C. Vallet, E. Van Der Plas, A. Vatry, J.M. Verger, L. Vermare, F. Villecroze, D. Villegas, R. Volpe, K. Vulliez, J. Wagrez, T. Wauters, L. Zani, D. Zarzoso, X.L. Zou, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Science et Ingénierie des Matériaux et Procédés (SIMaP), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Dept. Accelerateurs - XFEL, Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Institut universitaire des systèmes thermiques industriels (IUSTI), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Matériaux et Mécanique des Composants (EDF R&D MMC), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Association EURATOM-CEA (CEA/DSM/DRFC), Département de Recherche sur la Fusion Contrôlée (DRFC), Laboratoire d'Interaction Laser Matière (LILM), Département de Physico-Chimie (DPC), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de Physique des Plasmas (LPP), Université Paris-Sud - Paris 11 (UP11)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Département de Physique Nucléaire (ex SPhN) (DPHN), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Ngee Ann Polytechnic, School of Engineering, Mechanical Engineering Division, ITER organization (ITER), CEA Cadarache, Centre de Thermique de Lyon (CETHIL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), CEA ISIS, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Chimie de Clermont-Ferrand (ICCF), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-SIGMA Clermont (SIGMA Clermont)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche en Sciences et Techniques de la Ville - FR 2488 (IRSTV), Université de Nantes (UN)-École Centrale de Nantes (ECN)-EC. ARCHIT. NANTES-Université d'Angers (UA)-Université de La Rochelle (ULR)-Centre National de la Recherche Scientifique (CNRS), Eau et Environnement (IFSTTAR/GERS/EE), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-PRES Université Nantes Angers Le Mans (UNAM), Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Institut des Sciences de l'Evolution de Montpellier (UMR ISEM), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS), Centre of Molecular and Structural Biomedicine (CBME)/Institute of Biotechnology and Bioengineering (IBB), University of Algarve [Portugal], Laboratoire Lasers, Plasmas et Procédés photoniques (LP3), Centre d'Histoire 'Espaces et Cultures' (CHEC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP), École des hautes études en sciences sociales (EHESS), Centre hospitalier universitaire de Nantes (CHU Nantes), Centre de Recherche en Cancérologie Nantes-Angers (CRCNA), Centre Hospitalier Universitaire d'Angers (CHU Angers), PRES Université Nantes Angers Le Mans (UNAM)-PRES Université Nantes Angers Le Mans (UNAM)-Hôtel-Dieu de Nantes-Institut National de la Santé et de la Recherche Médicale (INSERM)-Hôpital Laennec-Centre National de la Recherche Scientifique (CNRS)-Faculté de Médecine d'Angers-Centre hospitalier universitaire de Nantes (CHU Nantes), Centre d'investigation clinique en cancérologie (CI2C), IFP Energies nouvelles (IFPEN), Matériaux, ingénierie et science [Villeurbanne] (MATEIS), Ecologie Systématique et Evolution (ESE), Centre National de la Recherche Scientifique (CNRS)-AgroParisTech-Université Paris-Sud - Paris 11 (UP11), Laboratoire d'Etude des Matériaux en Milieux Agressifs (LEMMA), Université de La Rochelle (ULR), CMCR des Massues, Croix rouge française, Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Réserve Naturelle Nationale Baie St-Brieuc, Réserves Naturelles de France-Réserves Naturelles de France, Géoazur (GEOAZUR 6526), Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Direction des Jardins botaniques et zoologiques, Muséum national d'Histoire naturelle (MNHN), Department of Information Technology (INTEC), Ghent University [Belgium] (UGENT), Dipartimento di Ingegneria dell'Ambiente e per lo Sviluppo Sostenibile (DIASS), Dipartimento Ingn Ambiente & Sviluppo Soste, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2), Equipe Dynamique des Systemes Complexes, Université de Provence - Aix-Marseille 1, Technische Universität Braunschweig [Braunschweig], Laboratoire de physique des milieux ionisés et applications (LPMIA), Université Henri Poincaré - Nancy 1 (UHP)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Cancérologie de Lyon (UNICANCER/CRCL), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre Léon Bérard [Lyon], Bureau de Recherches Géologiques et Minières (BRGM) (BRGM), Service de Chimie Physique (SCP), Laboratoire des Adaptations Physiologiques aux Activités Physiques (LAPHAP), Université de Poitiers, Institut d'Electronique du Solide et des Systèmes ( InESS ), Centre National de la Recherche Scientifique ( CNRS ), Institut de Recherche sur la Fusion par confinement Magnétique ( IRFM ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Science et Ingénierie des Matériaux et Procédés ( SIMaP ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut polytechnique de Grenoble - Grenoble Institute of Technology ( Grenoble INP ) -Institut National Polytechnique de Grenoble ( INPG ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ), Laboratoire de l'Accélérateur Linéaire ( LAL ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Météorologie Dynamique (UMR 8539) ( LMD ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -École polytechnique ( X ) -École des Ponts ParisTech ( ENPC ) -Centre National de la Recherche Scientifique ( CNRS ) -Département des Géosciences - ENS Paris, École normale supérieure - Paris ( ENS Paris ) -École normale supérieure - Paris ( ENS Paris ), Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies ( FEMTO-ST ), Université de Technologie de Belfort-Montbeliard ( UTBM ) -Ecole Nationale Supérieure de Mécanique et des Microtechniques ( ENSMM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Franche-Comté ( UFC ), Institut universitaire des systèmes thermiques industriels ( IUSTI ), Centre National de la Recherche Scientifique ( CNRS ) -Aix Marseille Université ( AMU ), EDF - R&D Department MMC and MAI, EDF R&D ( EDF R&D ), EDF ( EDF ) -EDF ( EDF ), Association EURATOM-CEA ( CEA/DSM/DRFC ), Département de Recherche sur la Fusion Contrôlée ( DRFC ), Laboratoire d'Interaction Laser Matière ( LILM ), Département de Physico-Chimie ( DPC ), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Laboratoire de Physique des Plasmas ( LPP ), Université Paris-Sud - Paris 11 ( UP11 ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Observatoire de Paris-École polytechnique ( X ) -Sorbonne Universités-PSL Research University ( PSL ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), Institut Jean Lamour ( IJL ), Centre National de la Recherche Scientifique ( CNRS ) -Université de Lorraine ( UL ), Département de Physique Nucléaire (ex SPhN) ( DPHN ), Institut de Recherches sur les lois Fondamentales de l'Univers ( IRFU ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay, ITER [St. Paul-lez-Durance], ITER, Centre de Thermique de Lyon ( CETHIL ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'Electronique et des Technologies de l'Information ( CEA-LETI ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Grenoble Alpes [Saint Martin d'Hères], Institut de Chimie de Clermont-Ferrand ( ICCF ), Université Blaise Pascal - Clermont-Ferrand 2 ( UBP ) -Sigma CLERMONT ( Sigma CLERMONT ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de Recherche en Sciences et Techniques de la Ville ( IRSTV ), Université d'Angers ( UA ) -Université de Nantes ( UN ) -École Centrale de Nantes ( ECN ) -Université de La Rochelle ( ULR ) -EC. ARCHIT. NANTES-Centre National de la Recherche Scientifique ( CNRS ), Eau et Environnement ( IFSTTAR/GERS/EE ), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux ( IFSTTAR ) -PRES Université Nantes Angers Le Mans ( UNAM ), Physique des interactions ioniques et moléculaires ( PIIM ), Aix Marseille Université ( AMU ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'Intégration des Systèmes et des Technologies ( LIST ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay, Institut des Sciences de l'Evolution de Montpellier ( ISEM ), Université de Montpellier ( UM ) -Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Lasers, Plasmas et Procédés photoniques ( LP3 ), Centre d'Histoire 'Espaces et Cultures' ( CHEC ), Université Blaise Pascal - Clermont-Ferrand 2 ( UBP ), École des hautes études en sciences sociales ( EHESS ), Centre hospitalier universitaire de Nantes ( CHU Nantes ), Centre de Recherche en Cancérologie / Nantes - Angers ( CRCNA ), CHU Angers-Centre hospitalier universitaire de Nantes ( CHU Nantes ) -Hôtel-Dieu de Nantes-Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Hôpital Laennec-Centre National de la Recherche Scientifique ( CNRS ) -Faculté de Médecine d'Angers, Centre d'investigation clinique en cancérologie ( CI2C ), IFP Energies nouvelles ( IFPEN ), Matériaux, ingénierie et science [Villeurbanne] ( MATEIS ), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique ( CNRS ) -Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ), Ecologie Systématique et Evolution ( ESE ), Université Paris-Sud - Paris 11 ( UP11 ) -AgroParisTech-Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'Etude des Matériaux en Milieux Agressifs ( LEMMA ), Université de La Rochelle ( ULR ), Institut des Sciences Chimiques de Rennes ( ISCR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Ecole Nationale Supérieure de Chimie de Rennes-Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ), Croix-rouge française, Procédés et Ingénierie en Mécanique et Matériaux [Paris] ( PIMM ), Centre National de la Recherche Scientifique ( CNRS ) -Conservatoire National des Arts et Métiers [CNAM] ( CNAM ), Institut de Microélectronique, Electromagnétisme et Photonique - Laboratoire d'Hyperfréquences et Caractérisation ( IMEP-LAHC ), Centre National de la Recherche Scientifique ( CNRS ) -Université Savoie Mont Blanc ( USMB [Université de Savoie] [Université de Chambéry] ) -Institut National Polytechnique de Grenoble ( INPG ) -Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut polytechnique de Grenoble - Grenoble Institute of Technology ( Grenoble INP ) -Université Grenoble Alpes ( UGA ), Laboratoire de Mécanique, Modélisation et Procédés Propres ( M2P2 ), Aix Marseille Université ( AMU ) -Ecole Centrale de Marseille ( ECM ) -Centre National de la Recherche Scientifique ( CNRS ), Géoazur ( GEOAZUR ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Université Nice Sophia Antipolis ( UNS ), Université Côte d'Azur ( UCA ) -Université Côte d'Azur ( UCA ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de la Côte d'Azur, Université Côte d'Azur ( UCA ) -Centre National de la Recherche Scientifique ( CNRS ), Réserve de la Haute Touche, Muséum National d'Histoire Naturelle ( MNHN ), Department of Information Technology ( INTEC ), Ghent University [Belgium] ( UGENT ), Dipartimento di Ingegneria dell'Ambiente e per lo Sviluppo Sostenibile ( DIASS ), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier ( ICGM ICMMM ), Université Montpellier 1 ( UM1 ) -Université Montpellier 2 - Sciences et Techniques ( UM2 ) -Ecole Nationale Supérieure de Chimie de Montpellier ( ENSCM ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ), Physique des milieux ionisés et applications ( LPMIA ), Université Henri Poincaré - Nancy 1 ( UHP ) -Centre National de la Recherche Scientifique ( CNRS ), Centre de Recherche en Cancérologie de Lyon ( CRCL ), Université de Lyon-Université de Lyon-Centre Léon Bérard [Lyon]-Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Bureau de Recherches Géologiques et Minières (BRGM) ( BRGM ), Catalyse par les métaux, Institut de Chimie des Milieux et Matériaux de Poitiers ( IC2MP ), Université de Poitiers-Centre National de la Recherche Scientifique ( CNRS ) -Université de Poitiers-Centre National de la Recherche Scientifique ( CNRS ), Service de Chimie Physique ( SCP ), Laboratoire des Adaptations Physiologiques aux Activités Physiques ( LAPHAP ), Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Centre Léon Bérard [Lyon]-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Université d'Angers (UA)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Université de La Rochelle (ULR)-EC. ARCHIT. NANTES-Centre National de la Recherche Scientifique (CNRS), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226, Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), and COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Nice Sophia Antipolis (... - 2019) (UNS)
- Subjects
Physics ,[PHYS]Physics [physics] ,Nuclear and High Energy Physics ,[ PHYS ] Physics [physics] ,Plasma parameters ,Ripple ,Plasma ,Tore Supra ,Collisionality ,Condensed Matter Physics ,7. Clean energy ,01 natural sciences ,010305 fluids & plasmas ,Computational physics ,symbols.namesake ,Nuclear magnetic resonance ,Physics::Plasma Physics ,0103 physical sciences ,symbols ,Langmuir probe ,Electron temperature ,010306 general physics ,Power density - Abstract
International audience; Tore Supra routinely addresses the physics and technology of very long-duration plasma discharges, thus bringing precious information on critical issues of long pulse operation of ITER. A new ITER relevant lower hybrid current drive (LHCD) launcher has allowed coupling to the plasma a power level of 2.7 MW for 78 s, corresponding to a power density close to the design value foreseen for an ITER LHCD system. In accordance with the expectations, long distance (10 cm) power coupling has been obtained. Successive stationary states of the plasma current pro le have been controlled in real-time featuring (i) control of sawteeth with varying plasma parameters, (ii) obtaining and sustaining a `hot core' plasma regime, (iii) recovery from a voluntarily triggered deleterious magnetohydrodynamic regime. The scrape-off layer (SOL) parameters and power deposition have been documented during L-mode ramp-up phase, a crucial point for ITER before the X-point formation. Disruption mitigation studies have been conducted with massive gas injection, evidencing the difference between He and Ar and the possible role of the q = 2 surface in limiting the gas penetration. ICRF assisted wall conditioning in the presence of magnetic eld has been investigated, culminating in the demonstration that this conditioning scheme allows one to recover normal operation after disruptions. The effect of the magnetic eld ripple on the intrinsic plasma rotation has been studied, showing the competition between turbulent transport processes and ripple toroidal friction. During dedicated dimensionless experiments, the effect of varying the collisionality on turbulence wavenumber spectra has been documented, giving new insight into the turbulence mechanism. Turbulence measurements have also allowed quantitatively comparing experimental results with predictions by 5D gyrokinetic codes: numerical results simultaneously match the magnitude of effective heat diffusivity, rms values of density uctuations and wavenumber spectra. A clear correlation between electron temperature gradient and impurity transport in the very core of the plasma has been observed, strongly suggesting the existence of a threshold above which transport is dominated by turbulent electron modes. Dynamics of edge turbulent uctuations has been studied by correlating data from fast imaging cameras and Langmuir probes, yielding a coherent picture of transport processes involved in the SOL.
- Published
- 2011
43. Iter like lower hybrid Passive Active Multi-Junction antenna manufacturing and tests
- Author
-
A. Argouarch, M. Houry, D. Raulin, A. Saille, F. Faisse, Julien Hillairet, D. Volpe, Jc. Hatchressian, B. Zago, Jh. Belo, Karl Vulliez, M. Lipa, Lena Delpech, Gilles Lombard, D. Thouvenin, Gilles Berger-By, Marc Missirlian, J. Achard, M. Prou, A. Martinez, S. Madeleine, Jp. Joanard, F. Samaille, E. Corbel, Patrick Mollard, G. Agarici, C. Goletto, Bernard Bertrand, R. Magne, Z. Bej, T. Hoang, Jm. Verger, S. Poli, D. Guilhem, M. Chantant, M. Goniche, L. Marfisi, R. Lambert, C. Brun, C. Portafaix, E. Delmas, M. Maury, A. Armitano, P. Fejoz, A. Ekedahl, L. Doceul, M. Preynas, M. Lyonne, B. Soler, F. Bouquey, P. Joubert, and E. Rousset
- Subjects
Coupling ,Engineering ,Tokamak ,business.industry ,Electrical engineering ,Mechanical engineering ,Converters ,Tore Supra ,law.invention ,Design objective ,law ,Radio frequency ,Antenna (radio) ,business ,Power density - Abstract
A new concept of multijunction-type antenna has been developed, the Passive Active Multijunction, which improves the cooling of the waveguides and the damping of the neutron energy (for ITER) compared to Full Active Multijunction. Due to the complexity of the structures, prototypes of the mode converters and of the Passive-Active-Multijunction launcher were fabricated and tested, in order to validate the different manufacturing processes and the manufacturer's capability to face this challenging project. This paper describes the manufacturing process, the tests of the various prototypes and the construction of the final Passive-Active-Multijunction launcher, which entered into operation in October 2009. It has been commissioned and is fully operational on the Tore-Supra tokamak, since design objectives were reached in March 2010: 2.75 MW - 78 s, power density of 25MW/m2 in active waveguides, steady-state apparent surface temperatures < 350 °C; 10 cm long distance coupling.
- Published
- 2011
44. Development of high power CW 3.7 GHz klystrons for fusion experiments on Tore Supra
- Author
-
L. Delpech, R. Magne, F. Kazarian, Gilles Berger-By, M. Prou, E. Corbel, P. Mollard, D. Volpe, F. Samaille, A. Beunas, F. Bouquey, and A. Armitano
- Subjects
Engineering ,Tokamak ,Klystron ,Plasma heating ,business.industry ,Nuclear engineering ,Electrical engineering ,Tore Supra ,law.invention ,Power (physics) ,Electricity generation ,law ,Radio frequency ,business - Abstract
In the frame of the CIMES project [1], a collaborative effort between Association Euratom-CEA and Thales Electron Devices (TED) has led to the development of a high power CW klystron TH 2103 C, working at 3.7 GHz, for plasma heating and current drive for the Tokamak Tore Supra.
- Published
- 2011
45. Tore Supra LH transmitter upgrade, a new RF driver for the power spectrum
- Author
-
A. Ekedahl, R. Magne, M. Prou, M. Pagano, G. Lombard, F. Samaille, J. Achard, R. Volpe, G. Berger‐By, L. Delpech, A. Armitano, P. Mollard, D. Volpe, E. Corbel, and F. Bouquey
- Subjects
Engineering ,Klystron ,business.industry ,Electrical engineering ,Tore Supra ,Power (physics) ,law.invention ,law ,Electrical equipment ,Electronic engineering ,Power semiconductor device ,Antenna (radio) ,business ,Power control ,Voltage - Abstract
New real time tools have been developed for testing new 700kW/3.7GHz/CW klystrons and for the operations on very long plasma shots. After the commissioning of the 18 series tubes on the high power test bed facility, the installation of the first 8 klystrons in the Tore Supra transmitter and the adjustment tests on load, this upgrade work has been materialized during the last 2010 campaign by a successful operation on the Full Active Multijunction (FAM) C3 antenna, with new performances: 3.5MW/40s on plasma. The RF output power control in amplitude and phase has been improved for a better control of the wave spectrum launched into the plasma. The new klystrons have no modulating anode and the high cathode voltage must be adjusted with the RF input power in order to optimize the RF output power with a minimization of the thermal power losses in the collector. A new phase correction, depending on the 3 RF output power ranges used, has been introduced. The improvements made in 2009 and 2010 on the generic phase loop and the procedures used during the real time tests of the RF transfer functions in amplitude and phase are detailed below. All RF measurements systems, RF safety systems and the RF calibration procedures have been revised in order to have the best consistency, reproducibility and with a measurement error against the calorimetry measurement lower than 10%.
- Published
- 2011
46. Benchmark of coupling codes (ALOHA, TOPLHA and GRILL3D) with ITER-relevant Lower Hybrid antenna
- Author
-
J.F. Artaud, A. Saille, S. Meschino, Frederic Imbeaux, Q. Zeng, J. Garcia, M. Goniche, A. Cardinali, Angelo A. Tuccillo, Giuseppe Schettini, Y.S. Bae, A. Ekedahl, Ph. Cara, S.H. Kim, Daniele Milanesio, J. Decker, P. Garibaldi, Silvio Ceccuzzi, Jia Hua, Gilles Berger-By, Lara Pajewski, Francesco Mirizzi, R. Magne, M. Schneider, C. Hamlyn-Harris, Y. Lausenaz, J.M. Bernard, J. Belo, C. Castaldo, Julien Hillairet, Q.Y. Huang, D. Guilhem, Y. Peysson, L. Marfisi, R. Villari, G. T. Hoang, L. Panaccione, Won Namkung, Y. Wu, A.M.A. Barbera, P.K. Sharma, O. Tudisco, Riccardo Maggiora, Lena Delpech, Karl Vulliez, R. Cesario, Milanesio, D, Hillairet, J, Panaccione, L, Maggiora, R, Artaud J., F, Bae Y., S, Belo, J, Berger By, G, Bernard J., M, Cara, Ph, Cardinali, A, Castaldo, C, Ceccuzzi, Silvio, Cesario, R, Decker, J, Delpech, L, Ekedahl, A, Garcia, J, Garibaldi, P, Goniche, M, Guilhem, D, Hamlyn Harris, C, Hoang G., T, Hua, J, Huang Q., Y, Imbeaux, F, Kazarian, F, Kim S., H, Lausenaz, Y, Magne, R, Marfisi, L, Meschino, S, Mirizzi, F, Namkung, W, Pajewski, Lara, Peysson, Y, Saille, A, Schettini, Giuseppe, Schneider, M, Sharma P., K, Tudisco, O, Villari S., R, Vulliez, K, Wu, Y, and Zeng, Q.
- Subjects
Physics ,Coupling ,Tokamak ,Nuclear Fusion ,Lower Hybrid Antenna ,Mechanical Engineering ,Fusion power ,Topology ,Power (physics) ,law.invention ,ITER ,Lower Hybrid ,PAM ,Nuclear Energy and Engineering ,Aloha ,law ,Benchmark (computing) ,General Materials Science ,Reflection coefficient ,Antenna (radio) ,Civil and Structural Engineering - Abstract
"In order to assist the design of the future ITER Lower Hybrid launcher, coupling codes ALOHA, from CEA\/IRFM, TOPLHA, from Politecnico di Torino, and GRILL3D, developed by Dr. Mikhail Irzak (A.F. Ioffe Physico-Technical Institute, St. Petersburg, Russia) and operated by ENEA Frascati, have been compared with the updated (six modules with four active waveguides per module) Passive-Active Multi-junction (PAM) Lower Hybrid antennas. Both ALOHA and GRILL3D formulate the problem in terms of rectangular waveguides modes, while TOPLHA is based on boundary-value problem with the adoption of a triangular cell-mesh to represent the relevant waveguides surfaces. Several plasma profiles, with varying edge density and density increase, have been adopted to provide a complete description of the simulated launcher in terms of reflection coefficient, computed at the beginning of each LH module, and of power spectra. Good agreement can be observed among codes for all the simulated profiles. © 2010 Elsevier B.V. "
- Published
- 2011
47. RF modeling of elements of the Lower Hybrid Antenna proposed for ITER
- Author
-
J. Hillairet, J. Achard, C. Brun, M. Goniche, T. Hoang, S. Larroque, R. Magne, L. Marfisi, S. Rasio, B. Soler, Cynthia K. Phillips, and James R. Wilson
- Subjects
Engineering ,Electric power transmission ,business.industry ,Hybrid system ,Electrical engineering ,Electronic engineering ,Antenna (radio) ,business ,Power (physics) - Abstract
The design and overall dimensions of a RF window and a TE10—TE30 mode converter of a 5 GHz Lower Hybrid system which should be able to deliver 20 MW CW on ITER are presented. A low power mock‐up of the mode converter has been manufactured and measured. The good RF performances obtained validates the RF design of this element.
- Published
- 2011
48. Long Pulse operation with the ITER-Relevant LHCD Antenna in Tore Supra
- Author
-
A. Ekedahl, L. Delpech, M. Goniche, D. Guilhem, J. Hillairet, M. Preynas, P. K. Sharma, J. Achard, Y. S. Bae, X. Bai, C. Balorin, Y. Baranov, V. Basiuk, A. Bécoulet, J. Belo, G. Berger-By, S. Brémond, C. Castaldo, S. Ceccuzzi, R. Cesario, E. Corbel, X. Courtois, J. Decker, E. Delmas, B. J. Ding, X. Ding, D. Douai, R. Dumont, C. Goletto, J. P. Gunn, P. Hertout, G. T. Hoang, F. Imbeaux, K. Kirov, X. Litaudon, P. Lotte, P. Maget, R. Magne, J. Mailloux, D. Mazon, F. Mirizzi, P. Mollard, P. Moreau, T. Oosako, V. Petrzilka, Y. Peysson, S. Poli, M. Prou, F. Saint-Laurent, F. Samaille, Cynthia K. Phillips, and James R. Wilson
- Subjects
Coupling ,Engineering ,Tokamak ,Maximum power principle ,business.industry ,Nuclear engineering ,Electrical engineering ,Plasma ,Tore Supra ,law.invention ,Power (physics) ,law ,Reflection coefficient ,Antenna (radio) ,business - Abstract
The aim of the Tore Supra tokamak is to address physics and technology issues of long pulse discharges. For this purpose, Tore Supra is equipped with two actively cooled Lower Hybrid Current Drive (LHCD) antennas (f = 3.7GHz), designed to operate in 1000s long pulses. One of these is the recently installed passive active multijunction (PAM) antenna, whose design is chosen for an LHCD system for ITER. The first experiments with the PAM antenna in Tore Supra have shown extremely encouraging results in terms of reflection coefficient behaviour and power handling. The maximum power and energy reached on the PAM, after ~500 pulses on plasma, was 2.7MW during 78s (exceeding 200MJ injected energy). In addition, 2.7MW has been coupled at a plasma‐antenna distance of 10cm. The coupling behaviour on the PAM, characterised by the fraction of reflected power (RC), shows good agreement with the predictions from the ALOHA coupling code. Full non‐inductive discharges lasting 50s have been sustained with the PAM alone, e...
- Published
- 2011
49. On the detection of RF breakdowns in ICRH Resonant Double Loop antennas
- Author
-
G. Bosia, R. Magne, Karl Vulliez, and M. El Khaldi
- Subjects
Physics ,Mechanical Engineering ,Acoustics ,Cyclotron ,Torus ,Fusion power ,Power (physics) ,law.invention ,Nuclear magnetic resonance ,Nuclear Energy and Engineering ,law ,Breakdown voltage ,General Materials Science ,Standing wave ratio ,Reflection coefficient ,Civil and Structural Engineering ,Voltage - Abstract
A voltage breakdown in an ion cyclotron resonance heating (ICRH) system is usually detected as an abrupt change in the module of the reflection coefficient |Γin| at the power source output. The same effect can be due to a large load variation. This paper presents the study of some new concept for detecting voltage breakdowns in ICRH Resonant Double Loop (RDL) systems, to be used in conjunction with the one identifying an arc by the detection of an excessive standing wave ratio (SWR), either at the operating frequency or within the band below the operating frequency. The method should be able to help discriminating fast load variations from voltage breakdowns in any of the in-vessel components under the torus vacuum, and therefore selecting the proper corrective action.
- Published
- 2010
50. Lower hybrid wave coupling in TORE SUPRA through multijunction launchers
- Author
-
P. Bibet, R. Magne, D. Rigaud, Y. Peysson, J. Carrasco, D. Moreau, M. Goniche, X. Litaudon, K. Kupfer, J. M. Rax, G. Berger-By, G. T. Hoang, G. Tonon, G. Rey, João P. S. Bizarro, and J.J. Capitain
- Subjects
Coupling ,Physics ,Nuclear and High Energy Physics ,business.industry ,Plasma ,Tore Supra ,Condensed Matter Physics ,Lower hybrid oscillation ,law.invention ,Optics ,law ,Reflection (physics) ,Antenna (radio) ,Reflection coefficient ,business ,Waveguide - Abstract
The TORE SUPRA lower hybrid current drive experiments (8 MW/3.7 GHz) use large phased waveguide arrays, four rows of 32 active waveguides and two passive waveguides for each of the two grills, to couple the waves to the plasma. These launchers are based on the 'multijunction' principle which allows them to be quite compact and is therefore attractive for the design of efficient multi-megawatt antennas in NET/ITER. Extensive coupling measurements have been performed in order to study the radiofrequency (RF) characteristics of the plasma loaded antennas. Measurements of the plasma scattering coefficients of the antennas show good agreement with those obtained from the linear coupling theory (SWAN code). Global reflection coefficients of a few per cent have been measured in a large range of edge plasma densities (0.3 × 1018 m-3 ≤ neg ≤ 1.4 × 1018 m-3) or antenna positions (0.02-0.05 m from the plasma edge) and up to a maximum injected RF power density of 45 MW/m2. When the plasma is pushed against the inner wall of the chamber, the reflection coefficient is found to remain low up to distances of the order of 0.10 m
- Published
- 1992
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.