52 results on '"R. Lowe-Webb"'
Search Results
2. Role of template selection in aligning beams in the optical Thomson scattering laser at the National Ignition Facility
- Author
-
Abdul A. S. Awwal, Roger R. Lowe-Webb, Mark W. Bowers, and Tracy S. Budge
- Published
- 2022
3. Development of a bright MeV photon source with compound parabolic concentrator targets on the National Ignition Facility Advanced Radiographic Capability (NIF-ARC) laser
- Author
-
S. M. Kerr, D. Rusby, G. J. Williams, K. Meaney, D. J. Schlossberg, A. Aghedo, D. Alessi, J. Ayers, S. Azhar, M. B. Aufderheide, M. W. Bowers, J. D. Bude, H. Chen, G. Cochran, J. Crane, J. M. Di Nicola, D. N. Fittinghoff, P. Fitzsimmons, H. Geppert-Kleinrath, B. Golick, G. P. Grim, A. Haid, M. Hamamoto, R. Heredia, M. Hermann, S. Herriot, M. P. Hill, W. Hoke, D. Kalantar, A. Kemp, Y. Kim, K. LaFortune, N. Lemos, A. Link, R. Lowe-Webb, A. MacPhee, M. Manuel, D. Martinez, M. Mauldin, S. Patankar, L. Pelz, M. A. Prantil, M. Quinn, C. W. Siders, S. Vonhof, P. Wegner, S. Wilks, W. Williams, K. Youngblood, and A. J. Mackinnon
- Subjects
Condensed Matter Physics - Abstract
Compound parabolic concentrator (CPC) targets are utilized at the National Ignition Facility Advanced Radiographic Capability (NIF-ARC) laser to enhance the acceleration of electrons and production of high energy photons, for laser durations of 10 ps and energies up to 2.4 kJ. A large enhancement of mean electron energy (>2 ×) and photon brightness (>10×) is found with CPC targets compared to flat targets. Using multiple diagnostic techniques at different spatial locations and scaling by gold activation spatial data, photon spectra are characterized for [Formula: see text] MeV. Beam width and pointing variations are given. The efficient production of MeV photons at [Formula: see text] W/cm2 with CPCs is observed, with doses of >10 rad in air at 1 m for [Formula: see text] MeV; these exceed those previously reported with laser-driven sources. Using this source, sub-mm resolution radiographs are generated through large areal density radiograph objects. These results are promising for the development of bright MeV x-ray and particle sources on Petawatt class laser systems.
- Published
- 2023
4. Spatio-temporal focal spot characterization and modeling of the NIF ARC kilojoule picosecond laser
- Author
-
Matthew A. Prantil, M. Hamamoto, John K. Crane, Wade H. Williams, John M. Halpin, Charles D. Orth, Richard A. Sacks, Janice K. Lawson, Lynn G. Seppala, Mark W. Bowers, Jean-Michel G. Di Nicola, David Alessi, Michael C. Rushford, R. Lowe-Webb, Francis X. Morrissey, M. J. Shaw, C. C. Widmayer, S. Herriot, Thomas E. Lanier, J. Thaddeus Salmon, John E. Heebner, Mark R. Hermann, T. Zobrist, Paul J. Wegner, Steven T. Yang, Alan D. Conder, Hoang T. Nguyen, L. Pelz, Constantin Haefner, Pascale Di Nicola, K. N. LaFortune, Ronald J. Sigurdsson, Charles D. Boley, D. Homoelle, Daniel H. Kalantar, and Publica
- Subjects
Optical amplifier ,Wavefront ,Materials science ,business.industry ,laser optics ,Pulse duration ,Laser ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,law.invention ,Pulse (physics) ,Power (physics) ,010309 optics ,Arc (geometry) ,Optics ,law ,0103 physical sciences ,compton scattering ,Electrical and Electronic Engineering ,National Ignition Facility ,business ,Engineering (miscellaneous) ,lasers ,optical amplifiers ,laser amplifiers - Abstract
The advanced radiographic capability (ARC) laser system, part of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, is a short-pulse laser capability integrated into the NIF. The ARC is designed to provide adjustable pulse lengths of ∼ 1 − 38 p s in four independent beamlets, each with energies up to 1 kJ (depending on pulse duration). A detailed model of the ARC lasers has been developed that predicts the time- and space-resolved focal spots on target for each shot. Measurements made to characterize static and dynamic wavefront characteristics of the ARC are important inputs to the code. Modeling has been validated with measurements of the time-integrated focal spot at the target chamber center (TCC) at low power, and the space-integrated pulse duration at high power, using currently available diagnostics. These simulations indicate that each of the four ARC beamlets achieves a peak intensity on target of up to a few 10 18 W / c m 2 .
- Published
- 2021
5. Time-Resolved Fuel Density Profiles of the Stagnation Phase of Indirect-Drive Inertial Confinement Implosions
- Author
-
Otto Landen, M. Hamamoto, T. Kohut, M. Schoff, W. W. Hsing, R. Sigurdsson, Jeremy Kroll, S. L. Ayers, R. J. Wallace, David N. Fittinghoff, Daniel H. Kalantar, S. Herriot, Gareth Hall, M. P. Mauldin, J. M. Di Nicola, Nobuhiko Izumi, Mark W. Bowers, D. K. Bradley, D. Homoelle, David Martinez, S. A. Vonhof, D. R. Hargrove, David Alessi, J. K. Okui, Riccardo Tommasini, Laurent Divol, T. Zobrist, A. Conder, Andreas Kemp, Matthew A. Prantil, K. Youngblood, John E. Heebner, Suhas Bhandarkar, Mark R. Hermann, P. Di Nicola, R. Lowe-Webb, J. Park, Jose Milovich, Janice K. Lawson, G. Gururangan, Paul J. Wegner, J. P. Holder, S. P. Hatchett, E. P. Hartouni, D. M. Holunga, K. N. LaFortune, M. J. Edwards, A. Nikroo, Mark Herrmann, C. F. Walters, N. D. Masters, Carlos A. Iglesias, L. Pelz, C. C. Widmayer, Wade H. Williams, L. F. Berzak Hopkins, Petr Volegov, and A. J. Mackinnon
- Subjects
Materials science ,Phase (waves) ,General Physics and Astronomy ,Implosion ,Hot spot (veterinary medicine) ,Mechanics ,Kinetic energy ,Residual ,01 natural sciences ,Sphericity ,Physics::Plasma Physics ,0103 physical sciences ,010306 general physics ,National Ignition Facility ,Inertial confinement fusion - Abstract
The implosion efficiency in inertial confinement fusion depends on the degree of stagnated fuel compression, density uniformity, sphericity, and minimum residual kinetic energy achieved. Compton scattering-mediated 50-200 keV x-ray radiographs of indirect-drive cryogenic implosions at the National Ignition Facility capture the dynamic evolution of the fuel as it goes through peak compression, revealing low-mode 3D nonuniformities and thicker fuel with lower peak density than simulated. By differencing two radiographs taken at different times during the same implosion, we also measure the residual kinetic energy not transferred to the hot spot and quantify its impact on the implosion performance.
- Published
- 2020
6. Production of relativistic electrons at subrelativistic laser intensities
- Author
-
Daniel H. Kalantar, Hui Chen, Shaun Kerr, R. Sigurdsson, Emmanuel d'Humières, Frederico Fiuza, Mitsuo Nakai, Bruce Remington, K. Youngblood, Derek Mariscal, C. C. Widmayer, Louise Willingale, Matthew A. Prantil, M. Hamamoto, Wade H. Williams, S. Herriot, Tammy Ma, Gerald Williams, Mark Sherlock, A. Conder, Janice K. Lawson, Mark W. Bowers, David Alessi, Joungmok Kim, D. Homoelle, David Martinez, R. Zacharias, G. Fiksel, Mark R. Hermann, Andreas Kemp, R. Lowe-Webb, A. Link, L. Pelz, M. J.-E. Manuel, W. W. Hsing, K. N. LaFortune, and P. Di Nicola
- Subjects
Physics ,Long pulse ,Phase (waves) ,Electron ,Laser ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Acceleration ,law ,0103 physical sciences ,Atomic physics ,010306 general physics ,Scaling ,Order of magnitude ,Intensity (heat transfer) - Abstract
Relativistic electron temperatures were measured from kilojoule, subrelativistic laser-plasma interactions. Experiments show an order of magnitude higher temperatures than expected from a ponderomotive scaling, where temperatures of up to 2.2 MeV were generated using an intensity of 1×10^{18}W/cm^{2}. Two-dimensional particle-in-cell simulations suggest that electrons gain superponderomotive energies by stochastic acceleration as they sample a large area of rapidly changing laser phase. We demonstrate that such high temperatures are possible from subrelativistic intensities by using lasers with long pulse durations and large spatial scales.
- Published
- 2020
7. High Precision Characterization of the Kilojoule Multi-ps Advanced Radiographic Capability
- Author
-
S. Herriot, Thomas E. Lanier, Mark W. Bowers, David Alessi, R. Lowe-Webb, Wade H. Williams, Matthew A. Prantil, Mitanu Paul, Daniel H. Kalantar, John Cabral, Constantin Haefner, John E. Heebner, L. Pelz, K. N. LaFortune, M. J. Shaw, Mark R. Hermann, Janice K. Lawson, D. Homoelle, David Martinez, Paul J. Wegner, John K. Crane, Matthew Y. Hamamoto, R. Sigurdsson, Jean-Michel G. Di Nicola, Adrian I. Barnes, and C. C. Widmayer
- Subjects
Optical amplifier ,High energy ,Materials science ,High power lasers ,Parabolic reflector ,business.industry ,Radiography ,Laser ,Characterization (materials science) ,law.invention ,Optics ,law ,business ,National Ignition Facility - Abstract
ARC is a kilojoule petawatt-class laser system which generates high energy x-ray and particle sources for radiography of experiments on the National Ignition Facility. We present recent progress on laser performance measurements and system modeling.
- Published
- 2020
8. First demonstration of ARC-accelerated proton beams at the National Ignition Facility
- Author
-
D. Neely, Gerald Williams, Mingsheng Wei, Constantin Haefner, S. Herriot, Graeme Scott, L. Pelz, Bruce Remington, R. Sigurdsson, C. C. Widmayer, Mark W. Bowers, D. M. Lord, David Alessi, Pierre Michel, Mark R. Hermann, P. K. Patel, T. Zobrist, Kirk Flippo, N. Hash, Scott Wilks, Arthur Pak, N. Iwata, Yasuhiko Sentoku, N. B. Thompson, R. Zacharias, P. Di Nicola, Matthew A. Prantil, Tammy Ma, Daniel H. Kalantar, Derek Mariscal, Hui Chen, Farhat Beg, Wade H. Williams, D. Homoelle, David Martinez, Andreas Kemp, R. Lowe-Webb, Max Tabak, C. McGuffey, Nuno Lemos, Peter Norreys, Alessio Morace, M. Hamamoto, Janice K. Lawson, Joungmok Kim, W. W. Hsing, and A. Conder
- Subjects
Physics ,Proton ,business.industry ,Condensed Matter Physics ,Laser ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Particle acceleration ,Acceleration ,Optics ,law ,0103 physical sciences ,Particle ,Physics::Accelerator Physics ,Irradiation ,010306 general physics ,National Ignition Facility ,business ,Inertial confinement fusion - Abstract
New short-pulse kilojoule, Petawatt-class lasers, which have recently come online and are coupled to large-scale, many-beam long-pulse facilities, undoubtedly serve as very exciting tools to capture transformational science opportunities in high energy density physics. These short-pulse lasers also happen to reside in a unique laser regime: very high-energy (kilojoule), relatively long (multi-picosecond) pulse-lengths, and large (10s of micron) focal spots, where their use in driving energetic particle beams is largely unexplored. Proton acceleration via Target Normal Sheath Acceleration (TNSA) using the Advanced Radiographic Capability (ARC) short-pulse laser at the National Ignition Facility in the Lawrence Livermore National Laboratory is demonstrated for the first time, and protons of up to 18 MeV are measured using laser irradiation of >1 ps pulse-lengths and quasi-relativistic (∼1018 W/cm2) intensities. This is indicative of a super-ponderomotive electron acceleration mechanism that sustains acceleration over long (multi-picosecond) time-scales and allows for proton energies to be achieved far beyond what the well-established scalings of proton acceleration via TNSA would predict at these modest intensities. Furthermore, the characteristics of the ARC laser (large ∼100 μm diameter focal spot, flat spatial profile, multi-picosecond, relatively low prepulse) provide acceleration conditions that allow for the investigation of 1D-like particle acceleration. A high flux ∼ 50 J of laser-accelerated protons is experimentally demonstrated. A new capability in multi-picosecond particle-in-cell simulation is applied to model the data, corroborating the high proton energies and elucidating the physics of multi-picosecond particle acceleration.
- Published
- 2019
9. The Crystal Backlighter Imager: A spherically bent crystal imager for radiography on the National Ignition Facility
- Author
-
J. E. Field, Laurent Masse, Nathan Meezan, Gareth Hall, N. B. Thompson, S. Ayers, E. R. Casco, J. D. Kilkenny, Justin Buscho, K. Piston, Ryan Nora, Otto Landen, Derek Mariscal, R. L. Hibbard, D. K. Bradley, Gregory Kemp, T. McCarville, Perry M. Bell, L. F. Berzak Hopkins, M. J. Ayers, R. Lowe-Webb, C. M. Krauland, B. A. Hammel, Daniel H. Kalantar, T. Kohut, Marius Schollmeier, and J. Park
- Subjects
010302 applied physics ,Physics ,business.industry ,Implosion ,Bragg's law ,Photon energy ,Laser ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,symbols.namesake ,Optics ,law ,0103 physical sciences ,symbols ,National Ignition Facility ,business ,Instrumentation ,Doppler effect ,Image resolution ,Inertial confinement fusion - Abstract
The Crystal Backlighter Imager (CBI) is a quasi-monochromatic, near-normal incidence, spherically bent crystal imager developed for the National Ignition Facility (NIF), which will allow inertial confinement fusion capsule implosions to be radiographed close to stagnation. This is not possible using the standard pinhole-based area-backlighter configuration, as the self-emission from the capsule hotspot overwhelms the backlighter signal in the final stages of the implosion. The CBI mitigates the broadband self-emission from the capsule hot spot by using the extremely narrow bandwidth inherent to near-normal-incidence Bragg diffraction. Implementing a backlighter system based on near-normal reflection in the NIF chamber presents unique challenges, requiring the CBI to adopt novel engineering and operational strategies. The CBI currently operates with an 11.6 keV backlighter, making it the highest energy radiography diagnostic based on spherically bent crystals to date. For a given velocity, Doppler shift is proportional to the emitted photon energy. At 11.6 keV, the ablation velocity of the backlighter plasma results in a Doppler shift that is significant compared to the bandwidth of the instrument and the width of the atomic line, requiring that the shift be measured to high accuracy and the optics aligned accordingly to compensate. Experiments will be presented that used the CBI itself to measure the backlighter Doppler shift to an accuracy of better than 1 eV. These experiments also measured the spatial resolution of CBI radiographs at 7.0 μm, close to theoretical predictions. Finally, results will be presented from an experiment in which the CBI radiographed a capsule implosion driven by a 1 MJ NIF laser pulse, demonstrating a significant (>100) improvement in the backlighter to self-emission ratio compared to the pinhole-based area-backlighter configuration.
- Published
- 2019
10. Multi-pulse time resolved gamma ray spectroscopy of the advanced radiographic capability using gas Cherenkov diagnostics
- Author
-
K. D. Meaney, C. C. Widmayer, S. Herriot, Thomas E. Lanier, Wade H. Williams, Shaun Kerr, Hans W. Herrmann, Hermann Geppert-Kleinrath, A. J. Mackinnon, David Martinez, Mark R. Hermann, J. M. Di Nicola, Steven T. Yang, Daniel H. Kalantar, M. Hamamoto, Mark W. Bowers, David Alessi, R. Lowe-Webb, Gerald Williams, Matthew A. Prantil, L. Pelz, and Yong Ho Kim
- Subjects
Physics ,Photon ,Physics::Instrumentation and Detectors ,business.industry ,Detector ,Nanosecond ,Condensed Matter Physics ,Laser ,01 natural sciences ,Spectral line ,010305 fluids & plasmas ,law.invention ,Optics ,law ,0103 physical sciences ,Physics::Accelerator Physics ,Gamma spectroscopy ,010306 general physics ,National Ignition Facility ,business ,Cherenkov radiation - Abstract
The advanced radiographic capability located at the National Ignition Facility (NIF) uses high intensity, short pulse lasers to create bright photon sources for diagnosing high energy density experiments. There are radiographic needs for a multi-frame time-resolved MeV gamma diagnostic for experiments on the NIF with sub-nanosecond resolution. A series of experiments demonstrated measurements of MeV x-ray spectra resolved with a time separation of a few nanoseconds through the use of gas Cherenkov detectors. A two-pulse radiographic experiment found a 30% reduction in > 2.8 MeV photon flux compared to the first frame exposure.
- Published
- 2021
11. Erratum: 'First demonstration of ARC-accelerated proton beams at the National Ignition Facility' [Physics of Plasmas 26, 043110 (2019)]
- Author
-
Derek Mariscal, Tammy Ma, Gerald Williams, Wade H. Williams, Daniel H. Kalantar, H. Chen, S. Herriot, N. Hash, Kirk Flippo, D. M. Lord, Graeme Scott, Janice K. Lawson, Mark W. Bowers, Alessio Morace, Max Tabak, David Alessi, Mark R. Hermann, Joungmok Kim, Peter Norreys, Yasuhiko Sentoku, N. B. Thompson, M. Hamamoto, Maria Gatu-Johnson, Brandon Lahmann, Nuno Lemos, C. C. Widmayer, Matthew A. Prantil, David Neely, David Martinez, N. Iwata, T. Zobrist, R. Sigurdsson, A. Conder, D. Hoemoelle, F. N. Beg, Arthur Pak, Mingsheng Wei, Bruce Remington, L. Pelz, Pierre Michel, P. K. Patel, C. McGuffey, Andreas Kemp, R. Lowe-Webb, Constantin Haefner, P. Di Nicola, R. Zacharias, W. W. Hsing, and Scott Wilks
- Subjects
Nuclear physics ,Arc (geometry) ,Physics ,Proton ,Plasma ,Condensed Matter Physics ,National Ignition Facility - Published
- 2020
12. Late-time radiography at the National Ignition Facility using the Crystal Backlighter Imager (CBI) (Conference Presentation)
- Author
-
Gareth Hall, N. B. Thompson, E. R. Casco, K. Piston, T. Kohut, R. L. Hibbard, M. J. Ayers, Daniel H. Kalantar, Jeremy Dixon, Cal Smith, C. M. Krauland, R. Lowe-Webb, Thomas McCarville, and Justin Buscho
- Subjects
Physics ,Microscope ,business.industry ,Detector ,Bragg's law ,Laser ,law.invention ,Crystal ,Optics ,law ,Pinhole (optics) ,business ,National Ignition Facility ,Inertial confinement fusion - Abstract
The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) uses the world’s largest and most energetic laser system to explore High-Energy-Density (HED) physics. Historically, experiments at the NIF could not radiograph an Inertial Confinement Fusion (ICF) experiment at late times due to self-emission from the capsule. The Crystal Backlighter Imager diagnostic (CBI) fielded on NIF in 2017 and has allowed radiography of ICF capsules at late times. This capability is due to the very narrow bandwidth of the imaging system, which eliminates much of the self-emission. X-rays from a backlighter source (driven by NIF beams) pass through the experiment, and the CBI uses a spherically curved crystal to reflect these x-rays at near-normal incidence (Bragg angle close to 90°) onto the detector, resulting in a very narrow bandwidth microscope. The geometry of a near-normal-incidence microscope is challenging to implement at the NIF, since the crystal must be positioned and aligned to high precision on the opposite side of the target relative to the detector. The in-chamber alignment procedure cannot take significantly longer than a simple pinhole imager, since demand for NIF shots is high and a given experiment is allotted a strict time limit. Avoiding any collision between diagnostic hardware and the target is paramount and any instrument that is placed in close proximity to a target must be able to withstand the debris produced by a 2.0 MJ NIF shot. CBI overcomes these challenges by mounting the detector and crystal on a single diagnostic instrument manipulator (DIM). The crystal is mounted on an arm that passes around the target, positioning the crystal on the opposite side of the target to the detector. This allows much of the crystal alignment to be done before the instrument is inserted into the NIF chamber, saving time. The arm that supports the crystal is mechanized so that, during insertion of the CBI, the risk of collision with the target is minimized. The CBI is designed as a robust platform that is capable of maintaining alignment tolerances of
- Published
- 2018
13. Optical beam classification using deep learning: a comparison with rule- and feature-based classification
- Author
-
Tarek M. Taha, Abdul A. S. Awwal, Md. Zahangir Alom, and R. Lowe-Webb
- Subjects
Computer science ,business.industry ,Deep learning ,Optical beam ,Feature based ,Pattern recognition ,Artificial intelligence ,business - Published
- 2017
14. 2011 Status of the automatic alignment system for the National Ignition Facility
- Author
-
Richard R. Leach, V. Miller Kamm, G Brunton, R. Lowe-Webb, K. Wilhelmsen, Abdul A. S. Awwal, R. Wilson, S. C. Burkhart, and D McGuigan
- Subjects
Schedule ,Computer science ,business.industry ,Mechanical Engineering ,Process (computing) ,Optical path ,Nuclear Energy and Engineering ,Beamline ,Parallel processing (DSP implementation) ,Control system ,Computer cluster ,General Materials Science ,business ,National Ignition Facility ,Computer hardware ,Civil and Structural Engineering - Abstract
Automated alignment for the National Ignition Facility (NIF) is accomplished using a large-scale parallel control system that directs 192 laser beams along the 300 m optical path. The beams are then focused down to a 50 μ spot in the middle of the target chamber. The entire process is completed in less than 50 min. The alignment system commands 9000 stepping motors for extremely precise adjustment of mirrors and other optics. 41 control loops per beamline perform parallel processing services running on a LINUX cluster to analyze high-resolution images of the beams and their references. This paper describes the status the NIF automatic alignment system and the challenges encountered as NIF development has transitioned from building the laser, to becoming a research project supporting a 24 h, 7 days/week laser facility. NIF is now a continuously operated system where performance monitoring is increasingly more critical for operation, maintenance, and commissioning tasks. Equipment wear and the effects of high energy neutrons from fusion experiments are issues which affect alignment efficiency and accuracy. New sensors needing automatic alignment assistance are common. System modifications to improve efficiency and accuracy are prevalent. Handling these evolving alignment and maintenance needs while minimizing the impact on NIF experiment schedule is expected to be an on-going challenge for the planned 30 year operational life of NIF.
- Published
- 2012
15. Autonomous monitoring of control hardware to predict off-normal conditions using NIF automatic alignment systems
- Author
-
S. C. Burkhart, Simon J. Cohen, R. Lowe-Webb, Vicki Miller-Kamm, Richard R. Leach, K. Wilhelmsen, and Abdul A. S. Awwal
- Subjects
Normal conditions ,Pixel ,Computer science ,business.industry ,Mechanical Engineering ,Control (management) ,Monitoring system ,Preventive maintenance ,Power (physics) ,Nuclear Energy and Engineering ,General Materials Science ,User Facility ,National Ignition Facility ,business ,Computer hardware ,Civil and Structural Engineering - Abstract
The National Ignition Facility (NIF) is a high power laser system capable of supporting high-energy-density experimentation as a user facility for the next 30 years. In order to maximize the facility availability, preventive maintenance enhancements are being introduced into the system. An example of such an enhancement is a camera-based health monitoring system, integrated into the automated alignment system, which provides an opportunity to monitor trends in measurements such as average beam intensity, size of the beam, and pixel saturation. The monitoring system will generate alerts based on observed trends in measurements to allow scheduled pro-active maintenance before routine off-normal detection stops system operations requiring unscheduled intervention.
- Published
- 2012
16. Image processing for the Advanced Radiographic Capability (ARC) at the National Ignition Facility
- Author
-
Victoria J. Miller-Kamm, R. Lowe-Webb, Charles D. Orth, K. Wilhelmsen, Abdul A. S. Awwal, Randy S. Roberts, and Richard R. Leach
- Subjects
Computer science ,business.industry ,Image processing ,Laser ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Arc (geometry) ,Ignition system ,Metal ,Optics ,Physics::Plasma Physics ,law ,Temporal resolution ,visual_art ,0103 physical sciences ,Digital image processing ,visual_art.visual_art_medium ,010306 general physics ,National Ignition Facility ,business - Abstract
The Advance Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a laser system that employs up to four petawatt (PW) lasers to produce a sequence of short-pulse kilo-Joule laser pulses with controllable delays that generate X-rays to provide backlighting for high-density internal confinement fusion (ICF) capsule targets. Multi-frame, hard-X-ray radiography of imploding NIF capsules is a capability which is critical to the success of NIF's missions. ARC is designed to employ up to eight backlighters with tens-of-picosecond temporal resolution, to record the dynamics and produce an X-ray "motion picture" of the compression and ignition of cryogenic deuterium-tritium targets. ARC will generate tens-of-picosecond temporal resolution during the critical phases of ICF shots. Additionally, ARC supports a variety of other high energy density experiments including fast ignition studies on NIF. The automated alignment image analysis algorithms use digital camera sensor images to direct ARC beams onto the tens-of-microns scale metal wires. This paper describes the ARC automatic alignment sequence throughout the laser chain from pulse initiation to target with an emphasis on the image processing algorithms that generate the crucial alignment positions for ARC. The image processing descriptions and flow diagrams detail the alignment control loops throughout the ARC laser chain beginning in the ARC high-contrast front end (HCAFE), on into the ARC main laser area, and ending in the ARC target area.
- Published
- 2016
17. Image processing for the Automatic Alignment at the National Ignition Facility
- Author
-
K. Wilhelmsen, Abdul A. S. Awwal, Richard R. Leach, Vicki Miller-Kamm, and R. Lowe-Webb
- Subjects
Physics ,High power lasers ,business.industry ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Image processing ,02 engineering and technology ,01 natural sciences ,010309 optics ,020210 optoelectronics & photonics ,Optics ,Computer Science::Computer Vision and Pattern Recognition ,0103 physical sciences ,Digital image processing ,0202 electrical engineering, electronic engineering, information engineering ,Physics::Accelerator Physics ,Computer vision ,Artificial intelligence ,Image sensor ,National Ignition Facility ,business ,Laser beams - Abstract
The Automatic Alignment system in the National Ignition Facility is responsible for aligning 192 laser beams using camera sensor images. This paper reviews some of the image processing algorithms that generate the crucial alignment positions.
- Published
- 2016
18. Alignment mask design and image processing for the Advanced Radiographic Capability (ARC) at the National Ignition Facility
- Author
-
Richard R. Leach, K. Wilhelmsen, Abdul A. S. Awwal, David A. Smauley, Randy S. Roberts, R. Lowe-Webb, T. Salmon, and Simon J. Cohen
- Subjects
business.industry ,Computer science ,Image processing ,Backlight ,Laser ,law.invention ,Arc (geometry) ,Ignition system ,Optics ,law ,Temporal resolution ,business ,National Ignition Facility ,Inertial confinement fusion ,Beam (structure) - Abstract
The Advance Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a laser system that employs up to four petawatt (PW) lasers to produce a sequence of short pulses that generate X-rays which backlight high-density inertial confinement fusion (ICF) targets. ARC is designed to produce multiple, sequential X-ray images by using up to eight back lighters. The images will be used to examine the compression and ignition of a cryogenic deuterium-tritium target with tens-of-picosecond temporal resolution during the critical phases of an ICF shot. Multi-frame, hard-X-ray radiography of imploding NIF capsules is a capability which is critical to the success of NIF's missions. As in the NIF system, ARC requires an optical alignment mask that can be inserted and removed as needed for precise positioning of the beam. Due to ARC’s split beam design, inserting the nominal NIF main laser alignment mask in ARC produced a partial blockage of the mask pattern. Requirements for a new mask design were needed. In this paper we describe the ARC mask requirements, the resulting mask design pattern, and the image analysis algorithms used to detect and identify the beam and reference centers required for ARC alignment.
- Published
- 2015
19. Detecting fiducials affected by trombone delay in ARC and the main laser alignment at the National Ignition Facility
- Author
-
Richard R. Leach, Victoria Miller Kamm, R. Lowe-Webb, Michael C. Rushford, Erlan S. Bliss, K. Wilhelmsen, Abdul A. S. Awwal, and Randy S. Roberts
- Subjects
Materials science ,business.industry ,Implosion ,Laser ,law.invention ,Arc (geometry) ,Ignition system ,Optics ,law ,Distortion ,Nuclear fusion ,National Ignition Facility ,business ,Beam (structure) - Abstract
Four of the 192 beams of the National Ignition Facility (NIF) are currently being diverted into the Advanced Radiographic Capability (ARC) system to generate a sequence of short (1-50 picoseconds) 1053 nm laser pulses. When focused onto high Z wires in vacuum, these pulses create high energy x-ray pulses capable of penetrating the dense, imploding fusion fuel plasma during ignition scale experiments. The transmitted x-rays imaged with x-ray diagnostics can create movie radiographs that are expected to provide unprecedented insight into the implosion dynamics. The resulting images will serve as a diagnostic for tuning the experimental parameters towards successful fusion reactions. Beam delays introduced into the ARC pulses via independent, free-space optical trombones create the desired x-ray image sequence, or movie. However, these beam delays cause optical distortion of various alignment fiducials viewed by alignment sensors in the NIF and ARC beamlines. This work describes how the position of circular alignment fiducials is estimated in the presence of distortion.
- Published
- 2015
20. Automated alignment of the Advanced Radiographic Capability (ARC) target area at the National Ignition Facility
- Author
-
Michael C. Rushford, Erlan S. Bliss, John E. Heebner, Charles D. Orth, K. Wilhelmsen, Abdul A. S. Awwal, Randy S. Roberts, Richard R. Leach, and R. Lowe-Webb
- Subjects
business.industry ,Computer science ,Amplifier ,Instrumentation ,Image processing ,Backlight ,Laser ,law.invention ,Front and back ends ,Arc (geometry) ,Optics ,law ,business ,National Ignition Facility - Abstract
The Advanced Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a petawatt-class, short-pulse laser system designed to provide x-ray backlighting of NIF targets. ARC uses four NIF beamlines to produce eight beamlets to create a sequence of eight images of an imploding fuel capsule using backlighting targets and diagnostic instrumentation. ARC employs a front end that produces two pulses, chirps the pulses out to 2 ns, and then injects the pulses into the two halves of each of four NIF beamlines. These pulses are amplified by NIF pre- and main amplifiers and transported to compressor vessels located in the NIF target area. The pulses are then compressed and pointed into the NIF target chamber where they impinge upon an array of backlighters. The interaction of the ARC laser pulses and the backlighting material produces bursts of high-energy x-rays that illuminate an imploding fuel capsule. The transmitted x-rays are imaged by diagnostic instrumentation to produce a sequence of radiograph images. A key component of the success of ARC is the automatic alignment system that accomplishes the precise alignment of the beamlets to avoid damaging equipment and to ensure that the beamlets are directed onto the tens-of-microns scale backlighters. In this paper, we describe the ARC automatic alignment system, with emphasis on control loops used to align the beampaths. We also provide a detailed discussion of the alignment image processing, because it plays a critical role in providing beam centering and pointing information for the control loops.
- Published
- 2015
21. The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output
- Author
-
John K. Crane, Constantin Haefner, J. M. Di Nicola, Janice K. Lawson, P. P. Pham, Thomas M. Spinka, D. Homoelle, Christopher P. J. Barty, Eyal Feigenbaum, Gabriel M. Guss, Matthew A. Prantil, Matthew Rever, John E. Heebner, Jay W. Dawson, Richard A. Sacks, M. J. Shaw, M. L. Rehak, L. Pelz, Charles D. Boley, Mark R. Hermann, G. Erbert, Paul J. Wegner, David A. Smauley, Steven T. Yang, Mark W. Bowers, Larry K. Smith, Michael C. Rushford, Brent McHale, R. Lowe-Webb, Kathleen McCandless, C. C. Widmayer, G. L. Tietbohl, R. Speck, K. Christensen, T. Budge, P. A. Arnold, and J. Jarboe
- Subjects
Materials science ,business.industry ,High intensity ,Nova (laser) ,Backlight ,Laser ,law.invention ,Optics ,law ,Picosecond ,business ,National laboratory ,National Ignition Facility ,Inertial confinement fusion - Abstract
The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is the first of a kind megajoule-class laser with 192 beams capable of delivering over 1.8 MJ and 500TW of 351nm light [1], [2]. It has been commissioned and operated since 2009 to support a wide range of missions including the study of inertial confinement fusion, high energy density physics, material science, and laboratory astrophysics. In order to advance our understanding, and enable short-pulse multi-frame radiographic experiments of dense cores of cold material, the generation of very hard x-rays above 50 keV is necessary. X-rays with such characteristics can be efficiently generated with high intensity laser pulses above 1017 W/cm² [3]. The Advanced Radiographic Capability (ARC) [4] which is currently being commissioned on the NIF will provide eight, 1 ps to 50 ps, adjustable pulses with up to 1.7 kJ each to create x-ray point sources enabling dynamic, multi-frame x-ray backlighting. This paper will provide an overview of the ARC system and report on the laser performance tests conducted with a stretched-pulse up to the main laser output and their comparison with the results of our laser propagation codes.
- Published
- 2015
22. Centroid stabilization in alignment of FOA corner cube: designing of a matched filter
- Author
-
Richard R. Leach, Tony Ngo, Victoria Miller Kamm, K. Wilhelmsen, Abdul A. S. Awwal, Randy S. Roberts, and R. Lowe-Webb
- Subjects
business.industry ,Computer science ,Matched filter ,Detector ,Centroid ,Image processing ,Filter (signal processing) ,Laser ,law.invention ,Corner reflector ,Crystal ,Optics ,law ,Position (vector) ,Computer vision ,Artificial intelligence ,business ,Beam (structure) - Abstract
The current automation of image-based alignment of NIF high energy laser beams is providing the capability of executing multiple target shots per day. An important aspect of performing multiple shots in a day is to reduce additional time spent aligning specific beams due to perturbations in those beam images. One such alignment is beam centration through the second and third harmonic generating crystals in the final optics assembly (FOA), which employs two retro-reflecting corner cubes to represent the beam center. The FOA houses the frequency conversion crystals for third harmonic generation as the beams enters the target chamber. Beam-to-beam variations and systematic beam changes over time in the FOA corner-cube images can lead to a reduction in accuracy as well as increased convergence durations for the template based centroid detector. This work presents a systematic approach of maintaining FOA corner cube centroid templates so that stable position estimation is applied thereby leading to fast convergence of alignment control loops. In the matched filtering approach, a template is designed based on most recent images taken in the last 60 days. The results show that new filter reduces the divergence of the position estimation of FOA images.
- Published
- 2015
23. Near field intensity trends of main laser alignment images in the National Ignition Facility (NIF)
- Author
-
K. Wilhelmsen, Ilona Beltsar, R. Lowe-Webb, Richard R. Leach, S. C. Burkhart, Victoria J. Miller-Kamm, and T. Salmon
- Subjects
business.industry ,Track (disk drive) ,Near and far field ,Laser ,law.invention ,Optics ,Transmission (telecommunications) ,law ,Nuclear fusion ,Environmental science ,National Ignition Facility ,business ,Throughput (business) ,Intensity (heat transfer) - Abstract
The National Ignition Facility (NIF) utilizes 192 high-energy laser beams focused with enough power and precision on a hydrogen-filled spherical, cryogenic target to potentially initiate a fusion reaction. NIF has been operational for six years and during that time, thousands of successful laser firings or shots have been executed. Critical instrument measurements and camera images are carefully recorded for each shot. The result is a massive and complex database or ‘big data’ archive that can be used to investigate the state of the laser system at any point in its history or to locate and track trends in the laser operation over time. In this study, the optical light throughput for more than 1600 NIF shots for each of the 192 main laser beams and 48 quads was measured over a three year period from January 2009 to October 2012. The purpose was to verify that the variation in the transmission of light through the optics performed within design expectations during this time period. Differences between average or integrated intensity from images recorded by the input sensor package (ISP) and by the output sensor package (OSP) in the NIF beam-line were examined. A metric is described for quantifying changes in the integrated intensity measurements. Changes in light transmission from the NIF main laser over the three year time-frame are presented.
- Published
- 2015
24. Line-profile and critical-dimension monitoring using a normal incidence optical CD metrology
- Author
-
Hiroki Sasano, Jiangtao Hu, R. Lowe-Webb, D. Shivaprasad, David Mui, R. Korlahalli, Weidong Yang, and Wei Liu
- Subjects
Materials science ,business.industry ,Integrated circuit ,Photoresist ,Condensed Matter Physics ,Industrial and Manufacturing Engineering ,Electronic, Optical and Magnetic Materials ,Metrology ,law.invention ,Laser linewidth ,Optics ,law ,Shallow trench isolation ,Profilometer ,Electrical and Electronic Engineering ,business ,Critical dimension ,Lithography - Abstract
As lithographic technology drives the minimum integrated circuit feature size toward 0.1 /spl mu/m and below, process tolerances for critical-dimension profile excursion are becoming increasingly demanding. In response, optical critical dimension metrology (OCD), an optical-wavelength light-diffraction technique, is emerging as a fast, accurate, and nondestructive sub-100-nm linewidth and profile monitor. As such, a detailed understanding of the correlation between OCD and existing metrology tools is required. Correlation between CD measurements using OCD and CD-scanning electron microscopy (SEM) techniques is investigated by measuring two types of important structures, e.g., photoresist gratings on a polysilicon gate film stack and shallow trench isolation. Intragrating CD variation is shown to account for scatter in the correlation plot. A qualitative line-profile correlation between cross-section SEM (X-SEM) and OCD is presented for photoresist gratings in a focus exposure matrix. Finally, a summary of the capability of OCD as a monitor for various processing stages is presented.
- Published
- 2004
25. Correlation between photoluminescence and infrared absorption spectra of oxidized nanoscale silicon clusters
- Author
-
Peter C. Sercel, Jay B. Ewing, Sandra R. Collins, Roger R. Lowe-Webb, Weidong Yang, and Hao Lee
- Subjects
Photoluminescence ,Quenching (fluorescence) ,Materials science ,Silicon ,Dangling bond ,Analytical chemistry ,General Physics and Astronomy ,Infrared spectroscopy ,chemistry.chemical_element ,Photochemistry ,Silane ,chemistry.chemical_compound ,chemistry ,Photoluminescence excitation ,Absorption (electromagnetic radiation) - Abstract
We report in situ photoluminescence and ex situ Fourier transform infrared spectra of nanoscale silicon clusters exposed to atomic hydrogen, molecular oxygen, and humidified argon. Comparisons between infrared absorption spectra of fresh and aged samples indicate that photoluminescence efficiency is correlated with a stoichiometric oxide shell and the presence of Si dangling bond passivants at the core/oxide interface. Photoluminescence quenching is demonstrated in efficiently luminescing samples upon exposure to atomic hydrogen with recovery of photoluminescence occurring upon subsequent exposure to air. The photoluminescence quenching and recovery is correlated with a partial quenching and recovery of absorption due to interfacial silane groups. The correlations between photoluminescence and infrared absorption spectra, together with the hydrogen quenching results, provide evidence that radiative recombination in these samples is associated with interfacial oxide-related defects.
- Published
- 1998
26. Effect of carrier emission and retrapping on luminescence time decays in InAs/GaAs quantum dots
- Author
-
Weidong Yang, Roger R. Lowe-Webb, Hao Lee, and Peter C. Sercel
- Subjects
Physics ,Condensed matter physics ,Quantum dot ,Atomic physics ,Luminescence - Published
- 1997
27. The National Ignition Facility: beam area increase
- Author
-
M. Witte, J. A. Campbell, Mark A. Henesian, Michael R. Borden, Larry K. Smith, Kenneth S. Jancaitis, J. C. Palma, D. R. Jedlovec, Richard R. Leach, T. Budge, B. J. MacGowan, T. Salmon, S. N. Dixit, Paul J. Wegner, David A. Smauley, K. Wilhelmsen, Abdul A. S. Awwal, R. Lowe-Webb, S. Sommer, N. Wong, S. Pratuch, and S. C. Burkhart
- Subjects
business.industry ,Nuclear engineering ,Stockpile ,Laser ,law.invention ,Optics ,law ,Energy density ,Environmental science ,Stewardship ,National Ignition Facility ,business ,Inertial confinement fusion ,Beam (structure) - Abstract
The National Ignition Facility (NIF) is the world’s most energetic laser, having demonstrated in excess of 1.9MJ @351nm with Inertial Confinement Fusion pulse-shapes in July, 2012. First commissioned with 192 operational beamlines in March, 2009, NIF has since transitioned to routine operation for stockpile stewardship, inertial confinement fusion research, and basic high energy density science.
- Published
- 2013
28. Achieving full 1.8 MJ, 500 TW laser performance on the National Ignition Facility
- Author
-
B. J. MacGowan, Mark A. Henesian, L. Pelz, Corey V. Bennett, Larry K. Smith, J. M. Di Nicola, Kathleen McCandless, J. C. Palma, Matthew Rever, T. Budge, Eyal Feigenbaum, K. Christensen, Pamela K. Whitman, M. J. Shaw, Mike C. Nostrand, Richard A. Sacks, Mark R. Hermann, Kenneth S. Jancaitis, Richard R. Leach, C. C. Widmayer, Charles D. Orth, Paul J. Wegner, David A. Smauley, Steven T. Yang, K. Wilhelmsen, Abdul A. S. Awwal, Jason Chou, John E. Heebner, G. Erbert, S. C. Burkhart, Mark W. Bowers, S. Sommer, A. Conder, K. N. LaFortune, Jen Nan Wong, J.T. Salmon, B. M. Van Wonterghem, V.J. Hernandez, S. Pratuch, S. N. Dixit, Leyen S. Chang, R. Lowe-Webb, J. A. Campbell, and Michael R. Borden
- Subjects
Chirped pulse amplification ,Materials science ,business.industry ,Nova (laser) ,law.invention ,Ignition system ,Optics ,Regenerative amplification ,law ,Wide dynamic range ,Laser power scaling ,business ,National Ignition Facility ,Inertial confinement fusion - Abstract
We have achieved the NIF design goals for power and energy by delivering 1.86 MJ of ultra-violet energy in a wide dynamic range (>300:1), 22.5-ns shaped ignition pulse with a peak power of 520 TW.
- Published
- 2013
29. Centroid stabilization for laser alignment to corner cubes: designing a matched filter
- Author
-
Victoria Miller Kamm, R. Lowe-Webb, K. Wilhelmsen, Abdul A. S. Awwal, Randy S. Roberts, Erlan S. Bliss, Richard R. Leach, and G Brunton
- Subjects
Computer science ,business.industry ,Materials Science (miscellaneous) ,Matched filter ,Centroid ,Image processing ,Laser ,01 natural sciences ,Industrial and Manufacturing Engineering ,010305 fluids & plasmas ,law.invention ,010309 optics ,Crystal ,Corner reflector ,Optics ,law ,Position (vector) ,0103 physical sciences ,Digital image processing ,Physics::Accelerator Physics ,Business and International Management ,Cube ,business ,Beam (structure) - Abstract
Automation of image-based alignment of National Ignition Facility high energy laser beams is providing the capability of executing multiple target shots per day. One important alignment is beam centration through the second and third harmonic generating crystals in the final optics assembly (FOA), which employs two retroreflecting corner cubes as centering references for each beam. Beam-to-beam variations and systematic beam changes over time in the FOA corner cube images can lead to a reduction in accuracy as well as increased convergence durations for the template-based position detector. A systematic approach is described that maintains FOA corner cube templates and guarantees stable position estimation.
- Published
- 2016
30. Beam and target alignment at the National Ignition Facility using the Target Alignment Sensor (TAS)
- Author
-
Steve G. Azevedo, Janice K. Lawson, P. Datte, Daniel H. Kalantar, J. M. Di Nicola, R. Tommasini, R. Lowe-Webb, Michael Schneider, P. Danforth, T. McCarville, Jessie Jackson, R. J. Wallace, S. Alvarez, Charles D. Orth, J. Klingmann, Anastacia M. Manuel, and P. Di Nicola
- Subjects
Physics ,Telescope ,Ignition system ,Optics ,business.industry ,law ,National Ignition Facility ,business ,Beam (structure) ,law.invention - Abstract
The requirements for beam and target alignment for successful ignition experiments on the National Ignition Facility (NIF) are stringent: the average of beams to the target must be within 25 μm. Beam and target alignment are achieved with the Target Alignment Sensor (TAS). The TAS is a precision optical device that is inserted into target chamber center to facilitate both beam and target alignment. It incorporates two camera views (upper/lower and side) mounted on each of two stage assemblies (jaws) to view and align the target. It also incorporates a large mirror on each of the two assemblies to reflect the alignment beams onto the upper/lower cameras for beam alignment. The TAS is located in the chamber using reference features by viewing it with two external telescope views. The two jaws are adjusted in elevation to match the desired beam and target alignment locations. For some shot setups, a sequence of TAS positions is required to achieve the full setup and alignment. In this paper we describe the TAS, the characterization of the TAS coordinates for beam and target alignment, and summarize pointing shots that demonstrate the accuracy of beam-target alignment.
- Published
- 2012
31. Assembly of High-Areal-Density Deuterium-Tritium Fuel from Indirectly Driven Cryogenic Implosions
- Author
-
E. Giraldez, K. N. La Fortune, Mark W. Bowers, David R. Farley, Steve Glenn, W. H. Courdin, C. A. Thomas, P. S. Datte, K. M. Knittel, B. Haid, C. Stoeckl, K. Moreno, James Knauer, Edward I. Moses, S. W. Haan, N. Guler, J. J. Klingman, P. M. Celliers, P. T. Springer, B. J. Kozioziemski, H. F. Robey, J. D. Sater, A. J. MacKinnon, S. Weaver, N. E. Palmer, R. Bionta, M. A. Barrios, S. G. Brass, L. V. Berzins, Gordon A. Chandler, G. Frieders, Chris Haynam, E. P. Hartouni, Gary Wayne Cooper, G. N. McHalle, Marilyn Schneider, Chimpén Ruiz, Abbas Nikroo, R. J. Fortner, Hans Rinderknecht, Joseph Ralph, N. Simanovskaia, Michael J. Moran, S. J. Cohen, Pierre Michel, R. J. Leeper, Ogden Jones, G. LaCaille, T. G. Parham, R. Benedetti, R. P. J. Town, Eduard Dewald, P. Di Nicola, D. H. Munro, S. C. Burkhart, L. J. Atherton, Maria Gatu Johnson, R. W. Patterson, Hans W. Herrmann, A. Zylestra, Mahalia Jackson, John Lindl, David K. Bradley, Steven Weber, E. S. Palma, James McNaney, John Kline, M. J. Shaw, S. N. Dixit, T. A. Land, Daniel Casey, Gilbert Collins, P. W. McKenty, Paul J. Wegner, Brian Spears, C. Marshall, K. Widmann, D. G. Mathisen, Vladimir Glebov, R. E. Olson, Alex V. Hamza, R. F. Burr, Frank E. Merrill, Owen B. Drury, M. Hermann, Sean Regan, Rebecca Dylla-Spears, C. Clay Widmayer, Nathan Meezan, J. R. Kimbrough, G. Heestand, R. K. Kirkwood, Daniel Clark, R. Saunders, B.M. VanWonterghem, R. Lowe-Webb, K.S. Jancaitis, Perry M. Bell, Pamela K. Whitman, J. A. Caggiano, Damien Hicks, Charles Cerjan, R. J. Wallace, B. K. Young, P. A. Arnold, R. Tommasini, Robert L. Kauffman, A. G. Nelson, E. J. Bond, Alastair Moore, J. R. Cox, Steven H. Batha, Siegfried Glenzer, Bruce Hammel, J Eggert, B. Felker, Laurent Divol, D. A. Callahan, R. B. Ehrlich, Andrew MacPhee, Johan Frenje, D. H. Schneider, Evan Mapoles, Charles D. Orth, R. Prasad, Jose Milovich, K. G. Krauter, G. Gururangan, R. D. Wood, R. C. Ashabranner, E. G. Dzenitis, G. W. Krauter, John M. Dzenitis, J. P. Holder, Prav Patel, B. J. MacGowan, D. N. Fittinghoff, L. J. Lagin, Nobuhiko Izumi, J. M. Dinicola, D. L. Blueuel, Stephan Friedrich, G. Ross, D. H. Edgell, C. F. Walters, James E. Fair, J. D. Kilkenny, Craig Sangster, John Moody, Mary Sue Richardson, R. A. Zacharias, Robert Hatarik, D. Latray, David C. Eder, O. L. Landen, M. J. Eckart, T. Kohut, R. D. Petrasso, J. D. Salmonsen, G. A. Kyrala, Gary Grim, K. D. Hahn, Steve Hatchett, T. Ma, Suhas Bhandarkar, Wolfgang Stoeffl, G Brunton, L. J. Suter, Thomas Boehly, L. A. Bernstein, M. J. Edwards, Tilo Döppner, David Larson, S. Lepape, Dan Kalantar, G. Erbert, and Doug Wilson
- Subjects
Ignition system ,Materials science ,Deuterium ,Hohlraum ,law ,Nuclear engineering ,General Physics and Astronomy ,Implosion ,Neutron ,Area density ,Radius ,National Ignition Facility ,law.invention - Abstract
The National Ignition Facility has been used to compress deuterium-tritium to an average areal density of ~1.0±0.1 g cm(-2), which is 67% of the ignition requirement. These conditions were obtained using 192 laser beams with total energy of 1-1.6 MJ and peak power up to 420 TW to create a hohlraum drive with a shaped power profile, peaking at a soft x-ray radiation temperature of 275-300 eV. This pulse delivered a series of shocks that compressed a capsule containing cryogenic deuterium-tritium to a radius of 25-35 μm. Neutron images of the implosion were used to estimate a fuel density of 500-800 g cm(-3).
- Published
- 2012
32. Publisher’s Note: Demonstration of Ignition Radiation Temperatures in Indirect-Drive Inertial Confinement Fusion Hohlraums [Phys. Rev. Lett.106, 085004 (2011)]
- Author
-
B. L. Pepmeier, D. L. Hodtwalker, B. V. Beeman, J. D. Hollis, P. S. Yang, S. A. Silva, M. J. Richardson, J. L. Vaher, K. Gu, B. N. M. Balaoing, J. E. Krammen, P. J. van Arsdall, N. I. Spafford, M. M. Montoya, M. A. Jackson, F. W. Chambers, J. Grippen, M. Neto, P. H. Gschweng, J. D. Moody, C. A. Haynam, S. Huber, A. P. Ludwigsen, E T Alger, G. M. Curnow, J. Watkins, J. C. Ellefson, S. Sailors, B. McHale, L. F. Alvarez, H. Chandrasekaran, T. E. Mills, Cliff Thomas, P. L. Stratton, R. Zacharias, J. D. Hitchcock, P. M. Bell, J. F. Meeker, E. L. Dewald, R. K. Butlin, T. G. Stone, K. P. Youngblood, Mark W. Bowers, M. Runkel, E. Padilla, M. W. Owens, S. S. Alvarez, J. G. Soto, L. J. Atherton, J. McBride, W. A. Reid, M. Y. Mauvais, G. Heestand, O. D. Edwards, S. W. Lane, A. A. Marsh, T. N. Malsbury, S. R. Robison, P. M. Danforth, J. D. Kilkenny, J. A. Baltz, M. J. Dailey, R. C. Montesanti, J. D. Driscoll, B. J. MacGowan, M. K. Shiflett, Donald F. Browning, F. J. Lopez, C. R. Gibson, F. E. Wade, R. Darbee, Mark R. Hermann, B Fishler, Y. Chen, Edward I. Moses, G. A. Kyrala, R. D. Demaret, J. G. Lown, M. D. Magat, S. Azevedo, G. Erbert, R. K. Kirkwood, K. Charron, Harry B. Radousky, R. T. Shelton, M. E. Sheldrick, R. R. Lyons, C. T. Warren, Paul J. Wegner, P. V. Amick, B. Johnson, G. Hermes, K. M. Morriston, G. A. Keating, T. G. Parham, K. S. Andersson, G. Ross, C. H. Ellerbee, D. A. Callahan, A. S. Rivenes, C. B. Foxworthy, M. C. Johnson, R. Miramontes-Ortiz, P. T. Springer, P. Datte, T. Kohut, J. Neumann, A. J. van Prooyen, C. Thai, M. J. Edwards, K. Work, Tilo Döppner, K. D. Pletcher, G. Frieder, D. S. Hey, T. Ma, A. J. Churby, I. L. Maslennikov, M. C. Witte, Siegfried Glenzer, G. J. Mauger, B. E. Smith, Suhas Bhandarkar, S. C. Burkhart, Joseph Ralph, T. J. Clancy, E. Ng, Thomas J. Johnson, K. L. Griffin, Rolf K. Reed, J. Braucht, R. Rinnert, J.M.Fisher, J. M. Di Nicola, N. Lao, A. L. Throop, S. Hunter, R. L. Rampke, Nathan Meezan, D. A. Barker, Otto Landen, Mark Eckart, M. A. Bergonia, K. N. La Fortune, J. R. Kimbrough, T. R. Huppler, R. A. London, G. L. Tietbohl, J. J. Rhodes, Christoph Niemann, Richard Town, W. J. Fabyan, Joseph W. Carlson, K. M. Skulina, G. Pavel, T. W. Phillips, B. D. Cline, R. G. Hartley, R. J. Wallace, T. L. Lee, C. C. Widmayer, Steven H. Langer, L. F. Finnie, J. Morris, G. T. Villanueva, S. W. Kramer, L. K. Smith, J. W. Florio, D. Pigg, J. L. Vickers, A. S. Runtal, F. E. Coffield, D. G. Cocherell, Pamela K. Whitman, S. Le Pape, Michael Stadermann, E. A. Stout, J. Liebman, V. K. Lakamsani, D. K. Bradley, J. A. Borgman, D. G. Mathisen, M. D. Vergino, P. A. Arnold, Kenneth S. Jancaitis, M. D. Rosen, Jeremy Kroll, J. Dugorepec, M. F. Swisher, J. M. Tillman, D. Pendleton, D. E. Speck, E. Mertens, K. King, Q. M. Ngo, G. Bardsley, E. A. Tekle, R. Costa, Robert L. Kauffman, D. T. Boyle, J. E. Hamblen, D. M. Lord, B. L. Lechleiter, M.S.Hutton, T. Fung, J. R. Schaffer, E. M. Giraldez, S. N. Dixit, John R. Celeste, Laurent Divol, L. C. Clowdus, B. K. Young, D. Trummer, H. Gonzales, B. P. Golick, D. T. Maloy, J. P. Holder, Wendi Sweet, S. R. Marshall, G. J. Edwards, Sally Andrews, G. A. Deis, L. J. Bernardez, D. Larson, L. L. Silva, A. McGrew, G Brunton, S. M. Glenn, Alexander Thomas, Jay D. Salmonson, R. E. Olson, C. M. Estes, Wade H. Williams, K. G. Koka, A. I. Barnes, M. A. Vitalich, A. Y. Chakicherla, J. L. Reynolds, B. Haid, J. T. Salmon, L. V. Berzins, O. S. Jones, B. A. Wilson, M. G. Miller, L. M. Kegelmeyer, Mark J. Schmitt, E. J. Bond, D. R. Bopp, G. T. Lau, N. W. Lum, Kevin S. White, J. T. Fink, D. R. Hart, Marilyn Schneider, F. Stanley, D. B. Dobson, F. Barbosa, L. J. Suter, M. Shor, A. V. Hamza, D. L. Hardy, T. McCarville, D. L. Hipple, C. J. Roberts, P. W. Edwards, R. W. Patterson, Ronald B. Robinson, J. B. Tassano, B. S. Raimondi, S. R. Hahn, G. Gururangan, P. C. Dupuy, R. L. Hibbard, J. R. Nelson, D. A. Smauley, M. J. Fischer, J. H. Kamperschroer, G. Holtmeier, Andrew MacPhee, E. A. Williams, P. A. Adams, K. G. Krauter, Jose Milovich, Stephen P. Vernon, L. J. Lagin, G. N. Gawinski, J. S. Taylor, G. Antonini, M. P. Johnston, M. C. Valadez, M. A. Weingart, S. L. Edson, John Kline, S. M. Gross, A. Baron, J. D. Tappero, N. L. Orsi, J. A. Davis, J. Klingmann, N. J. Cahayag, Carlos E. Castro, J. D. Lindl, A. T. Rivera, L. R. Belk, S. L. Kenitzer, J. Duncan, K. E. Burns, A. L. Solomon, R. C. Bettenhausen, B. M. Van Wonterghem, S. P. Rogers, R G Beeler, D. Latray, H. K. Loey, T. M. Pannell, B. Felker, T. Frazier, V. Rekow, P. G. Zapata, A. J. Mackinnon, R. W. Carey, P. S. Cardinale, J. Jackson, John Moody, S. Burns, L. Willis, J. L. Bragg, D. E. Petersen, E. G. Dzenitis, D. R. Jedlovec, J. R. Cox, D. E. Hinkel, J. A. Robinson, John R. Bower, E. O. Vergel de Dios, B. A. Hammel, L. M. Burrows, Daniel H. Kalantar, Klaus Widmann, M. J. Christensen, R. Prasad, A. L. Warrick, K. Wilhelmsen, R. Chapman, O. R. Rodriguez, A. W. Huey, B. L. Olejniczak, G. W. Krauter, S. W. Haan, Claire Bishop, H. Zhang, J. B. Alfonso, J. H. Truong, S. Weaver, K. S. Segraves, S. Sommer, J. C. Bell, Y. Lee, S. Shiromizu, R. Saunders, R. N. Fallejo, K. Piston, J. Wen, R. M. Marquez, K. L. Tribbey, S. A. Gonzales, P. Di Nicola, R. M. Franks, A. Nikroo, G. A. Bowers, J. B. McCloud, K. A. Moreno, Nobuhiko Izumi, S. F. Locke, S. A. Vonhof, E. F. Wilson, M. D. Finney, D. P. Atkinson, Damien Hicks, R. Lowe-Webb, R. A. Sacks, B. Riordan, M. Fedorov, A. B. Langdon, Z. Alherz, D. N. Hulsey, E. K. Krieger, S. J. Cohen, T. M. Schindler, B. Burr, J. S. Merill, C. Powell, Pierre Michel, J. S. Zielinski, M. J. Gonzales, C. Marshall, Richard Berger, C. Chan, J. Li, S. L. Townsend, L. Auyang, F. A. Penko, A. D. Casey, C. Chang, D. L. Brinkerhoff, K. M. Knittel, R. J. Strauser, G. Markham, and M. J. Shaw
- Subjects
Nuclear physics ,Physics ,Ignition system ,Hohlraum ,law ,General Physics and Astronomy ,Plasma confinement ,Magnetic confinement fusion ,Plasma ,Atomic physics ,Radiation ,Inertial confinement fusion ,law.invention - Published
- 2011
33. Demonstration of Ignition Radiation Temperatures in Indirect-Drive Inertial Confinement Fusion Hohlraums
- Author
-
L. V. Berzins, L. M. Kegelmeyer, D. R. Hart, L. J. Suter, M. Shor, Ronald B. Robinson, S. S. Alvarez, G. Gururangan, Robert L. Kauffman, C. T. Warren, R. Darbee, Andrew MacPhee, J. R. Nelson, D. A. Smauley, M. J. Fischer, K. S. Andersson, D. A. Callahan, L. J. Atherton, D. S. Hey, J. D. Kilkenny, T. Ma, J. H. Kamperschroer, T. Frazier, T. J. Clancy, E. A. Williams, P. A. Adams, C. Thai, Laurent Divol, G. J. Edwards, Suhas Bhandarkar, K. Work, M. D. Magat, S. Hunter, Stephen P. Vernon, T. L. Lee, Rolf K. Reed, J.M.Fisher, O. S. Jones, D. Trummer, G. N. Gawinski, G. Antonini, M. P. Johnston, A. J. Mackinnon, M. E. Sheldrick, T. R. Huppler, B. A. Wilson, J. P. Holder, P. L. Stratton, Yiping Chen, J. Jackson, S. Sailors, John Moody, Mark J. Schmitt, L. K. Smith, R. G. Hartley, E. J. Bond, P. Datte, S. Burns, B. McHale, G. Bardsley, D. T. Boyle, D. R. Bopp, E. L. Dewald, J. E. Hamblen, L. Willis, K. G. Krauter, J. R. Schaffer, D. G. Mathisen, M. D. Rosen, J. Morris, M.S.Hutton, G. T. Lau, N. W. Lum, G. Hermes, G. A. Deis, K. N. La Fortune, M. C. Johnson, J. Neumann, C. C. Widmayer, Steven H. Langer, L. F. Finnie, M. C. Witte, K. King, Michael Stadermann, E. A. Stout, M. G. Miller, Wendi Sweet, T. G. Stone, E. A. Tekle, P. M. Danforth, H. Chandrasekaran, D. Larson, M. F. Swisher, J. T. Fink, G. Frieder, L. Bezerides, Kenneth S. Jancaitis, A. L. Throop, B. L. Lechleiter, S. N. Dixit, Kevin S. White, C. Chang, M. K. Shiflett, G. A. Kyrala, F. Stanley, J. Braucht, John Kline, S. M. Gross, A. Baron, R G Beeler, S. Azevedo, R. A. London, T. E. Mills, G Brunton, Marilyn Schneider, M. J. Dailey, R. C. Montesanti, J. Dugorepec, A. J. Churby, I. L. Maslennikov, D. Latray, F. Barbosa, P. A. Arnold, A. A. Marsh, J. J. Rhodes, G. L. Tietbohl, Alexander Thomas, D. B. Dobson, J. M. Tillman, L. L. Silva, G. Erbert, D. A. Barker, R. D. Demaret, J. A. Davis, S. M. Glenn, J. Klingmann, Edward I. Moses, T. M. Pannell, R. T. Shelton, J. M. Di Nicola, N. J. Cahayag, T. Fung, R. L. Rampke, S. Le Pape, Jay D. Salmonson, G. Ross, R. E. Olson, E. Mertens, J. D. Lindl, J. G. Lown, C. M. Estes, A. T. Rivera, Mark W. Bowers, M. Runkel, F. E. Coffield, Wade H. Williams, K. G. Koka, B. A. Hammel, L. M. Burrows, A. S. Rivenes, Daniel H. Kalantar, M. A. Vitalich, M. Y. Mauvais, D. G. Cocherell, J. Grippen, P. V. Amick, B. K. Young, J. G. Soto, A. McGrew, M. J. Edwards, Tilo Döppner, M. J. Christensen, Jeremy Kroll, J. L. Vaher, C. H. Ellerbee, T. N. Malsbury, C. A. Haynam, B. Haid, J. T. Salmon, A. J. van Prooyen, A. L. Warrick, R. Costa, A. V. Hamza, T. G. Parham, C. R. Gibson, S. A. Silva, D. Pendlton, A. W. Huey, P. M. Bell, K. P. Youngblood, B. N. M. Balaoing, Joseph Ralph, R. Rinnert, B Fishler, D. L. Hardy, K. D. Pletcher, J. Liebman, R. K. Butlin, B. Johnson, T. McCarville, L. C. Clowdus, Otto Landen, V. K. Lakamsani, B. P. Golick, F. W. Chambers, D. T. Maloy, D. L. Hipple, C. B. Foxworthy, O. D. Edwards, C. J. Roberts, T. Zaleski, S. C. Burkhart, Thomas J. Johnson, N. Lao, S. R. Marshall, J. A. Baltz, D. E. Speck, R. Miramontes, J. E. Krammen, P. J. van Arsdall, M. A. Bergonia, K. M. Skulina, R. J. Strausser, K. M. Knittel, Siegfried Glenzer, G. J. Mauger, B. E. Smith, Sally Andrews, G. Heestand, P. W. Edwards, E. M. Giraldez, John R. Celeste, N. I. Spafford, R. W. Patterson, J. Watkins, J. B. Tassano, J. C. Ellefson, B. S. Raimondi, Christoph Niemann, M. M. Montoya, M. A. Jackson, T. W. Phillips, H. Gonzales, E. Ng, Mark Eckart, D. M. Lord, S. R. Hahn, L. J. Bernardez, B. D. Cline, A. Forsman, J. W. Florio, D. Pigg, Donald F. Browning, J. L. Vickers, K. M. Morriston, G. A. Keating, G. Pavel, P. C. Dupuy, A. S. Runtal, R. L. Hibbard, P. T. Springer, T. Kohut, B. L. Pepmeier, Richard Town, W. J. Fabyan, S. Huber, A. P. Ludwigsen, G. Holtmeier, D. L. Hodtwalker, M. Neto, P. H. Gschweng, J. D. Moody, K. L. Griffin, B. V. Beeman, J. D. Hollis, E T Alger, G. M. Curnow, P. S. Yang, E. Padilla, M. W. Owens, M. J. Richardson, S. R. Robison, K. Gu, F. J. Lopez, G. Markham, M. J. Shaw, F. E. Wade, R. K. Kirkwood, Pamela K. Whitman, Cliff Thomas, L. F. Alvarez, D. K. Bradley, J. F. Meeker, J. A. Borgman, M. D. Vergino, J. McBride, W. A. Reid, D. E. Petersen, J. S. Taylor, G. T. Villanueva, M. C. Valadez, D. E. Hinkel, M. A. Weingart, K. Charron, S. W. Kramer, R. R. Lyons, S. L. Edson, Klaus Widmann, Q. M. Ngo, H. Zhang, J. B. Alfonso, S. Weaver, J. D. Driscoll, R. M. Marquez, R. M. Franks, A. Nikroo, Mark R. Hermann, R. A. Sacks, Harry B. Radousky, A. B. Langdon, Paul J. Wegner, E. K. Krieger, Pierre Michel, Richard Berger, C. Chan, J. Li, Jose Milovich, J. S. Merill, C. Powell, J. S. Zielinski, L. J. Lagin, S. P. Rogers, J. D. Tappero, N. L. Orsi, S. L. Townsend, L. Auyang, F. A. Penko, V. Rekow, P. G. Zapata, Carlos E. Castro, R. W. Carey, A. D. Casey, K. S. Segraves, D. R. Jedlovec, J. R. Cox, S. Sommer, J. C. Bell, D. L. Brinkerhoff, E. O. Vergel de Dios, G. A. Bowers, R. Zacharias, J. D. Hitchcock, S. W. Lane, R. Prasad, K. A. Moreno, B. J. MacGowan, K. Wilhelmsen, Nobuhiko Izumi, S. F. Locke, R. Chapman, O. R. Rodriguez, S. A. Vonhof, E. F. Wilson, B. L. Olejniczak, G. W. Krauter, R. Lowe-Webb, Nathan Meezan, J. R. Kimbrough, Claire Bishop, D. N. Hulsey, Joseph W. Carlson, R. N. Fallejo, M. J. Gonzalez, L. R. Belk, R. J. Wallace, S. L. Kenitzer, J. Duncan, K. Piston, J. Wen, K. E. Burns, K. L. Tribbey, S. A. Gonzales, J. H. Truong, P. Di Nicola, J. B. McCloud, Y. Lee, S. Shiromizu, T. M. Schindler, B. Burr, R. Saunders, C. Marshall, A. L. Solomon, R. C. Bettenhausen, B. M. Van Wonterghem, H. K. Loey, B. Felker, P. S. Cardinale, M. D. Finney, D. P. Atkinson, Damien Hicks, J. L. Bragg, E. G. Dzenitis, J. A. Robinson, John R. Bower, B. Riordan, S. W. Haan, M. Fedorov, Z. Alherz, S. J. Cohen, A. I. Barnes, A. Y. Chakicherla, and J. L. Reynolds
- Subjects
Physics ,business.industry ,Physics::Optics ,General Physics and Astronomy ,Implosion ,Radiation ,Laser ,law.invention ,Ignition system ,Optics ,Physics::Plasma Physics ,Hohlraum ,law ,Laser power scaling ,Atomic physics ,National Ignition Facility ,business ,Inertial confinement fusion ,Astrophysics::Galaxy Astrophysics - Abstract
We demonstrate the hohlraum radiation temperature and symmetry required for ignition-scale inertial confinement fusion capsule implosions. Cryogenic gas-filled hohlraums with 2.2 mm-diameter capsules are heated with unprecedented laser energies of 1.2 MJ delivered by 192 ultraviolet laser beams on the National Ignition Facility. Laser backscatter measurements show that these hohlraums absorb 87% to 91% of the incident laser power resulting in peak radiation temperatures of T(RAD)=300 eV and a symmetric implosion to a 100 μm diameter hot core.
- Published
- 2011
34. Recent advances in automatic alignment system for the National Ignition Facility
- Author
-
R. Lowe-Webb, Dan Kalantar, Vicki Miller Kamm, Richard R. Leach, D McGuigan, K. Wilhelmsen, and Abdul A. S. Awwal
- Subjects
Focus (computing) ,Computer science ,business.industry ,Image processing ,Laser ,law.invention ,Optical path ,Beamline ,law ,Control system ,Computer cluster ,Nuclear fusion ,National Ignition Facility ,business ,Beam (structure) ,Simulation ,Computer hardware - Abstract
The automatic alignment system for the National Ignition Facility (NIF) is a large-scale parallel system that directs all 192 laser beams along the 300-m optical path to a 50-micron focus at target chamber in less than 50 minutes. The system automatically commands 9,000 stepping motors to adjust mirrors and other optics based upon images acquired from high-resolution digital cameras viewing beams at various locations. Forty-five control loops per beamline request image processing services running on a LINUX cluster to analyze these images of the beams and references, and automatically steer the beams toward the target. This paper discusses the upgrades to the NIF automatic alignment system to handle new alignment needs and evolving requirements as related to various types of experiments performed. As NIF becomes a continuously-operated system and more experiments are performed, performance monitoring is increasingly important for maintenance and commissioning work. Data, collected during operations, is analyzed for tuning of the laser and targeting maintenance work. Handling evolving alignment and maintenance needs is expected for the planned 30-year operational life of NIF.
- Published
- 2011
35. The National Ignition Facility: alignment from construction to shot operations
- Author
-
T. Salmon, S. C. Burkhart, Daniel H. Kalantar, D. Nelson, J. Villanueva, T. Schindler, Erlan S. Bliss, P. Di Nicola, R. Lowe-Webb, K. Wilhelmsen, and T. McCarville
- Subjects
Ignition system ,Shot (pellet) ,Computer science ,Project commissioning ,law ,Systems engineering ,National Ignition Facility ,Inertial confinement fusion ,Simulation ,law.invention - Abstract
The National Ignition Facility in Livermore, California, completed it's commissioning milestone on March 10, 2009 when it fired all 192 beams at a combined energy of 1.1 MJ at 351nm. Subsequently, a target shot series from August through December of 2009 culminated in scale ignition target design experiments up to 1.2 MJ in the National Ignition Campaign. Preparations are underway through the first half of of 2010 leading to DT ignition and gain experiments in the fall of 2010 into 2011. The top level requirement for beam pointing to target of 50μm rms is the culmination of 15 years of engineering design of a stable facility, commissioning of precision alignment, and precise shot operations controls. Key design documents which guided this project were published in the mid 1990's, driving systems designs. Precision Survey methods were used throughout construction, commissioning and operations for precision placement. Rigorous commissioning processes were used to ensure and validate placement and alignment throughout commissioning and in present day operations. Accurate and rapid system alignment during operations is accomplished by an impressive controls system to align and validate alignment readiness, assuring machine safety and productive experiments.
- Published
- 2010
36. Photoluminescence study of in situ annealed InAs quantum dots: Double-peak emission associated with bimodal size distribution
- Author
-
Roger R. Lowe-Webb, Peter C. Sercel, Hao Lee, Thomas J. Johnson, and Weidong Yang
- Subjects
In situ ,Photoluminescence ,Materials science ,Physics and Astronomy (miscellaneous) ,Condensed Matter::Other ,Annealing (metallurgy) ,Analytical chemistry ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Molecular physics ,Spectral line ,Condensed Matter::Materials Science ,Semiconductor quantum dots ,Quantum dot ,Thermal ,Self-assembly - Abstract
We report a photoluminescence study of self-assembled InAs islands subjected to in situ annealing prior to the growth of a capping layer. A distinctive double-peak feature is observed in the photoluminescence spectra of annealed samples. The power dependence of the photoluminescence spectra reveals that the double-peak emission is associated with the ground-state transition of islands in two different size branches. This observation agrees with a previous study, which demonstrated that the InAs island size distribution bifurcates during post-growth annealing. The temperature dependence of the photoluminescence intensities from samples with bimodal island size distributions illustrates that different thermal activation energies for carrier emission are associated with islands in different size branches.
- Published
- 1998
37. Determination of the shape of self-organized InAs/GaAs quantum dots by reflection high energy electron diffraction
- Author
-
Roger R. Lowe-Webb, Weidong Yang, Hao Lee, and Peter C. Sercel
- Subjects
Physics ,Electron density ,Reflection high-energy electron diffraction ,Physics and Astronomy (miscellaneous) ,Condensed matter physics ,business.industry ,Quantum point contact ,Electronic structure ,Reflection (mathematics) ,Electron diffraction ,Quantum dot ,Optoelectronics ,Facet ,business - Abstract
We report a reflection high energy electron diffraction study of InAs self-organized quantum dots grown on GaAs (001). We observe facet reflections along the [310] and [130] azimuths, which indicate that the quantum dot shape is pyramidal with bounding facets corresponding to a family of four {136} planes. The determined structure, which possesses C2v symmetry, is quite different both from square-base pyramidal geometries which have been assumed in recent electronic structure calculations, and from previously proposed structures which have been based upon incomplete reflection high energy electron diffraction data.
- Published
- 1998
38. Erratum: 'Review of the National Ignition Campaign 2009-2012' [Phys. Plasmas 21, 020501 (2014)]
- Author
-
B. J. Haid, R G Beeler, D. Latray, J. M. Di Nicola, T. Kohut, Damien Hicks, J. A. Koch, S. V. Weber, Frank E. Merrill, P. Gauthier, M. Hoppe, M. Fedorov, S. Woods, D. Meeker, Nathan Meezan, J. R. Kimbrough, A. S. Moore, V. A. Smalyuk, Pamela K. Whitman, R. K. House, Jose Milovich, J. Adams, H. Wilkens, V. E. Fatherley, Robert L. Kauffman, J. N. E. Palmer, Brian Felker, Jon Eggert, R. Sawicki, R. A. Lerche, G.D. Kerbel, Kumar Raman, E. L. Dewald, F. Ravizza, B. P. Golick, J.-L. Bourgade, L. J. Lagin, Mahalia Jackson, Laurent Divol, K. A. Moreno, Nobuhiko Izumi, R. M. Bionta, Owen B. Drury, A. M. Manuel, S. J. Cohen, M. H. Key, R. J. Fortner, T. Frazier, R. T. Shelton, F. Philippe, D. H. Schneider, D. Trummer, R. Tommasini, C. Marshall, N. Guler, J. L. Peterson, Thomas G. Phillips, M. A. Rever, J. S. Taylor, Stephan Friedrich, L. J. Atherton, Otto Landen, N. Simanovskaia, G. W. Cooper, A. J. Mackinnon, R. Lowe-Webb, A. Wang, G. Gururangan, R. Hawley, C. Choate, John M. Dzenitis, W. Garbett, C. F. Walters, A. C. Riddle, B. E. Yoxall, M.S.Hutton, R. Seugling, J. D. Kilkenny, Gabriel M. Guss, J. P. Holder, R. Saunders, J. R. Nelson, D. A. Smauley, Joseph Koning, D. T. Casey, N. Masters, M. C. Witte, H.-S. Park, D. A. Shaughnessy, Rachna Prasad, J. E. Peterson, R. Zacharias, D. H. Munro, Christopher J. Stolz, Edward I. Moses, D. D. Martinson, C. J. Cerjan, James McNaney, J. R. Rygg, T. N. Malsbury, J. B. Horner, N. Shingleton, T A Biesiada, Mike C. Nostrand, Tilo Döppner, L. F. Berzak Hopkins, T. A. Land, C. R. Gibson, D. Mason, D. R. Jedlovec, J. R. Cox, P. Datte, D. A. Barker, Kenneth S. Jancaitis, R. F. Burr, F. H. Séguin, Erik Storm, R. A. London, S. R. Qiu, Laurent Masse, R. A. Sacks, E. A. Williams, M. Mintz, Robert Hatarik, B. A. Hammel, Daniel H. Kalantar, D. Hoover, R. Von Rotz, Mark Eckart, Laura Robin Benedetti, E. S. Palma, V.J. Hernandez, M J O'Brien, J. Gaylord, George B. Zimmerman, J. C. Moreno, A. L. Kritcher, Evan Mapoles, A. B. Langdon, B. J. MacGowan, R. D. Petrasso, John E. Heebner, C. W. Carr, A. L. Warrick, G. L. Tietbohl, Charles D. Orth, David R. Farley, T. M. Guymer, Ted A. Laurence, C. B. Yeamans, M. Emerich, Carlos E. Castro, J.-P. Leidinger, J. E. Ralph, M. Norton, Gordon A. Chandler, Shahab Khan, Y. Kim, O. S. Jones, Peter M. Celliers, Michael R. Borden, K. Wilhelmsen, J. L. Reynolds, B. J. Kozioziemski, J. D. Moody, Marilyn Schneider, Christopher Danly, Chimpén Ruiz, James A. Folta, S. C. Burkhart, T. M. Spinka, E. G. Dzenitis, Shon Prisbrey, E. P. Hartouni, M. J. Richardson, David Strozzi, Kyle Peterson, B. Rittmann, E. J. Bond, M. Chiarappa-Zucca, Michael J. Moran, K. C. Chen, M. A. Barrios, I. Matthews, Steven H. Batha, P. T. Springer, G. W. Krauter, Nick Antipa, P. A. Arnold, Raluca A. Negres, Howard A. Scott, K. D. Hahn, R. B. Ehrlich, A. V. Hamza, Scott Sepke, Pierre Michel, Marcus V. Monticelli, Denise Hinkel, D. M. Holunga, S. W. Haan, L. J. Suter, Maria Gatu Johnson, Cliff Thomas, S. H. Glenzer, J. Edwards, C. K. Li, C. C. Widmayer, K. Schaffers, M. M. Marinak, R. K. Kirkwood, Steven H. Langer, I. Bass, Salmaan H. Baxamusa, Michael Stadermann, David N. Fittinghoff, G. Heestand, N. Dorsano, T. McCarville, J. Chang, D. D. Ho, Mark D. Wilke, Daniel Clark, Z. Liao, William L. Kruer, D. K. Bradley, P. K. Patel, Donald F. Browning, L. A. Bernstein, Arthur C. Carpenter, Hans W. Herrmann, Peter Amendt, S. M. Glenn, Jay D. Salmonson, M. J. Shaw, James S. Stolken, R. E. Olson, Gilbert Collins, J. A. Caggiano, Mark R. Hermann, Bruce Remington, B. Butlin, Paul J. Wegner, Alex Zylstra, K. Primdahl, J. T. Salmon, B. W. Hatch, D. R. Speck, S. P. Hatchett, Brian Spears, C. A. Haynam, Richard C. Montesanti, P. M. Bell, B. V. Beeman, R. J. Wallace, A. Conder, Jeffrey D. Bude, J. J. Klingman, Klaus Widmann, K. N. LaFortune, P. Di Nicola, R. Finucane, Jeremy Kroll, Tayyab I. Suratwala, S. Weaver, J. D. Sater, Michael Rosenberg, J. Fair, V. Draggoo, N. Shen, Laura M. Kegelmeyer, B. Raymond, S. Frieders, K. M. Knittel, S. Azevedo, George A. Kyrala, D. C. Eder, D. A. Callahan, D. L. Bleuel, T. G. Parham, T. Ma, Suhas Bhandarkar, Wolfgang Stoeffl, D. G. Mathisen, M. D. Rosen, L. Wong, H. G. Rinderknecht, S. N. Dixit, P. E. Miller, Robbie Scott, K. Manes, Mark W. Bowers, M. Spaeth, G. Erbert, Andrew MacPhee, B. K. Young, Sebastien LePape, K. G. Krauter, James Ross, R. J. Leeper, J. Liebman, Michael A. Johnson, J. Menapace, G. LaCaille, R. D. Wood, T. J. Clancy, R. W. Patterson, John Kline, Rebecca Dylla-Spears, J. D. Lindl, B.M. VanWonterghem, Yekaterina Opachich, J. Fry, Carl Wilde, Aaron Fisher, P. Graham, Art Pak, G. Frieders, Gary Grim, G. A. Deis, J. A. Frenje, D. Larson, John Honig, G Brunton, S. Yang, John R. Celeste, and Doug Wilson
- Subjects
Ignition system ,Physics ,Nuclear physics ,law ,Plasma ,Condensed Matter Physics ,law.invention - Published
- 2014
39. Alignment and overlay metrology using a spectroscopic diffraction method
- Author
-
Mircea Dusa, Weidong Yang, M. van der Schaar, John D. Heaton, and Roger R. Lowe-Webb
- Subjects
Diffraction ,Optics ,Materials science ,business.industry ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Node (circuits) ,Overlay ,Grating ,business ,Diffraction efficiency ,Diffraction grating ,Lithography ,Metrology - Abstract
As lithographic technology drives the integrated-circuit feature size towards 0.1 micron and below, overlay and alignment tolerances are becoming increasingly severe. State-of-the-art aerial imaging overlay metrology systems are limited in accuracy due to inherent limitation on tool imaging resolution and aberrations inherent to the optical system. These in effect result in measurement inaccuracy exceeding industry requirements for next generation overlay tolerances. In this paper, a spectroscopic, diffraction based, technique is proposed as an alternative solution for overlay metrology and alignment measurement in sub 0.1 micron node. With one diffraction grating on the surface overlaying a second diffraction grating on a reference layer, the spectroscopic reflection is modulated by the relative position of the two gratings. Thus, the alignment error can be extracted from broadband diffraction efficiency of measurement pads constituent to the alignment target. This novel diffraction-based overlay metrology has inherent advantages over the traditional image-based overlay metrology: the targets are less sensitive to process variations, and spectroscopic diffraction measurements are less affected by the inherent aberration of the optical system. For these reasons, a diffraction-based spectroscopic metrology has higher potential to generate overlay data that is directly related to registration errors due to alignment and not due to the process or tool aberrations. As a consequence, this technology has a higher potential to generate accurate data to correct registration errors during the lithographic process. Feasibility and accuracy of the technique is studied through a set of experiments and of rigorous simulations on grating targets with various line-width and line-to-space ratios. Correlation to aerial imaging overlay measurements is demonstrated. The results suggest the technique is capable of achieving or exceeding overlay and alignment control accuracy requirements for sub 0.1 micron design rules.
- Published
- 2003
40. Line-profile and critical dimension measurements using a normal incidence optical metrology system
- Author
-
Weidong Yang, R. Korlahalli, V. Zhuang, D. Mui, Wei Liu, R. Lowe-Webb, and H. Sasano
- Subjects
Diffraction ,Laser linewidth ,Optics ,Materials science ,Spectrometer ,business.industry ,Grating ,business ,Lithography ,Diffraction grating ,Critical dimension ,Metrology - Abstract
Optical critical dimension metrology (OCD), an optical-wavelength light-diffraction technique, is currently undergoing an industry-wide evaluation as a fast, accurate, and non-destructive sub-100 nm line-width monitor. The spectroscopic, zeroth-order diffraction signature obtained from a printed diffraction grating allows extraction of structural information, such as linewidth, sidewall angle, and profile characteristics. The OCD spectrometer is compact and designed for integration into etch tools and lithography tracks. Effective process monitoring requires detailed understanding of the correlation between CD-SEM and OCD measurements. Correlation between the OCD technique and CD-SEM is investigated in this paper by measuring photo-resist gratings on a polysilicon gate film stack. The scatter in the correlation plot is shown to reduce significantly when several CD-SEM measurements are averaged from a single grating. A positive offset in the correlation is observed and a mechanism is proposed to account for the discrepancy.
- Published
- 2003
41. Novel diffraction-based spectroscopic method for overlay metrology
- Author
-
Adolph Hunter, Arie Jeffrey Den Boef, Roger R. Lowe-Webb, Je-Yi Lin, Silvio J. Rabello, John D. Heaton, Mircea Dusa, Maurits van der Schaar, Weidong Yang, and Jiangtao Hu
- Subjects
Diffraction ,Reproducibility ,Optics ,Materials science ,business.industry ,Process control ,Overlay ,Repeatability ,Grating ,business ,Diffraction efficiency ,Metrology - Abstract
A spectroscopic, diffraction based technique is proposed in this paper as an alternative solution for overlay metrology in technology nodes below 90 nanometers. This novel technique extracts alignment error from broadband diffraction efficiency of specially designed diffraction targets in real-time. Feasibility of the technique is studied for a front-end process flow by measuring grating targets printed on a series of wafers which were intentionally mis-processed to introduce inter-die (grid) level programmed overlay errors. Correlation to conventional imaging overlay measurements is demonstrated. Short term and long term data sets demonstrate sub-half-nanometer in 3-sigma statistical parameters that characterize the diffraction overlay system, repeatability, reproducibility, Tool-Induced-Shift and tool-to-tool matching. The resulting total measurement uncertainty for this technique is thus demonstrated to be in the sub-nanometer range.
- Published
- 2003
42. Design and performance of a normal-incidence optical critical dimension metrology system
- Author
-
J.M. Holden, V. Zhuang, R. Lowe-Webb, W.A. McGahan, P.I. Rovira, V.J. Coates, and R.A. Yarussi
- Subjects
Diffraction ,Polarized light microscopy ,Materials science ,Microscope ,business.industry ,Physics::Optics ,Grating ,Waveplate ,law.invention ,Lens (optics) ,Optics ,law ,Optoelectronics ,business ,Diffraction grating ,Beam (structure) - Abstract
Summary form only given. A new microscope-based spectrometric instrument has been designed for measuring the critical dimensions of dense line and space targets on patterned silicon wafers. The repeating structure of the target behaves as a one dimensional diffraction grating. Light, focussed at normal incidence on the wafer, is diffracted symmetrically into positive and negative orders with the O/sup th/ order beam being reflected back through the objective lens. The arrangement of the optics prevents all but the O/sup th/ order beam from being collected for detection. At normal incidence, the beam is a superposition of two linearly polarized components with some phase difference, /spl Delta/. Light polarized in the direction of the grating lines is called TE polarized light, and light polarized perpendicular to the lines is called TM polarized light. Any or all of three spectra can be measured: (1) TE reflectance, (2) TM reflectance, (3) phase difference. Measurement results from both photolithography and etch applications are presented.
- Published
- 2002
43. Nuclear imaging of the fuel assembly in ignition experiments
- Author
-
L. A. Bernstein, D. T. Casey, D. G. Mathisen, B. M. Van Wonterghem, Christopher Danly, J. M. Di Nicola, G. Erbert, W. W. Hsing, D. H. Edgell, Frank E. Merrill, H. G. Rinderknecht, S. N. Dixit, S. M. Glenn, Pamela K. Whitman, Jay D. Salmonson, R. E. Olson, E. L. Dewald, Robert L. Kauffman, J. P. Knauer, Mahalia Jackson, John Kline, Mark Eckart, Laura Robin Benedetti, R. Zacharias, D. H. Munro, Mark W. Bowers, M. A. Barrios, Owen B. Drury, J. R. Cradick, Carlos E. Castro, B. R. Nathan, Denise Hinkel, L. V. Berzins, L. J. Atherton, J. A. Koch, Cliff Thomas, Michael J. Moran, Edward I. Moses, T. L. Lewis, J. D. Kilkenny, Richard Town, R. Saunders, S. V. Weber, C. Choate, David N. Fittinghoff, Carl Wilde, Rachna Prasad, L. J. Suter, R. J. Fortner, James McNaney, Petr Volegov, R. J. Leeper, A. S. Moore, Arthur Pak, D. L. Bleuel, B. J. MacGowan, J. R. Cox, G. LaCaille, D. K. Bradley, E. G. Dzenitis, P. Datte, Laurent Divol, T. G. Parham, Pierre Michel, Richard Berger, P. W. McKenty, Marilyn Schneider, Chimpén Ruiz, Otto Landen, N. Simanovskaia, G. W. Cooper, G. Gururangan, D. H. Schneider, Hans W. Herrmann, G. Frieders, Gary Grim, J. A. Frenje, T. R. Boehly, K. N. La Fortune, A. L. Kritcher, K. D. Hahn, George A. Kyrala, Evan Mapoles, D. C. Eder, B. A. Hammel, Daniel H. Kalantar, P. K. Patel, J. E. Ralph, David R. Farley, Charles D. Orth, D. Larson, D. M. Holunga, Gordon A. Chandler, T. C. Sangster, J. P. Holder, E. P. Hartouni, S. W. Haan, C. J. Cerjan, G. L. Morgan, Tammy Ma, M. J. Shaw, R. A. Buckles, G Brunton, Gilbert Collins, Jeremy Kroll, Brian Felker, G. W. Krauter, Mark R. Hermann, R. C. Ashabranner, Suhas Bhandarkar, C. R. Gibson, Jon Eggert, N. Izumi, P. A. Arnold, S. P. Hatchett, Jose Milovich, Rebecca Dylla-Spears, Wolfgang Stoeffl, Paul J. Wegner, R. D. Petrasso, K. A. Moreno, A. J. Traille, C. Marshall, R. M. Bionta, R. Tommasini, Kumar Raman, J. D. Lindl, M. I. Kauffman, L. J. Lagin, S. C. Burkhart, Christian Stoeckl, Klaus Widmann, Stephan Friedrich, R. Lowe-Webb, Riccardo Betti, G. Ross, J. A. Caggiano, S. Weaver, Alex Zylstra, Susan Regan, E. M. Giraldez, S. H. Glenzer, C. C. Widmayer, Melissa Edwards, A. Nikroo, Nathan Meezan, J. R. Kimbrough, Doug Wilson, R. M. Malone, K. M. Knittel, Robert Hatarik, D. Latray, T. Kohut, O. S. Jones, Peter M. Celliers, A. J. Mackinnon, B. J. Kozioziemski, E T Alger, R. W. Patterson, E. J. Bond, Steven H. Batha, S. J. Cohen, R. B. Ehrlich, Andrew MacPhee, T. A. Land, R. F. Burr, F. H. Séguin, B. K. Young, Sebastien LePape, K. G. Krauter, R. D. Wood, N. Guler, Brian Spears, Shahab Khan, J. D. Moody, R. K. Kirkwood, Daniel Clark, A. J. Nelson, J. D. Sater, J. Fair, V. Y. Glebov, T. N. Malsbury, J. B. Horner, H. Huang, Harry Robey, E. S. Palma, Kenneth S. Jancaitis, Maria Gatu-Johnson, Debra Callahan, C. A. Haynam, P. M. Bell, R. J. Wallace, P. T. Springer, Damien Hicks, P. Di Nicola, and A. V. Hamza
- Subjects
Physics ,Nuclear engineering ,Condensed Matter Physics ,law.invention ,Ignition system ,Nuclear physics ,Physics::Plasma Physics ,law ,Hotspot (geology) ,Nuclear fusion ,Plasma diagnostics ,Neutron ,Area density ,Stagnation pressure ,Inertial confinement fusion - Abstract
First results from the analysis of neutron image data collected on implosions of cryogenically layered deuterium-tritium capsules during the 2011-2012 National Ignition Campaign are reported. The data span a variety of experimental designs aimed at increasing the stagnation pressure of the central hotspot and areal density of the surrounding fuel assembly. Images of neutrons produced by deuterium–tritium fusion reactions in the hotspot are presented, as well as images of neutrons that scatter in the surrounding dense fuel assembly. The image data are compared with 1D and 2D model predictions, and consistency checked using other diagnostic data. The results indicate that the size of the fusing hotspot is consistent with the model predictions, as well as other imaging data, while the overall size of the fuel assembly, inferred from the scattered neutron images, is systematically smaller than models' prediction. Preliminary studies indicate these differences are consistent with a significant fraction (20%–25%) of the initial deuterium-tritium fuel mass outside the compact fuel assembly, due either to low mode mass asymmetry or high mode 3D mix effects at the ablator-ice interface.
- Published
- 2013
44. Cryogenic thermonuclear fuel implosions on the National Ignition Facility
- Author
-
S. H. Glenzer, D. A. Callahan, A. J. MacKinnon, J. L. Kline, G. Grim, E. T. Alger, R. L. Berger, L. A. Bernstein, R. Betti, D. L. Bleuel, T. R. Boehly, D. K. Bradley, S. C. Burkhart, R. Burr, J. A. Caggiano, C. Castro, D. T. Casey, C. Choate, D. S. Clark, P. Celliers, C. J. Cerjan, G. W. Collins, E. L. Dewald, P. DiNicola, J. M. DiNicola, L. Divol, S. Dixit, T. Döppner, R. Dylla-Spears, E. Dzenitis, M. Eckart, G. Erbert, D. Farley, J. Fair, D. Fittinghoff, M. Frank, L. J. A. Frenje, S. Friedrich, M. Gatu Johnson, C. Gibson, E. Giraldez, V. Glebov, S. Glenn, N. Guler, S. W. Haan, B. J. Haid, B. A. Hammel, A. V. Hamza, C. A. Haynam, G. M. Heestand, M. Hermann, H. W. Hermann, D. G. Hicks, D. E. Hinkel, J. P. Holder, D. M. Holunda, J. B. Horner, W. W. Hsing, H. Huang, N. Izumi, M. Jackson, O. S. Jones, D. H. Kalantar, R. Kauffman, J. D. Kilkenny, R. K. Kirkwood, J. Klingmann, T. Kohut, J. P. Knauer, J. A. Koch, B. Kozioziemki, G. A. Kyrala, A. L. Kritcher, J. Kroll, K. La Fortune, L. Lagin, O. L. Landen, D. W. Larson, D. LaTray, R. J. Leeper, S. Le Pape, J. D. Lindl, R. Lowe-Webb, T. Ma, J. McNaney, A. G. MacPhee, T. N. Malsbury, E. Mapoles, C. D. Marshall, N. B. Meezan, F. Merrill, P. Michel, J. D. Moody, A. S. Moore, M. Moran, K. A. Moreno, D. H. Munro, B. R. Nathan, A. Nikroo, R. E. Olson, C. D. Orth, A. E. Pak, P. K. Patel, T. Parham, R. Petrasso, J. E. Ralph, H. Rinderknecht, S. P. Regan, H. F. Robey, J. S. Ross, M. D. Rosen, R. Sacks, J. D. Salmonson, R. Saunders, J. Sater, C. Sangster, M. B. Schneider, F. H. Séguin, M. J. Shaw, B. K. Spears, P. T. Springer, W. Stoeffl, L. J. Suter, C. A. Thomas, R. Tommasini, R. P. J. Town, C. Walters, S. Weaver, S. V. Weber, P. J. Wegner, P. K. Whitman, K. Widmann, C. C. Widmayer, C. H. Wilde, D. C. Wilson, B. Van Wonterghem, B. J. MacGowan, L. J. Atherton, M. J. Edwards, and E. I. Moses
- Subjects
Physics ,Thermonuclear fusion ,Laser ablation ,Astrophysics::High Energy Astrophysical Phenomena ,Nuclear engineering ,Implosion ,Condensed Matter Physics ,law.invention ,Nuclear physics ,Ignition system ,Physics::Plasma Physics ,Hohlraum ,law ,Plasma diagnostics ,National Ignition Facility ,Inertial confinement fusion - Abstract
The first inertial confinement fusion implosion experiments with equimolar deuterium-tritium thermonuclear fuel have been performed on the National Ignition Facility. These experiments use 0.17 mg of fuel with the potential for ignition and significant fusion yield conditions. The thermonuclear fuel has been fielded as a cryogenic layer on the inside of a spherical plastic capsule that is mounted in the center of a cylindrical gold hohlraum. Heating the hohlraum with 192 laser beams for a total laser energy of 1.6 MJ produces a soft x-ray field with 300 eV temperature. The ablation pressure produced by the radiation field compresses the initially 2.2-mm diameter capsule by a factor of 30 to a spherical dense fuel shell that surrounds a central hot-spot plasma of 50 μm diameter. While an extensive set of x-ray and neutron diagnostics has been applied to characterize hot spot formation from the x-ray emission and 14.1 MeV deuterium-tritium primary fusion neutrons, thermonuclear fuel assembly is studied by m...
- Published
- 2012
45. National Ignition Facility system alignment
- Author
-
Daniel H. Kalantar, J. Villanueva, P. Di Nicola, Erlan S. Bliss, R. Lowe-Webb, K. Wilhelmsen, T. McCarville, S. C. Burkhart, T. Schindler, D. Nelson, and T. Salmon
- Subjects
Computer science ,business.industry ,Materials Science (miscellaneous) ,Optical instrument ,Laser ,Industrial and Manufacturing Engineering ,law.invention ,Optics ,Deuterium ,law ,Nuclear fusion ,Tritium ,Business and International Management ,Clipping (computer graphics) ,National Ignition Facility ,business ,Inertial confinement fusion ,Beam (structure) ,Camera resectioning - Abstract
The National Ignition Facility (NIF) is the world's largest optical instrument, comprising 192 37 cm square beams, each generating up to 9.6 kJ of 351 nm laser light in a 20 ns beam precisely tailored in time and spectrum. The Facility houses a massive (10 m diameter) target chamber within which the beams converge onto an ∼1 cm size target for the purpose of creating the conditions needed for deuterium/tritium nuclear fusion in a laboratory setting. A formidable challenge was building NIF to the precise requirements for beam propagation, commissioning the beam lines, and engineering systems to reliably and safely align 192 beams within the confines of a multihour shot cycle. Designing the facility to minimize drift and vibration, placing the optical components in their design locations, commissioning beam alignment, and performing precise system alignment are the key alignment accomplishments over the decade of work described herein. The design and positioning phases placed more than 3000 large (2.5 m×2 m×1 m) line-replaceable optics assemblies to within ±1 mm of design requirement. The commissioning and alignment phases validated clear apertures (no clipping) for all beam lines, and demonstrated automated laser alignment within 10 min and alignment to target chamber center within 44 min. Pointing validation system shots to flat gold-plated x-ray emitting targets showed NIF met its design requirement of ±50 μm rms beam pointing to target chamber. Finally, this paper describes the major alignment challenges faced by the NIF Project from inception to present, and how these challenges were met and solved by the NIF design and commissioning teams.
- Published
- 2011
46. Achievement of Target Gain Larger than Unity in an Inertial Fusion Experiment.
- Author
-
Abu-Shawareb H, Acree R, Adams P, Adams J, Addis B, Aden R, Adrian P, Afeyan BB, Aggleton M, Aghaian L, Aguirre A, Aikens D, Akre J, Albert F, Albrecht M, Albright BJ, Albritton J, Alcala J, Alday C, Alessi DA, Alexander N, Alfonso J, Alfonso N, Alger E, Ali SJ, Ali ZA, Allen A, Alley WE, Amala P, Amendt PA, Amick P, Ammula S, Amorin C, Ampleford DJ, Anderson RW, Anklam T, Antipa N, Appelbe B, Aracne-Ruddle C, Araya E, Archuleta TN, Arend M, Arnold P, Arnold T, Arsenlis A, Asay J, Atherton LJ, Atkinson D, Atkinson R, Auerbach JM, Austin B, Auyang L, Awwal AAS, Aybar N, Ayers J, Ayers S, Ayers T, Azevedo S, Bachmann B, Back CA, Bae J, Bailey DS, Bailey J, Baisden T, Baker KL, Baldis H, Barber D, Barberis M, Barker D, Barnes A, Barnes CW, Barrios MA, Barty C, Bass I, Batha SH, Baxamusa SH, Bazan G, Beagle JK, Beale R, Beck BR, Beck JB, Bedzyk M, Beeler RG, Beeler RG, Behrendt W, Belk L, Bell P, Belyaev M, Benage JF, Bennett G, Benedetti LR, Benedict LX, Berger RL, Bernat T, Bernstein LA, Berry B, Bertolini L, Besenbruch G, Betcher J, Bettenhausen R, Betti R, Bezzerides B, Bhandarkar SD, Bickel R, Biener J, Biesiada T, Bigelow K, Bigelow-Granillo J, Bigman V, Bionta RM, Birge NW, Bitter M, Black AC, Bleile R, Bleuel DL, Bliss E, Bliss E, Blue B, Boehly T, Boehm K, Boley CD, Bonanno R, Bond EJ, Bond T, Bonino MJ, Borden M, Bourgade JL, Bousquet J, Bowers J, Bowers M, Boyd R, Boyle D, Bozek A, Bradley DK, Bradley KS, Bradley PA, Bradley L, Brannon L, Brantley PS, Braun D, Braun T, Brienza-Larsen K, Briggs R, Briggs TM, Britten J, Brooks ED, Browning D, Bruhn MW, Brunner TA, Bruns H, Brunton G, Bryant B, Buczek T, Bude J, Buitano L, Burkhart S, Burmark J, Burnham A, Burr R, Busby LE, Butlin B, Cabeltis R, Cable M, Cabot WH, Cagadas B, Caggiano J, Cahayag R, Caldwell SE, Calkins S, Callahan DA, Calleja-Aguirre J, Camara L, Camp D, Campbell EM, Campbell JH, Carey B, Carey R, Carlisle K, Carlson L, Carman L, Carmichael J, Carpenter A, Carr C, Carrera JA, Casavant D, Casey A, Casey DT, Castillo A, Castillo E, Castor JI, Castro C, Caughey W, Cavitt R, Celeste J, Celliers PM, Cerjan C, Chandler G, Chang B, Chang C, Chang J, Chang L, Chapman R, Chapman TD, Chase L, Chen H, Chen H, Chen K, Chen LY, Cheng B, Chittenden J, Choate C, Chou J, Chrien RE, Chrisp M, Christensen K, Christensen M, Christiansen NS, Christopherson AR, Chung M, Church JA, Clark A, Clark DS, Clark K, Clark R, Claus L, Cline B, Cline JA, Cobble JA, Cochrane K, Cohen B, Cohen S, Collette MR, Collins GW, Collins LA, Collins TJB, Conder A, Conrad B, Conyers M, Cook AW, Cook D, Cook R, Cooley JC, Cooper G, Cope T, Copeland SR, Coppari F, Cortez J, Cox J, Crandall DH, Crane J, Craxton RS, Cray M, Crilly A, Crippen JW, Cross D, Cuneo M, Cuotts G, Czajka CE, Czechowicz D, Daly T, Danforth P, Danly C, Darbee R, Darlington B, Datte P, Dauffy L, Davalos G, Davidovits S, Davis P, Davis J, Dawson S, Day RD, Day TH, Dayton M, Deck C, Decker C, Deeney C, DeFriend KA, Deis G, Delamater ND, Delettrez JA, Demaret R, Demos S, Dempsey SM, Desjardin R, Desjardins T, Desjarlais MP, Dewald EL, DeYoreo J, Diaz S, Dimonte G, Dittrich TR, Divol L, Dixit SN, Dixon J, Do A, Dodd ES, Dolan D, Donovan A, Donovan M, Döppner T, Dorrer C, Dorsano N, Douglas MR, Dow D, Downie J, Downing E, Dozieres M, Draggoo V, Drake D, Drake RP, Drake T, Dreifuerst G, Drury O, DuBois DF, DuBois PF, Dunham G, Durocher M, Dylla-Spears R, Dymoke-Bradshaw AKL, Dzenitis B, Ebbers C, Eckart M, Eddinger S, Eder D, Edgell D, Edwards MJ, Efthimion P, Eggert JH, Ehrlich B, Ehrmann P, Elhadj S, Ellerbee C, Elliott NS, Ellison CL, Elsner F, Emerich M, Engelhorn K, England T, English E, Epperson P, Epstein R, Erbert G, Erickson MA, Erskine DJ, Erlandson A, Espinosa RJ, Estes C, Estabrook KG, Evans S, Fabyan A, Fair J, Fallejo R, Farmer N, Farmer WA, Farrell M, Fatherley VE, Fedorov M, Feigenbaum E, Fehrenbach T, Feit M, Felker B, Ferguson W, Fernandez JC, Fernandez-Panella A, Fess S, Field JE, Filip CV, Fincke JR, Finn T, Finnegan SM, Finucane RG, Fischer M, Fisher A, Fisher J, Fishler B, Fittinghoff D, Fitzsimmons P, Flegel M, Flippo KA, Florio J, Folta J, Folta P, Foreman LR, Forrest C, Forsman A, Fooks J, Foord M, Fortner R, Fournier K, Fratanduono DE, Frazier N, Frazier T, Frederick C, Freeman MS, Frenje J, Frey D, Frieders G, Friedrich S, Froula DH, Fry J, Fuller T, Gaffney J, Gales S, Le Galloudec B, Le Galloudec KK, Gambhir A, Gao L, Garbett WJ, Garcia A, Gates C, Gaut E, Gauthier P, Gavin Z, Gaylord J, Geddes CGR, Geissel M, Génin F, Georgeson J, Geppert-Kleinrath H, Geppert-Kleinrath V, Gharibyan N, Gibson J, Gibson C, Giraldez E, Glebov V, Glendinning SG, Glenn S, Glenzer SH, Goade S, Gobby PL, Goldman SR, Golick B, Gomez M, Goncharov V, Goodin D, Grabowski P, Grafil E, Graham P, Grandy J, Grasz E, Graziani FR, Greenman G, Greenough JA, Greenwood A, Gregori G, Green T, Griego JR, Grim GP, Grondalski J, Gross S, Guckian J, Guler N, Gunney B, Guss G, Haan S, Hackbarth J, Hackel L, Hackel R, Haefner C, Hagmann C, Hahn KD, Hahn S, Haid BJ, Haines BM, Hall BM, Hall C, Hall GN, Hamamoto M, Hamel S, Hamilton CE, Hammel BA, Hammer JH, Hampton G, Hamza A, Handler A, Hansen S, Hanson D, Haque R, Harding D, Harding E, Hares JD, Harris DB, Harte JA, Hartouni EP, Hatarik R, Hatchett S, Hauer AA, Havre M, Hawley R, Hayes J, Hayes J, Hayes S, Hayes-Sterbenz A, Haynam CA, Haynes DA, Headley D, Heal A, Heebner JE, Heerey S, Heestand GM, Heeter R, Hein N, Heinbockel C, Hendricks C, Henesian M, Heninger J, Henrikson J, Henry EA, Herbold EB, Hermann MR, Hermes G, Hernandez JE, Hernandez VJ, Herrmann MC, Herrmann HW, Herrera OD, Hewett D, Hibbard R, Hicks DG, Higginson DP, Hill D, Hill K, Hilsabeck T, Hinkel DE, Ho DD, Ho VK, Hoffer JK, Hoffman NM, Hohenberger M, Hohensee M, Hoke W, Holdener D, Holdener F, Holder JP, Holko B, Holunga D, Holzrichter JF, Honig J, Hoover D, Hopkins D, Berzak Hopkins LF, Hoppe M, Hoppe ML, Horner J, Hornung R, Horsfield CJ, Horvath J, Hotaling D, House R, Howell L, Hsing WW, Hu SX, Huang H, Huckins J, Hui H, Humbird KD, Hund J, Hunt J, Hurricane OA, Hutton M, Huynh KH, Inandan L, Iglesias C, Igumenshchev IV, Ivanovich I, Izumi N, Jackson M, Jackson J, Jacobs SD, James G, Jancaitis K, Jarboe J, Jarrott LC, Jasion D, Jaquez J, Jeet J, Jenei AE, Jensen J, Jimenez J, Jimenez R, Jobe D, Johal Z, Johns HM, Johnson D, Johnson MA, Gatu Johnson M, Johnson RJ, Johnson S, Johnson SA, Johnson T, Jones K, Jones O, Jones M, Jorge R, Jorgenson HJ, Julian M, Jun BI, Jungquist R, Kaae J, Kabadi N, Kaczala D, Kalantar D, Kangas K, Karasiev VV, Karasik M, Karpenko V, Kasarky A, Kasper K, Kauffman R, Kaufman MI, Keane C, Keaty L, Kegelmeyer L, Keiter PA, Kellett PA, Kellogg J, Kelly JH, Kemic S, Kemp AJ, Kemp GE, Kerbel GD, Kershaw D, Kerr SM, Kessler TJ, Key MH, Khan SF, Khater H, Kiikka C, Kilkenny J, Kim Y, Kim YJ, Kimko J, Kimmel M, Kindel JM, King J, Kirkwood RK, Klaus L, Klem D, Kline JL, Klingmann J, Kluth G, Knapp P, Knauer J, Knipping J, Knudson M, Kobs D, Koch J, Kohut T, Kong C, Koning JM, Koning P, Konior S, Kornblum H, Kot LB, Kozioziemski B, Kozlowski M, Kozlowski PM, Krammen J, Krasheninnikova NS, Krauland CM, Kraus B, Krauser W, Kress JD, Kritcher AL, Krieger E, Kroll JJ, Kruer WL, Kruse MKG, Kucheyev S, Kumbera M, Kumpan S, Kunimune J, Kur E, Kustowski B, Kwan TJT, Kyrala GA, Laffite S, Lafon M, LaFortune K, Lagin L, Lahmann B, Lairson B, Landen OL, Land T, Lane M, Laney D, Langdon AB, Langenbrunner J, Langer SH, Langro A, Lanier NE, Lanier TE, Larson D, Lasinski BF, Lassle D, LaTray D, Lau G, Lau N, Laumann C, Laurence A, Laurence TA, Lawson J, Le HP, Leach RR, Leal L, Leatherland A, LeChien K, Lechleiter B, Lee A, Lee M, Lee T, Leeper RJ, Lefebvre E, Leidinger JP, LeMire B, Lemke RW, Lemos NC, Le Pape S, Lerche R, Lerner S, Letts S, Levedahl K, Lewis T, Li CK, Li H, Li J, Liao W, Liao ZM, Liedahl D, Liebman J, Lindford G, Lindman EL, Lindl JD, Loey H, London RA, Long F, Loomis EN, Lopez FE, Lopez H, Losbanos E, Loucks S, Lowe-Webb R, Lundgren E, Ludwigsen AP, Luo R, Lusk J, Lyons R, Ma T, Macallop Y, MacDonald MJ, MacGowan BJ, Mack JM, Mackinnon AJ, MacLaren SA, MacPhee AG, Magelssen GR, Magoon J, Malone RM, Malsbury T, Managan R, Mancini R, Manes K, Maney D, Manha D, Mannion OM, Manuel AM, Manuel MJ, Mapoles E, Mara G, Marcotte T, Marin E, Marinak MM, Mariscal DA, Mariscal EF, Marley EV, Marozas JA, Marquez R, Marshall CD, Marshall FJ, Marshall M, Marshall S, Marticorena J, Martinez JI, Martinez D, Maslennikov I, Mason D, Mason RJ, Masse L, Massey W, Masson-Laborde PE, Masters ND, Mathisen D, Mathison E, Matone J, Matthews MJ, Mattoon C, Mattsson TR, Matzen K, Mauche CW, Mauldin M, McAbee T, McBurney M, Mccarville T, McCrory RL, McEvoy AM, McGuffey C, Mcinnis M, McKenty P, McKinley MS, McLeod JB, McPherson A, Mcquillan B, Meamber M, Meaney KD, Meezan NB, Meissner R, Mehlhorn TA, Mehta NC, Menapace J, Merrill FE, Merritt BT, Merritt EC, Meyerhofer DD, Mezyk S, Mich RJ, Michel PA, Milam D, Miller C, Miller D, Miller DS, Miller E, Miller EK, Miller J, Miller M, Miller PE, Miller T, Miller W, Miller-Kamm V, Millot M, Milovich JL, Minner P, Miquel JL, Mitchell S, Molvig K, Montesanti RC, Montgomery DS, Monticelli M, Montoya A, Moody JD, Moore AS, Moore E, Moran M, Moreno JC, Moreno K, Morgan BE, Morrow T, Morton JW, Moses E, Moy K, Muir R, Murillo MS, Murray JE, Murray JR, Munro DH, Murphy TJ, Munteanu FM, Nafziger J, Nagayama T, Nagel SR, Nast R, Negres RA, Nelson A, Nelson D, Nelson J, Nelson S, Nemethy S, Neumayer P, Newman K, Newton M, Nguyen H, Di Nicola JG, Di Nicola P, Niemann C, Nikroo A, Nilson PM, Nobile A, Noorai V, Nora RC, Norton M, Nostrand M, Note V, Novell S, Nowak PF, Nunez A, Nyholm RA, O'Brien M, Oceguera A, Oertel JA, Oesterle AL, Okui J, Olejniczak B, Oliveira J, Olsen P, Olson B, Olson K, Olson RE, Opachich YP, Orsi N, Orth CD, Owen M, Padalino S, Padilla E, Paguio R, Paguio S, Paisner J, Pajoom S, Pak A, Palaniyappan S, Palma K, Pannell T, Papp F, Paras D, Parham T, Park HS, Pasternak A, Patankar S, Patel MV, Patel PK, Patterson R, Patterson S, Paul B, Paul M, Pauli E, Pearce OT, Pearcy J, Pedretti A, Pedrotti B, Peer A, Pelz LJ, Penetrante B, Penner J, Perez A, Perkins LJ, Pernice E, Perry TS, Person S, Petersen D, Petersen T, Peterson DL, Peterson EB, Peterson JE, Peterson JL, Peterson K, Peterson RR, Petrasso RD, Philippe F, Phillion D, Phipps TJ, Piceno E, Pickworth L, Ping Y, Pino J, Piston K, Plummer R, Pollack GD, Pollaine SM, Pollock BB, Ponce D, Ponce J, Pontelandolfo J, Porter JL, Post J, Poujade O, Powell C, Powell H, Power G, Pozulp M, Prantil M, Prasad M, Pratuch S, Price S, Primdahl K, Prisbrey S, Procassini R, Pruyne A, Pudliner B, Qiu SR, Quan K, Quinn M, Quintenz J, Radha PB, Rainer F, Ralph JE, Raman KS, Raman R, Rambo PW, Rana S, Randewich A, Rardin D, Ratledge M, Ravelo N, Ravizza F, Rayce M, Raymond A, Raymond B, Reed B, Reed C, Regan S, Reichelt B, Reis V, Reisdorf S, Rekow V, Remington BA, Rendon A, Requieron W, Rever M, Reynolds H, Reynolds J, Rhodes J, Rhodes M, Richardson MC, Rice B, Rice NG, Rieben R, Rigatti A, Riggs S, Rinderknecht HG, Ring K, Riordan B, Riquier R, Rivers C, Roberts D, Roberts V, Robertson G, Robey HF, Robles J, Rocha P, Rochau G, Rodriguez J, Rodriguez S, Rosen MD, Rosenberg M, Ross G, Ross JS, Ross P, Rouse J, Rovang D, Rubenchik AM, Rubery MS, Ruiz CL, Rushford M, Russ B, Rygg JR, Ryujin BS, Sacks RA, Sacks RF, Saito K, Salmon T, Salmonson JD, Sanchez J, Samuelson S, Sanchez M, Sangster C, Saroyan A, Sater J, Satsangi A, Sauers S, Saunders R, Sauppe JP, Sawicki R, Sayre D, Scanlan M, Schaffers K, Schappert GT, Schiaffino S, Schlossberg DJ, Schmidt DW, Schmit PF, Smidt JM, Schneider DHG, Schneider MB, Schneider R, Schoff M, Schollmeier M, Schroeder CR, Schrauth SE, Scott HA, Scott I, Scott JM, Scott RHH, Scullard CR, Sedillo T, Seguin FH, Seka W, Senecal J, Sepke SM, Seppala L, Sequoia K, Severyn J, Sevier JM, Sewell N, Seznec S, Shah RC, Shamlian J, Shaughnessy D, Shaw M, Shaw R, Shearer C, Shelton R, Shen N, Sherlock MW, Shestakov AI, Shi EL, Shin SJ, Shingleton N, Shmayda W, Shor M, Shoup M, Shuldberg C, Siegel L, Silva FJ, Simakov AN, Sims BT, Sinars D, Singh P, Sio H, Skulina K, Skupsky S, Slutz S, Sluyter M, Smalyuk VA, Smauley D, Smeltser RM, Smith C, Smith I, Smith J, Smith L, Smith R, Smith R, Schölmerich M, Sohn R, Sommer S, Sorce C, Sorem M, Soures JM, Spaeth ML, Spears BK, Speas S, Speck D, Speck R, Spears J, Spinka T, Springer PT, Stadermann M, Stahl B, Stahoviak J, Stanley J, Stanton LG, Steele R, Steele W, Steinman D, Stemke R, Stephens R, Sterbenz S, Sterne P, Stevens D, Stevers J, Still CH, Stoeckl C, Stoeffl W, Stolken JS, Stolz C, Storm E, Stone G, Stoupin S, Stout E, Stowers I, Strauser R, Streckart H, Streit J, Strozzi DJ, Stutz J, Summers L, Suratwala T, Sutcliffe G, Suter LJ, Sutton SB, Svidzinski V, Swadling G, Sweet W, Szoke A, Tabak M, Takagi M, Tambazidis A, Tang V, Taranowski M, Taylor LA, Telford S, Theobald W, Thi M, Thomas A, Thomas CA, Thomas I, Thomas R, Thompson IJ, Thongstisubskul A, Thorsness CB, Tietbohl G, Tipton RE, Tobin M, Tomlin N, Tommasini R, Toreja AJ, Torres J, Town RPJ, Townsend S, Trenholme J, Trivelpiece A, Trosseille C, Truax H, Trummer D, Trummer S, Truong T, Tubbs D, Tubman ER, Tunnell T, Turnbull D, Turner RE, Ulitsky M, Upadhye R, Vaher JL, VanArsdall P, VanBlarcom D, Vandenboomgaerde M, VanQuinlan R, Van Wonterghem BM, Varnum WS, Velikovich AL, Vella A, Verdon CP, Vermillion B, Vernon S, Vesey R, Vickers J, Vignes RM, Visosky M, Vocke J, Volegov PL, Vonhof S, Von Rotz R, Vu HX, Vu M, Wall D, Wall J, Wallace R, Wallin B, Walmer D, Walsh CA, Walters CF, Waltz C, Wan A, Wang A, Wang Y, Wark JS, Warner BE, Watson J, Watt RG, Watts P, Weaver J, Weaver RP, Weaver S, Weber CR, Weber P, Weber SV, Wegner P, Welday B, Welser-Sherrill L, Weiss K, Wharton KB, Wheeler GF, Whistler W, White RK, Whitley HD, Whitman P, Wickett ME, Widmann K, Widmayer C, Wiedwald J, Wilcox R, Wilcox S, Wild C, Wilde BH, Wilde CH, Wilhelmsen K, Wilke MD, Wilkens H, Wilkins P, Wilks SC, Williams EA, Williams GJ, Williams W, Williams WH, Wilson DC, Wilson B, Wilson E, Wilson R, Winters S, Wisoff PJ, Wittman M, Wolfe J, Wong A, Wong KW, Wong L, Wong N, Wood R, Woodhouse D, Woodruff J, Woods DT, Woods S, Woodworth BN, Wooten E, Wootton A, Work K, Workman JB, Wright J, Wu M, Wuest C, Wysocki FJ, Xu H, Yamaguchi M, Yang B, Yang ST, Yatabe J, Yeamans CB, Yee BC, Yi SA, Yin L, Young B, Young CS, Young CV, Young P, Youngblood K, Yu J, Zacharias R, Zagaris G, Zaitseva N, Zaka F, Ze F, Zeiger B, Zika M, Zimmerman GB, Zobrist T, Zuegel JD, and Zylstra AB
- Abstract
On December 5, 2022, an indirect drive fusion implosion on the National Ignition Facility (NIF) achieved a target gain G_{target} of 1.5. This is the first laboratory demonstration of exceeding "scientific breakeven" (or G_{target}>1) where 2.05 MJ of 351 nm laser light produced 3.1 MJ of total fusion yield, a result which significantly exceeds the Lawson criterion for fusion ignition as reported in a previous NIF implosion [H. Abu-Shawareb et al. (Indirect Drive ICF Collaboration), Phys. Rev. Lett. 129, 075001 (2022)PRLTAO0031-900710.1103/PhysRevLett.129.075001]. This achievement is the culmination of more than five decades of research and gives proof that laboratory fusion, based on fundamental physics principles, is possible. This Letter reports on the target, laser, design, and experimental advancements that led to this result.
- Published
- 2024
- Full Text
- View/download PDF
47. Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment.
- Author
-
Abu-Shawareb H, Acree R, Adams P, Adams J, Addis B, Aden R, Adrian P, Afeyan BB, Aggleton M, Aghaian L, Aguirre A, Aikens D, Akre J, Albert F, Albrecht M, Albright BJ, Albritton J, Alcala J, Alday C, Alessi DA, Alexander N, Alfonso J, Alfonso N, Alger E, Ali SJ, Ali ZA, Alley WE, Amala P, Amendt PA, Amick P, Ammula S, Amorin C, Ampleford DJ, Anderson RW, Anklam T, Antipa N, Appelbe B, Aracne-Ruddle C, Araya E, Arend M, Arnold P, Arnold T, Asay J, Atherton LJ, Atkinson D, Atkinson R, Auerbach JM, Austin B, Auyang L, Awwal AS, Ayers J, Ayers S, Ayers T, Azevedo S, Bachmann B, Back CA, Bae J, Bailey DS, Bailey J, Baisden T, Baker KL, Baldis H, Barber D, Barberis M, Barker D, Barnes A, Barnes CW, Barrios MA, Barty C, Bass I, Batha SH, Baxamusa SH, Bazan G, Beagle JK, Beale R, Beck BR, Beck JB, Bedzyk M, Beeler RG, Beeler RG, Behrendt W, Belk L, Bell P, Belyaev M, Benage JF, Bennett G, Benedetti LR, Benedict LX, Berger R, Bernat T, Bernstein LA, Berry B, Bertolini L, Besenbruch G, Betcher J, Bettenhausen R, Betti R, Bezzerides B, Bhandarkar SD, Bickel R, Biener J, Biesiada T, Bigelow K, Bigelow-Granillo J, Bigman V, Bionta RM, Birge NW, Bitter M, Black AC, Bleile R, Bleuel DL, Bliss E, Bliss E, Blue B, Boehly T, Boehm K, Boley CD, Bonanno R, Bond EJ, Bond T, Bonino MJ, Borden M, Bourgade JL, Bousquet J, Bowers J, Bowers M, Boyd R, Bozek A, Bradley DK, Bradley KS, Bradley PA, Bradley L, Brannon L, Brantley PS, Braun D, Braun T, Brienza-Larsen K, Briggs TM, Britten J, Brooks ED, Browning D, Bruhn MW, Brunner TA, Bruns H, Brunton G, Bryant B, Buczek T, Bude J, Buitano L, Burkhart S, Burmark J, Burnham A, Burr R, Busby LE, Butlin B, Cabeltis R, Cable M, Cabot WH, Cagadas B, Caggiano J, Cahayag R, Caldwell SE, Calkins S, Callahan DA, Calleja-Aguirre J, Camara L, Camp D, Campbell EM, Campbell JH, Carey B, Carey R, Carlisle K, Carlson L, Carman L, Carmichael J, Carpenter A, Carr C, Carrera JA, Casavant D, Casey A, Casey DT, Castillo A, Castillo E, Castor JI, Castro C, Caughey W, Cavitt R, Celeste J, Celliers PM, Cerjan C, Chandler G, Chang B, Chang C, Chang J, Chang L, Chapman R, Chapman T, Chase L, Chen H, Chen H, Chen K, Chen LY, Cheng B, Chittenden J, Choate C, Chou J, Chrien RE, Chrisp M, Christensen K, Christensen M, Christopherson AR, Chung M, Church JA, Clark A, Clark DS, Clark K, Clark R, Claus L, Cline B, Cline JA, Cobble JA, Cochrane K, Cohen B, Cohen S, Collette MR, Collins G, Collins LA, Collins TJB, Conder A, Conrad B, Conyers M, Cook AW, Cook D, Cook R, Cooley JC, Cooper G, Cope T, Copeland SR, Coppari F, Cortez J, Cox J, Crandall DH, Crane J, Craxton RS, Cray M, Crilly A, Crippen JW, Cross D, Cuneo M, Cuotts G, Czajka CE, Czechowicz D, Daly T, Danforth P, Darbee R, Darlington B, Datte P, Dauffy L, Davalos G, Davidovits S, Davis P, Davis J, Dawson S, Day RD, Day TH, Dayton M, Deck C, Decker C, Deeney C, DeFriend KA, Deis G, Delamater ND, Delettrez JA, Demaret R, Demos S, Dempsey SM, Desjardin R, Desjardins T, Desjarlais MP, Dewald EL, DeYoreo J, Diaz S, Dimonte G, Dittrich TR, Divol L, Dixit SN, Dixon J, Dodd ES, Dolan D, Donovan A, Donovan M, Döppner T, Dorrer C, Dorsano N, Douglas MR, Dow D, Downie J, Downing E, Dozieres M, Draggoo V, Drake D, Drake RP, Drake T, Dreifuerst G, DuBois DF, DuBois PF, Dunham G, Dylla-Spears R, Dymoke-Bradshaw AKL, Dzenitis B, Ebbers C, Eckart M, Eddinger S, Eder D, Edgell D, Edwards MJ, Efthimion P, Eggert JH, Ehrlich B, Ehrmann P, Elhadj S, Ellerbee C, Elliott NS, Ellison CL, Elsner F, Emerich M, Engelhorn K, England T, English E, Epperson P, Epstein R, Erbert G, Erickson MA, Erskine DJ, Erlandson A, Espinosa RJ, Estes C, Estabrook KG, Evans S, Fabyan A, Fair J, Fallejo R, Farmer N, Farmer WA, Farrell M, Fatherley VE, Fedorov M, Feigenbaum E, Feit M, Ferguson W, Fernandez JC, Fernandez-Panella A, Fess S, Field JE, Filip CV, Fincke JR, Finn T, Finnegan SM, Finucane RG, Fischer M, Fisher A, Fisher J, Fishler B, Fittinghoff D, Fitzsimmons P, Flegel M, Flippo KA, Florio J, Folta J, Folta P, Foreman LR, Forrest C, Forsman A, Fooks J, Foord M, Fortner R, Fournier K, Fratanduono DE, Frazier N, Frazier T, Frederick C, Freeman MS, Frenje J, Frey D, Frieders G, Friedrich S, Froula DH, Fry J, Fuller T, Gaffney J, Gales S, Le Galloudec B, Le Galloudec KK, Gambhir A, Gao L, Garbett WJ, Garcia A, Gates C, Gaut E, Gauthier P, Gavin Z, Gaylord J, Geissel M, Génin F, Georgeson J, Geppert-Kleinrath H, Geppert-Kleinrath V, Gharibyan N, Gibson J, Gibson C, Giraldez E, Glebov V, Glendinning SG, Glenn S, Glenzer SH, Goade S, Gobby PL, Goldman SR, Golick B, Gomez M, Goncharov V, Goodin D, Grabowski P, Grafil E, Graham P, Grandy J, Grasz E, Graziani F, Greenman G, Greenough JA, Greenwood A, Gregori G, Green T, Griego JR, Grim GP, Grondalski J, Gross S, Guckian J, Guler N, Gunney B, Guss G, Haan S, Hackbarth J, Hackel L, Hackel R, Haefner C, Hagmann C, Hahn KD, Hahn S, Haid BJ, Haines BM, Hall BM, Hall C, Hall GN, Hamamoto M, Hamel S, Hamilton CE, Hammel BA, Hammer JH, Hampton G, Hamza A, Handler A, Hansen S, Hanson D, Haque R, Harding D, Harding E, Hares JD, Harris DB, Harte JA, Hartouni EP, Hatarik R, Hatchett S, Hauer AA, Havre M, Hawley R, Hayes J, Hayes J, Hayes S, Hayes-Sterbenz A, Haynam CA, Haynes DA, Headley D, Heal A, Heebner JE, Heerey S, Heestand GM, Heeter R, Hein N, Heinbockel C, Hendricks C, Henesian M, Heninger J, Henrikson J, Henry EA, Herbold EB, Hermann MR, Hermes G, Hernandez JE, Hernandez VJ, Herrmann MC, Herrmann HW, Herrera OD, Hewett D, Hibbard R, Hicks DG, Hill D, Hill K, Hilsabeck T, Hinkel DE, Ho DD, Ho VK, Hoffer JK, Hoffman NM, Hohenberger M, Hohensee M, Hoke W, Holdener D, Holdener F, Holder JP, Holko B, Holunga D, Holzrichter JF, Honig J, Hoover D, Hopkins D, Berzak Hopkins L, Hoppe M, Hoppe ML, Horner J, Hornung R, Horsfield CJ, Horvath J, Hotaling D, House R, Howell L, Hsing WW, Hu SX, Huang H, Huckins J, Hui H, Humbird KD, Hund J, Hunt J, Hurricane OA, Hutton M, Huynh KH, Inandan L, Iglesias C, Igumenshchev IV, Izumi N, Jackson M, Jackson J, Jacobs SD, James G, Jancaitis K, Jarboe J, Jarrott LC, Jasion D, Jaquez J, Jeet J, Jenei AE, Jensen J, Jimenez J, Jimenez R, Jobe D, Johal Z, Johns HM, Johnson D, Johnson MA, Gatu Johnson M, Johnson RJ, Johnson S, Johnson SA, Johnson T, Jones K, Jones O, Jones M, Jorge R, Jorgenson HJ, Julian M, Jun BI, Jungquist R, Kaae J, Kabadi N, Kaczala D, Kalantar D, Kangas K, Karasiev VV, Karasik M, Karpenko V, Kasarky A, Kasper K, Kauffman R, Kaufman MI, Keane C, Keaty L, Kegelmeyer L, Keiter PA, Kellett PA, Kellogg J, Kelly JH, Kemic S, Kemp AJ, Kemp GE, Kerbel GD, Kershaw D, Kerr SM, Kessler TJ, Key MH, Khan SF, Khater H, Kiikka C, Kilkenny J, Kim Y, Kim YJ, Kimko J, Kimmel M, Kindel JM, King J, Kirkwood RK, Klaus L, Klem D, Kline JL, Klingmann J, Kluth G, Knapp P, Knauer J, Knipping J, Knudson M, Kobs D, Koch J, Kohut T, Kong C, Koning JM, Koning P, Konior S, Kornblum H, Kot LB, Kozioziemski B, Kozlowski M, Kozlowski PM, Krammen J, Krasheninnikova NS, Kraus B, Krauser W, Kress JD, Kritcher AL, Krieger E, Kroll JJ, Kruer WL, Kruse MKG, Kucheyev S, Kumbera M, Kumpan S, Kunimune J, Kustowski B, Kwan TJT, Kyrala GA, Laffite S, Lafon M, LaFortune K, Lahmann B, Lairson B, Landen OL, Langenbrunner J, Lagin L, Land T, Lane M, Laney D, Langdon AB, Langer SH, Langro A, Lanier NE, Lanier TE, Larson D, Lasinski BF, Lassle D, LaTray D, Lau G, Lau N, Laumann C, Laurence A, Laurence TA, Lawson J, Le HP, Leach RR, Leal L, Leatherland A, LeChien K, Lechleiter B, Lee A, Lee M, Lee T, Leeper RJ, Lefebvre E, Leidinger JP, LeMire B, Lemke RW, Lemos NC, Le Pape S, Lerche R, Lerner S, Letts S, Levedahl K, Lewis T, Li CK, Li H, Li J, Liao W, Liao ZM, Liedahl D, Liebman J, Lindford G, Lindman EL, Lindl JD, Loey H, London RA, Long F, Loomis EN, Lopez FE, Lopez H, Losbanos E, Loucks S, Lowe-Webb R, Lundgren E, Ludwigsen AP, Luo R, Lusk J, Lyons R, Ma T, Macallop Y, MacDonald MJ, MacGowan BJ, Mack JM, Mackinnon AJ, MacLaren SA, MacPhee AG, Magelssen GR, Magoon J, Malone RM, Malsbury T, Managan R, Mancini R, Manes K, Maney D, Manha D, Mannion OM, Manuel AM, Mapoles E, Mara G, Marcotte T, Marin E, Marinak MM, Mariscal C, Mariscal DA, Mariscal EF, Marley EV, Marozas JA, Marquez R, Marshall CD, Marshall FJ, Marshall M, Marshall S, Marticorena J, Martinez D, Maslennikov I, Mason D, Mason RJ, Masse L, Massey W, Masson-Laborde PE, Masters ND, Mathisen D, Mathison E, Matone J, Matthews MJ, Mattoon C, Mattsson TR, Matzen K, Mauche CW, Mauldin M, McAbee T, McBurney M, Mccarville T, McCrory RL, McEvoy AM, McGuffey C, Mcinnis M, McKenty P, McKinley MS, McLeod JB, McPherson A, Mcquillan B, Meamber M, Meaney KD, Meezan NB, Meissner R, Mehlhorn TA, Mehta NC, Menapace J, Merrill FE, Merritt BT, Merritt EC, Meyerhofer DD, Mezyk S, Mich RJ, Michel PA, Milam D, Miller C, Miller D, Miller DS, Miller E, Miller EK, Miller J, Miller M, Miller PE, Miller T, Miller W, Miller-Kamm V, Millot M, Milovich JL, Minner P, Miquel JL, Mitchell S, Molvig K, Montesanti RC, Montgomery DS, Monticelli M, Montoya A, Moody JD, Moore AS, Moore E, Moran M, Moreno JC, Moreno K, Morgan BE, Morrow T, Morton JW, Moses E, Moy K, Muir R, Murillo MS, Murray JE, Murray JR, Munro DH, Murphy TJ, Munteanu FM, Nafziger J, Nagayama T, Nagel SR, Nast R, Negres RA, Nelson A, Nelson D, Nelson J, Nelson S, Nemethy S, Neumayer P, Newman K, Newton M, Nguyen H, Di Nicola JG, Di Nicola P, Niemann C, Nikroo A, Nilson PM, Nobile A, Noorai V, Nora R, Norton M, Nostrand M, Note V, Novell S, Nowak PF, Nunez A, Nyholm RA, O'Brien M, Oceguera A, Oertel JA, Okui J, Olejniczak B, Oliveira J, Olsen P, Olson B, Olson K, Olson RE, Opachich YP, Orsi N, Orth CD, Owen M, Padalino S, Padilla E, Paguio R, Paguio S, Paisner J, Pajoom S, Pak A, Palaniyappan S, Palma K, Pannell T, Papp F, Paras D, Parham T, Park HS, Pasternak A, Patankar S, Patel MV, Patel PK, Patterson R, Patterson S, Paul B, Paul M, Pauli E, Pearce OT, Pearcy J, Pedrotti B, Peer A, Pelz LJ, Penetrante B, Penner J, Perez A, Perkins LJ, Pernice E, Perry TS, Person S, Petersen D, Petersen T, Peterson DL, Peterson EB, Peterson JE, Peterson JL, Peterson K, Peterson RR, Petrasso RD, Philippe F, Phipps TJ, Piceno E, Ping Y, Pickworth L, Pino J, Plummer R, Pollack GD, Pollaine SM, Pollock BB, Ponce D, Ponce J, Pontelandolfo J, Porter JL, Post J, Poujade O, Powell C, Powell H, Power G, Pozulp M, Prantil M, Prasad M, Pratuch S, Price S, Primdahl K, Prisbrey S, Procassini R, Pruyne A, Pudliner B, Qiu SR, Quan K, Quinn M, Quintenz J, Radha PB, Rainer F, Ralph JE, Raman KS, Raman R, Rambo P, Rana S, Randewich A, Rardin D, Ratledge M, Ravelo N, Ravizza F, Rayce M, Raymond A, Raymond B, Reed B, Reed C, Regan S, Reichelt B, Reis V, Reisdorf S, Rekow V, Remington BA, Rendon A, Requieron W, Rever M, Reynolds H, Reynolds J, Rhodes J, Rhodes M, Richardson MC, Rice B, Rice NG, Rieben R, Rigatti A, Riggs S, Rinderknecht HG, Ring K, Riordan B, Riquier R, Rivers C, Roberts D, Roberts V, Robertson G, Robey HF, Robles J, Rocha P, Rochau G, Rodriguez J, Rodriguez S, Rosen M, Rosenberg M, Ross G, Ross JS, Ross P, Rouse J, Rovang D, Rubenchik AM, Rubery MS, Ruiz CL, Rushford M, Russ B, Rygg JR, Ryujin BS, Sacks RA, Sacks RF, Saito K, Salmon T, Salmonson JD, Sanchez J, Samuelson S, Sanchez M, Sangster C, Saroyan A, Sater J, Satsangi A, Sauers S, Saunders R, Sauppe JP, Sawicki R, Sayre D, Scanlan M, Schaffers K, Schappert GT, Schiaffino S, Schlossberg DJ, Schmidt DW, Schmitt MJ, Schneider DHG, Schneider MB, Schneider R, Schoff M, Schollmeier M, Schölmerich M, Schroeder CR, Schrauth SE, Scott HA, Scott I, Scott JM, Scott RHH, Scullard CR, Sedillo T, Seguin FH, Seka W, Senecal J, Sepke SM, Seppala L, Sequoia K, Severyn J, Sevier JM, Sewell N, Seznec S, Shah RC, Shamlian J, Shaughnessy D, Shaw M, Shaw R, Shearer C, Shelton R, Shen N, Sherlock MW, Shestakov AI, Shi EL, Shin SJ, Shingleton N, Shmayda W, Shor M, Shoup M, Shuldberg C, Siegel L, Silva FJ, Simakov AN, Sims BT, Sinars D, Singh P, Sio H, Skulina K, Skupsky S, Slutz S, Sluyter M, Smalyuk VA, Smauley D, Smeltser RM, Smith C, Smith I, Smith J, Smith L, Smith R, Sohn R, Sommer S, Sorce C, Sorem M, Soures JM, Spaeth ML, Spears BK, Speas S, Speck D, Speck R, Spears J, Spinka T, Springer PT, Stadermann M, Stahl B, Stahoviak J, Stanton LG, Steele R, Steele W, Steinman D, Stemke R, Stephens R, Sterbenz S, Sterne P, Stevens D, Stevers J, Still CB, Stoeckl C, Stoeffl W, Stolken JS, Stolz C, Storm E, Stone G, Stoupin S, Stout E, Stowers I, Strauser R, Streckart H, Streit J, Strozzi DJ, Suratwala T, Sutcliffe G, Suter LJ, Sutton SB, Svidzinski V, Swadling G, Sweet W, Szoke A, Tabak M, Takagi M, Tambazidis A, Tang V, Taranowski M, Taylor LA, Telford S, Theobald W, Thi M, Thomas A, Thomas CA, Thomas I, Thomas R, Thompson IJ, Thongstisubskul A, Thorsness CB, Tietbohl G, Tipton RE, Tobin M, Tomlin N, Tommasini R, Toreja AJ, Torres J, Town RPJ, Townsend S, Trenholme J, Trivelpiece A, Trosseille C, Truax H, Trummer D, Trummer S, Truong T, Tubbs D, Tubman ER, Tunnell T, Turnbull D, Turner RE, Ulitsky M, Upadhye R, Vaher JL, VanArsdall P, VanBlarcom D, Vandenboomgaerde M, VanQuinlan R, Van Wonterghem BM, Varnum WS, Velikovich AL, Vella A, Verdon CP, Vermillion B, Vernon S, Vesey R, Vickers J, Vignes RM, Visosky M, Vocke J, Volegov PL, Vonhof S, Von Rotz R, Vu HX, Vu M, Wall D, Wall J, Wallace R, Wallin B, Walmer D, Walsh CA, Walters CF, Waltz C, Wan A, Wang A, Wang Y, Wark JS, Warner BE, Watson J, Watt RG, Watts P, Weaver J, Weaver RP, Weaver S, Weber CR, Weber P, Weber SV, Wegner P, Welday B, Welser-Sherrill L, Weiss K, Widmann K, Wheeler GF, Whistler W, White RK, Whitley HD, Whitman P, Wickett ME, Widmayer C, Wiedwald J, Wilcox R, Wilcox S, Wild C, Wilde BH, Wilde CH, Wilhelmsen K, Wilke MD, Wilkens H, Wilkins P, Wilks SC, Williams EA, Williams GJ, Williams W, Williams WH, Wilson DC, Wilson B, Wilson E, Wilson R, Winters S, Wisoff J, Wittman M, Wolfe J, Wong A, Wong KW, Wong L, Wong N, Wood R, Woodhouse D, Woodruff J, Woods DT, Woods S, Woodworth BN, Wooten E, Wootton A, Work K, Workman JB, Wright J, Wu M, Wuest C, Wysocki FJ, Xu H, Yamaguchi M, Yang B, Yang ST, Yatabe J, Yeamans CB, Yee BC, Yi SA, Yin L, Young B, Young CS, Young CV, Young P, Youngblood K, Zacharias R, Zagaris G, Zaitseva N, Zaka F, Ze F, Zeiger B, Zika M, Zimmerman GB, Zobrist T, Zuegel JD, and Zylstra AB
- Abstract
For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion.
- Published
- 2022
- Full Text
- View/download PDF
48. A dual high-energy radiography platform with 15 μm resolution at the National Ignition Facility.
- Author
-
Khan SF, Martinez DA, Kalantar DH, Kirkwood RK, Santos C, Ose NA, Johnson S, Alessi DA, Prantil MA, Woods DT, Glendinning SG, Tommasini R, Mackinnon AJ, Prisbrey ST, Dittrich TR, Bowers MW, Cabral J, Crane J, Di Nicola JM, Hamamoto M, Herriot S, Lanier T, Lowe-Webb R, Pelz LJ, Widmayer CC, Williams W, and Yang S
- Abstract
To study matter at extreme densities and pressures, we need mega laser facilities such as the National Ignition Facility as well as creative methods to make observations during timescales of a billionth of a second. To facilitate this, we developed a platform and diagnostic to characterize a new point-projection radiography configuration using two micro-wires irradiated by a short pulse laser system that provides a large field of view with up to 3.6 ns separation between images. We used tungsten-carbide solid spheres as reference objects and inferred characteristics of the back-lighter source using a forward-fitting algorithm. The resolution of the system is inferred to be 15 μm (using 12.5 μm diameter wires). The bremsstrahlung temperature of the source is 70-300 keV, depending on laser energy and coupling efficiency. By adding the images recorded on multiple stacked image plates, the signal-to-noise of the system is nearly doubled. The imaging characterization technique described here can be adapted to most point-projection platforms where the resolution, spectral contrast, and signal-to-noise are important.
- Published
- 2021
- Full Text
- View/download PDF
49. Time-Resolved Fuel Density Profiles of the Stagnation Phase of Indirect-Drive Inertial Confinement Implosions.
- Author
-
Tommasini R, Landen OL, Berzak Hopkins L, Hatchett SP, Kalantar DH, Hsing WW, Alessi DA, Ayers SL, Bhandarkar SD, Bowers MW, Bradley DK, Conder AD, Di Nicola JM, Di Nicola P, Divol L, Fittinghoff D, Gururangan G, Hall GN, Hamamoto M, Hargrove DR, Hartouni EP, Heebner JE, Herriot SI, Hermann MR, Holder JP, Holunga DM, Homoelle D, Iglesias CA, Izumi N, Kemp AJ, Kohut T, Kroll JJ, LaFortune K, Lawson JK, Lowe-Webb R, MacKinnon AJ, Martinez D, Masters ND, Mauldin MP, Milovich J, Nikroo A, Okui JK, Park J, Prantil M, Pelz LJ, Schoff M, Sigurdsson R, Volegov PL, Vonhof S, Zobrist TL, Wallace RJ, Walters CF, Wegner P, Widmayer C, Williams WH, Youngblood K, Edwards MJ, and Herrmann MC
- Abstract
The implosion efficiency in inertial confinement fusion depends on the degree of stagnated fuel compression, density uniformity, sphericity, and minimum residual kinetic energy achieved. Compton scattering-mediated 50-200 keV x-ray radiographs of indirect-drive cryogenic implosions at the National Ignition Facility capture the dynamic evolution of the fuel as it goes through peak compression, revealing low-mode 3D nonuniformities and thicker fuel with lower peak density than simulated. By differencing two radiographs taken at different times during the same implosion, we also measure the residual kinetic energy not transferred to the hot spot and quantify its impact on the implosion performance.
- Published
- 2020
- Full Text
- View/download PDF
50. Production of relativistic electrons at subrelativistic laser intensities.
- Author
-
Williams GJ, Link A, Sherlock M, Alessi DA, Bowers M, Conder A, Di Nicola P, Fiksel G, Fiuza F, Hamamoto M, Hermann MR, Herriot S, Homoelle D, Hsing W, d'Humières E, Kalantar D, Kemp A, Kerr S, Kim J, LaFortune KN, Lawson J, Lowe-Webb R, Ma T, Mariscal DA, Martinez D, Manuel MJ, Nakai M, Pelz L, Prantil M, Remington B, Sigurdsson R, Widmayer C, Williams W, Willingale L, Zacharias R, Youngblood K, and Chen H
- Abstract
Relativistic electron temperatures were measured from kilojoule, subrelativistic laser-plasma interactions. Experiments show an order of magnitude higher temperatures than expected from a ponderomotive scaling, where temperatures of up to 2.2 MeV were generated using an intensity of 1×10^{18}W/cm^{2}. Two-dimensional particle-in-cell simulations suggest that electrons gain superponderomotive energies by stochastic acceleration as they sample a large area of rapidly changing laser phase. We demonstrate that such high temperatures are possible from subrelativistic intensities by using lasers with long pulse durations and large spatial scales.
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.