19 results on '"R. Checa-Garcia"'
Search Results
2. Satellite-based evaluation of AeroCom model bias in biomass burning regions
- Author
-
Q. Zhong, N. Schutgens, G. van der Werf, T. van Noije, K. Tsigaridis, S. E. Bauer, T. Mielonen, A. Kirkevåg, Ø. Seland, H. Kokkola, R. Checa-Garcia, D. Neubauer, Z. Kipling, H. Matsui, P. Ginoux, T. Takemura, P. Le Sager, S. Rémy, H. Bian, M. Chin, K. Zhang, J. Zhu, S. G. Tsyro, G. Curci, A. Protonotariou, B. Johnson, J. E. Penner, N. Bellouin, R. B. Skeie, and G. Myhre
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Global models are widely used to simulate biomass burning aerosol (BBA). Exhaustive evaluations on model representation of aerosol distributions and properties are fundamental to assess health and climate impacts of BBA. Here we conducted a comprehensive comparison of Aerosol Comparisons between Observations and Models (AeroCom) project model simulations with satellite observations. A total of 59 runs by 18 models from three AeroCom Phase-III experiments (i.e., biomass burning emissions, CTRL16, and CTRL19) and 14 satellite products of aerosols were used in the study. Aerosol optical depth (AOD) at 550 nm was investigated during the fire season over three key fire regions reflecting different fire dynamics (i.e., deforestation-dominated Amazon, Southern Hemisphere Africa where savannas are the key source of emissions, and boreal forest burning in boreal North America). The 14 satellite products were first evaluated against AErosol RObotic NETwork (AERONET) observations, with large uncertainties found. But these uncertainties had small impacts on the model evaluation that was dominated by modeling bias. Through a comparison with Polarization and Directionality of the Earth’s Reflectances measurements with the Generalized Retrieval of Aerosol and Surface Properties algorithm (POLDER-GRASP), we found that the modeled AOD values were biased by −93 % to 152 %, with most models showing significant underestimations even for the state-of-the-art aerosol modeling techniques (i.e., CTRL19). By scaling up BBA emissions, the negative biases in modeled AOD were significantly mitigated, although it yielded only negligible improvements in the correlation between models and observations, and the spatial and temporal variations in AOD biases did not change much. For models in CTRL16 and CTRL19, the large diversity in modeled AOD was in almost equal measures caused by diversity in emissions, lifetime, and the mass extinction coefficient (MEC). We found that in the AeroCom ensemble, BBA lifetime correlated significantly with particle deposition (as expected) and in turn correlated strongly with precipitation. Additional analysis based on Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) aerosol profiles suggested that the altitude of the aerosol layer in the current models was generally too low, which also contributed to the bias in modeled lifetime. Modeled MECs exhibited significant correlations with the Ångström exponent (AE, an indicator of particle size). Comparisons with the POLDER-GRASP-observed AE suggested that the models tended to overestimate the AE (underestimated particle size), indicating a possible underestimation of MECs in models. The hygroscopic growth in most models generally agreed with observations and might not explain the overall underestimation of modeled AOD. Our results imply that current global models contain biases in important aerosol processes for BBA (e.g., emissions, removal, and optical properties) that remain to be addressed in future research.
- Published
- 2022
- Full Text
- View/download PDF
3. Aerosol absorption in global models from AeroCom phase III
- Author
-
M. Sand, B. H. Samset, G. Myhre, J. Gliß, S. E. Bauer, H. Bian, M. Chin, R. Checa-Garcia, P. Ginoux, Z. Kipling, A. Kirkevåg, H. Kokkola, P. Le Sager, M. T. Lund, H. Matsui, T. van Noije, D. J. L. Olivié, S. Remy, M. Schulz, P. Stier, C. W. Stjern, T. Takemura, K. Tsigaridis, S. G. Tsyro, and D. Watson-Parris
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Aerosol-induced absorption of shortwave radiation can modify the climate through local atmospheric heating, which affects lapse rates, precipitation, and cloud formation. Presently, the total amount of aerosol absorption is poorly constrained, and the main absorbing aerosol species (black carbon (BC), organic aerosols (OA), and mineral dust) are diversely quantified in global climate models. As part of the third phase of the Aerosol Comparisons between Observations and Models (AeroCom) intercomparison initiative (AeroCom phase III), we here document the distribution and magnitude of aerosol absorption in current global aerosol models and quantify the sources of intermodel spread, highlighting the difficulties of attributing absorption to different species. In total, 15 models have provided total present-day absorption at 550 nm (using year 2010 emissions), 11 of which have provided absorption per absorbing species. The multi-model global annual mean total absorption aerosol optical depth (AAOD) is 0.0054 (0.0020 to 0.0098; 550 nm), with the range given as the minimum and maximum model values. This is 28 % higher compared to the 0.0042 (0.0021 to 0.0076) multi-model mean in AeroCom phase II (using year 2000 emissions), but the difference is within 1 standard deviation, which, in this study, is 0.0023 (0.0019 in Phase II). Of the summed component AAOD, 60 % (range 36 %–84 %) is estimated to be due to BC, 31 % (12 %–49 %) is due to dust, and 11 % (0 %–24 %) is due to OA; however, the components are not independent in terms of their absorbing efficiency. In models with internal mixtures of absorbing aerosols, a major challenge is the lack of a common and simple method to attribute absorption to the different absorbing species. Therefore, when possible, the models with internally mixed aerosols in the present study have performed simulations using the same method for estimating absorption due to BC, OA, and dust, namely by removing it and comparing runs with and without the absorbing species. We discuss the challenges of attributing absorption to different species; we compare burden, refractive indices, and density; and we contrast models with internal mixing to models with external mixing. The model mean BC mass absorption coefficient (MAC) value is 10.1 (3.1 to 17.7) m2 g−1 (550 nm), and the model mean BC AAOD is 0.0030 (0.0007 to 0.0077). The difference in lifetime (and burden) in the models explains as much of the BC AAOD spread as the difference in BC MAC values. The difference in the spectral dependency between the models is striking. Several models have an absorption Ångstrøm exponent (AAE) close to 1, which likely is too low given current knowledge of spectral aerosol optical properties. Most models do not account for brown carbon and underestimate the spectral dependency for OA.
- Published
- 2021
- Full Text
- View/download PDF
4. Evaluation of natural aerosols in CRESCENDO Earth system models (ESMs): mineral dust
- Author
-
R. Checa-Garcia, Y. Balkanski, S. Albani, T. Bergman, K. Carslaw, A. Cozic, C. Dearden, B. Marticorena, M. Michou, T. van Noije, P. Nabat, F. M. O'Connor, D. Olivié, J. M. Prospero, P. Le Sager, M. Schulz, and C. Scott
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
This paper presents an analysis of the mineral dust aerosol modelled by five Earth system models (ESMs) within the project entitled Coordinated Research in Earth Systems and Climate: Experiments, kNowledge, Dissemination and Outreach (CRESCENDO). We quantify the global dust cycle described by each model in terms of global emissions, together with dry and wet deposition, reporting large differences in the ratio of dry over wet deposition across the models not directly correlated with the range of particle sizes emitted. The multi-model mean dust emissions with five ESMs is 2836 Tg yr−1 but with a large uncertainty due mainly to the difference in the maximum dust particle size emitted. The multi-model mean of the subset of four ESMs without particle diameters larger than 10 µ m is 1664 (σ=651) Tg yr−1. Total dust emissions in the simulations with identical nudged winds from reanalysis give us better consistency between models; i.e. the multi-model mean global emissions with three ESMs are 1613 (σ=278) Tg yr−1, but 1834 (σ=666) Tg yr−1 without nudged winds and the same models. Significant discrepancies in the globally averaged dust mass extinction efficiency explain why even models with relatively similar global dust load budgets can display strong differences in dust optical depth. The comparison against observations has been done in terms of dust optical depths based on MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products, showing global consistency in terms of preferential dust sources and transport across the Atlantic. The global localisation of source regions is consistent with MODIS, but we found regional and seasonal differences between models and observations when we quantified the cross-correlation of time series over dust-emitting regions. To faithfully compare local emissions between models we introduce a re-gridded normalisation method that can also be compared with satellite products derived from dust event frequencies. Dust total deposition is compared with an instrumental network to assess global and regional differences. We find that models agree with observations within a factor of 10 for data stations distant from dust sources, but the approximations of dust particle size distribution at emission contributed to a misrepresentation of the actual range of deposition values when instruments are close to dust-emitting regions. The observed dust surface concentrations also are reproduced to within a factor of 10. The comparison of total aerosol optical depth with AERONET (AErosol RObotic NETwork) stations where dust is dominant shows large differences between models, although with an increase in the inter-model consistency when the simulations are conducted with nudged winds. The increase in the model ensemble consistency also means better agreement with observations, which we have ascertained for dust total deposition, surface concentrations and optical depths (against both AERONET and MODIS retrievals). We introduce a method to ascertain the contributions per mode consistent with the multi-modal direct radiative effects, which we apply to study the direct radiative effects of a multi-modal representation of the dust particle size distribution that includes the largest particles.
- Published
- 2021
- Full Text
- View/download PDF
5. Better representation of dust can improve climate models with too weak an African monsoon
- Author
-
Y. Balkanski, R. Bonnet, O. Boucher, R. Checa-Garcia, and J. Servonnat
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
The amount of short wave radiation absorbed by dust has remained uncertain. We have developed a more accurate representation of dust absorption that is based on the observed dust mineralogical composition and accounts for very large particles. We analyze the results from two fully coupled climate simulations of 100 years in terms of their simulated precipitation patterns against observations. A striking benefit of the new dust optical and physical properties is that tropical precipitation over the Sahel, tropical North Atlantic and West Indian Ocean are significantly improved compared to observations, without degrading precipitations elsewhere. This alleviates a common persistent bias in Earth system models that exhibit a summer African monsoon that does not reach far enough north. We show that the improvements documented here for the IPSL-CM61 climate model result from both a thermodynamical and dynamical response to dust absorption, which is unrelated to natural variability. Aerosol absorption induces more water vapor advection from the ocean to the Sahel region, thereby providing an added supply of moisture available for precipitation. This work, thus, provides a path towards improving precipitation patterns in these regions by accounting for both physical and optical properties of the aerosol more realistically.
- Published
- 2021
- Full Text
- View/download PDF
6. Improved representation of the global dust cycle using observational constraints on dust properties and abundance
- Author
-
J. F. Kok, A. A. Adebiyi, S. Albani, Y. Balkanski, R. Checa-Garcia, M. Chin, P. R. Colarco, D. S. Hamilton, Y. Huang, A. Ito, M. Klose, D. M. Leung, L. Li, N. M. Mahowald, R. L. Miller, V. Obiso, C. Pérez García-Pando, A. Rocha-Lima, J. S. Wan, and C. A. Whicker
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Even though desert dust is the most abundant aerosol by mass in Earth's atmosphere, atmospheric models struggle to accurately represent its spatial and temporal distribution. These model errors are partially caused by fundamental difficulties in simulating dust emission in coarse-resolution models and in accurately representing dust microphysical properties. Here we mitigate these problems by developing a new methodology that yields an improved representation of the global dust cycle. We present an analytical framework that uses inverse modeling to integrate an ensemble of global model simulations with observational constraints on the dust size distribution, extinction efficiency, and regional dust aerosol optical depth. We then compare the inverse model results against independent measurements of dust surface concentration and deposition flux and find that errors are reduced by approximately a factor of 2 relative to current model simulations of the Northern Hemisphere dust cycle. The inverse model results show smaller improvements in the less dusty Southern Hemisphere, most likely because both the model simulations and the observational constraints used in the inverse model are less accurate. On a global basis, we find that the emission flux of dust with a geometric diameter up to 20 µm (PM20) is approximately 5000 Tg yr−1, which is greater than most models account for. This larger PM20 dust flux is needed to match observational constraints showing a large atmospheric loading of coarse dust. We obtain gridded datasets of dust emission, vertically integrated loading, dust aerosol optical depth, (surface) concentration, and wet and dry deposition fluxes that are resolved by season and particle size. As our results indicate that this dataset is more accurate than current model simulations and the MERRA-2 dust reanalysis product, it can be used to improve quantifications of dust impacts on the Earth system.
- Published
- 2021
- Full Text
- View/download PDF
7. Contribution of the world's main dust source regions to the global cycle of desert dust
- Author
-
J. F. Kok, A. A. Adebiyi, S. Albani, Y. Balkanski, R. Checa-Garcia, M. Chin, P. R. Colarco, D. S. Hamilton, Y. Huang, A. Ito, M. Klose, L. Li, N. M. Mahowald, R. L. Miller, V. Obiso, C. Pérez García-Pando, A. Rocha-Lima, and J. S. Wan
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Even though desert dust is the most abundant aerosol by mass in Earth's atmosphere, the relative contributions of the world's major source regions to the global dust cycle remain poorly constrained. This problem hinders accounting for the potentially large impact of regional differences in dust properties on clouds, the Earth's energy balance, and terrestrial and marine biogeochemical cycles. Here, we constrain the contribution of each of the world's main dust source regions to the global dust cycle. We use an analytical framework that integrates an ensemble of global aerosol model simulations with observationally informed constraints on the dust size distribution, extinction efficiency, and regional dust aerosol optical depth (DAOD). We obtain a dataset that constrains the relative contribution of nine major source regions to size-resolved dust emission, atmospheric loading, DAOD, concentration, and deposition flux. We find that the 22–29 Tg (1 standard error range) global loading of dust with a geometric diameter up to 20 µm is partitioned as follows: North African source regions contribute ∼ 50 % (11–15 Tg), Asian source regions contribute ∼ 40 % (8–13 Tg), and North American and Southern Hemisphere regions contribute ∼ 10 % (1.8–3.2 Tg). These results suggest that current models on average overestimate the contribution of North African sources to atmospheric dust loading at ∼ 65 %, while underestimating the contribution of Asian dust at ∼ 30 %. Our results further show that each source region's dust loading peaks in local spring and summer, which is partially driven by increased dust lifetime in those seasons. We also quantify the dust deposition flux to the Amazon rainforest to be ∼ 10 Tg yr−1, which is a factor of 2–3 less than inferred from satellite data by previous work that likely overestimated dust deposition by underestimating the dust mass extinction efficiency. The data obtained in this paper can be used to obtain improved constraints on dust impacts on clouds, climate, biogeochemical cycles, and other parts of the Earth system.
- Published
- 2021
- Full Text
- View/download PDF
8. Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100
- Author
-
J. Keeble, B. Hassler, A. Banerjee, R. Checa-Garcia, G. Chiodo, S. Davis, V. Eyring, P. T. Griffiths, O. Morgenstern, P. Nowack, G. Zeng, J. Zhang, G. Bodeker, S. Burrows, P. Cameron-Smith, D. Cugnet, C. Danek, M. Deushi, L. W. Horowitz, A. Kubin, L. Li, G. Lohmann, M. Michou, M. J. Mills, P. Nabat, D. Olivié, S. Park, Ø. Seland, J. Stoll, K.-H. Wieners, and T. Wu
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Stratospheric ozone and water vapour are key components of the Earth system, and past and future changes to both have important impacts on global and regional climate. Here, we evaluate long-term changes in these species from the pre-industrial period (1850) to the end of the 21st century in Coupled Model Intercomparison Project phase 6 (CMIP6) models under a range of future emissions scenarios. There is good agreement between the CMIP multi-model mean and observations for total column ozone (TCO), although there is substantial variation between the individual CMIP6 models. For the CMIP6 multi-model mean, global mean TCO has increased from ∼ 300 DU in 1850 to ∼ 305 DU in 1960, before rapidly declining in the 1970s and 1980s following the use and emission of halogenated ozone-depleting substances (ODSs). TCO is projected to return to 1960s values by the middle of the 21st century under the SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0, and SSP5-8.5 scenarios, and under the SSP3-7.0 and SSP5-8.5 scenarios TCO values are projected to be ∼ 10 DU higher than the 1960s values by 2100. However, under the SSP1-1.9 and SSP1-1.6 scenarios, TCO is not projected to return to the 1960s values despite reductions in halogenated ODSs due to decreases in tropospheric ozone mixing ratios. This global pattern is similar to regional patterns, except in the tropics where TCO under most scenarios is not projected to return to 1960s values, either through reductions in tropospheric ozone under SSP1-1.9 and SSP1-2.6, or through reductions in lower stratospheric ozone resulting from an acceleration of the Brewer–Dobson circulation under other Shared Socioeconomic Pathways (SSPs). In contrast to TCO, there is poorer agreement between the CMIP6 multi-model mean and observed lower stratospheric water vapour mixing ratios, with the CMIP6 multi-model mean underestimating observed water vapour mixing ratios by ∼ 0.5 ppmv at 70 hPa. CMIP6 multi-model mean stratospheric water vapour mixing ratios in the tropical lower stratosphere have increased by ∼ 0.5 ppmv from the pre-industrial to the present-day period and are projected to increase further by the end of the 21st century. The largest increases (∼ 2 ppmv) are simulated under the future scenarios with the highest assumed forcing pathway (e.g. SSP5-8.5). Tropical lower stratospheric water vapour, and to a lesser extent TCO, shows large variations following explosive volcanic eruptions.
- Published
- 2021
- Full Text
- View/download PDF
9. AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations
- Author
-
J. Gliß, A. Mortier, M. Schulz, E. Andrews, Y. Balkanski, S. E. Bauer, A. M. K. Benedictow, H. Bian, R. Checa-Garcia, M. Chin, P. Ginoux, J. J. Griesfeller, A. Heckel, Z. Kipling, A. Kirkevåg, H. Kokkola, P. Laj, P. Le Sager, M. T. Lund, C. Lund Myhre, H. Matsui, G. Myhre, D. Neubauer, T. van Noije, P. North, D. J. L. Olivié, S. Rémy, L. Sogacheva, T. Takemura, K. Tsigaridis, and S. G. Tsyro
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Within the framework of the AeroCom (Aerosol Comparisons between Observations and Models) initiative, the state-of-the-art modelling of aerosol optical properties is assessed from 14 global models participating in the phase III control experiment (AP3). The models are similar to CMIP6/AerChemMIP Earth System Models (ESMs) and provide a robust multi-model ensemble. Inter-model spread of aerosol species lifetimes and emissions appears to be similar to that of mass extinction coefficients (MECs), suggesting that aerosol optical depth (AOD) uncertainties are associated with a broad spectrum of parameterised aerosol processes. Total AOD is approximately the same as in AeroCom phase I (AP1) simulations. However, we find a 50 % decrease in the optical depth (OD) of black carbon (BC), attributable to a combination of decreased emissions and lifetimes. Relative contributions from sea salt (SS) and dust (DU) have shifted from being approximately equal in AP1 to SS contributing about 2∕3 of the natural AOD in AP3. This shift is linked with a decrease in DU mass burden, a lower DU MEC, and a slight decrease in DU lifetime, suggesting coarser DU particle sizes in AP3 compared to AP1. Relative to observations, the AP3 ensemble median and most of the participating models underestimate all aerosol optical properties investigated, that is, total AOD as well as fine and coarse AOD (AODf, AODc), Ångström exponent (AE), dry surface scattering (SCdry), and absorption (ACdry) coefficients. Compared to AERONET, the models underestimate total AOD by ca. 21 % ± 20 % (as inferred from the ensemble median and interquartile range). Against satellite data, the ensemble AOD biases range from −37 % (MODIS-Terra) to −16 % (MERGED-FMI, a multi-satellite AOD product), which we explain by differences between individual satellites and AERONET measurements themselves. Correlation coefficients (R) between model and observation AOD records are generally high (R>0.75), suggesting that the models are capable of capturing spatio-temporal variations in AOD. We find a much larger underestimate in coarse AODc (∼ −45 % ± 25 %) than in fine AODf (∼ −15 % ± 25 %) with slightly increased inter-model spread compared to total AOD. These results indicate problems in the modelling of DU and SS. The AODc bias is likely due to missing DU over continental land masses (particularly over the United States, SE Asia, and S. America), while marine AERONET sites and the AATSR SU satellite data suggest more moderate oceanic biases in AODc. Column AEs are underestimated by about 10 % ± 16 %. For situations in which measurements show AE > 2, models underestimate AERONET AE by ca. 35 %. In contrast, all models (but one) exhibit large overestimates in AE when coarse aerosol dominates (bias ca. +140 % if observed AE < 0.5). Simulated AE does not span the observed AE variability. These results indicate that models overestimate particle size (or underestimate the fine-mode fraction) for fine-dominated aerosol and underestimate size (or overestimate the fine-mode fraction) for coarse-dominated aerosol. This must have implications for lifetime, water uptake, scattering enhancement, and the aerosol radiative effect, which we can not quantify at this moment. Comparison against Global Atmosphere Watch (GAW) in situ data results in mean bias and inter-model variations of −35 % ± 25 % and −20 % ± 18 % for SCdry and ACdry, respectively. The larger underestimate of SCdry than ACdry suggests the models will simulate an aerosol single scattering albedo that is too low. The larger underestimate of SCdry than ambient air AOD is consistent with recent findings that models overestimate scattering enhancement due to hygroscopic growth. The broadly consistent negative bias in AOD and surface scattering suggests an underestimate of aerosol radiative effects in current global aerosol models. Considerable inter-model diversity in the simulated optical properties is often found in regions that are, unfortunately, not or only sparsely covered by ground-based observations. This includes, for instance, the Sahara, Amazonia, central Australia, and the South Pacific. This highlights the need for a better site coverage in the observations, which would enable us to better assess the models, but also the performance of satellite products in these regions. Using fine-mode AOD as a proxy for present-day aerosol forcing estimates, our results suggest that models underestimate aerosol forcing by ca. −15 %, however, with a considerably large interquartile range, suggesting a spread between −35 % and +10 %.
- Published
- 2021
- Full Text
- View/download PDF
10. Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison
- Author
-
G. D. Thornhill, W. J. Collins, R. J. Kramer, D. Olivié, R. B. Skeie, F. M. O'Connor, N. L. Abraham, R. Checa-Garcia, S. E. Bauer, M. Deushi, L. K. Emmons, P. M. Forster, L. W. Horowitz, B. Johnson, J. Keeble, J.-F. Lamarque, M. Michou, M. J. Mills, J. P. Mulcahy, G. Myhre, P. Nabat, V. Naik, N. Oshima, M. Schulz, C. J. Smith, T. Takemura, S. Tilmes, T. Wu, G. Zeng, and J. Zhang
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
This paper quantifies the pre-industrial (1850) to present-day (2014) effective radiative forcing (ERF) of anthropogenic emissions of NOX, volatile organic compounds (VOCs; including CO), SO2, NH3, black carbon, organic carbon, and concentrations of methane, N2O and ozone-depleting halocarbons, using CMIP6 models. Concentration and emission changes of reactive species can cause multiple changes in the composition of radiatively active species: tropospheric ozone, stratospheric ozone, stratospheric water vapour, secondary inorganic and organic aerosol, and methane. Where possible we break down the ERFs from each emitted species into the contributions from the composition changes. The ERFs are calculated for each of the models that participated in the AerChemMIP experiments as part of the CMIP6 project, where the relevant model output was available. The 1850 to 2014 multi-model mean ERFs (± standard deviations) are −1.03 ± 0.37 W m−2 for SO2 emissions, −0.25 ± 0.09 W m−2 for organic carbon (OC), 0.15 ± 0.17 W m−2 for black carbon (BC) and −0.07 ± 0.01 W m−2 for NH3. For the combined aerosols (in the piClim-aer experiment) it is −1.01 ± 0.25 W m−2. The multi-model means for the reactive well-mixed greenhouse gases (including any effects on ozone and aerosol chemistry) are 0.67 ± 0.17 W m−2 for methane (CH4), 0.26 ± 0.07 W m−2 for nitrous oxide (N2O) and 0.12 ± 0.2 W m−2 for ozone-depleting halocarbons (HC). Emissions of the ozone precursors nitrogen oxides (NOx), volatile organic compounds and both together (O3) lead to ERFs of 0.14 ± 0.13, 0.09 ± 0.14 and 0.20 ± 0.07 W m−2 respectively. The differences in ERFs calculated for the different models reflect differences in the complexity of their aerosol and chemistry schemes, especially in the case of methane where tropospheric chemistry captures increased forcing from ozone production.
- Published
- 2021
- Full Text
- View/download PDF
11. Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models
- Author
-
G. Thornhill, W. Collins, D. Olivié, R. B. Skeie, A. Archibald, S. Bauer, R. Checa-Garcia, S. Fiedler, G. Folberth, A. Gjermundsen, L. Horowitz, J.-F. Lamarque, M. Michou, J. Mulcahy, P. Nabat, V. Naik, F. M. O'Connor, F. Paulot, M. Schulz, C. E. Scott, R. Séférian, C. Smith, T. Takemura, S. Tilmes, K. Tsigaridis, and J. Weber
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Feedbacks play a fundamental role in determining the magnitude of the response of the climate system to external forcing, such as from anthropogenic emissions. The latest generation of Earth system models includes aerosol and chemistry components that interact with each other and with the biosphere. These interactions introduce a complex web of feedbacks that is important to understand and quantify. This paper addresses multiple pathways for aerosol and chemical feedbacks in Earth system models. These focus on changes in natural emissions (dust, sea salt, dimethyl sulfide, biogenic volatile organic compounds (BVOCs) and lightning) and changes in reaction rates for methane and ozone chemistry. The feedback terms are then given by the sensitivity of a pathway to climate change multiplied by the radiative effect of the change. We find that the overall climate feedback through chemistry and aerosols is negative in the sixth Coupled Model Intercomparison Project (CMIP6) Earth system models due to increased negative forcing from aerosols in a climate with warmer surface temperatures following a quadrupling of CO2 concentrations. This is principally due to increased emissions of sea salt and BVOCs which are sensitive to climate change and cause strong negative radiative forcings. Increased chemical loss of ozone and methane also contributes to a negative feedback. However, overall methane lifetime is expected to increase in a warmer climate due to increased BVOCs. Increased emissions of methane from wetlands would also offset some of the negative feedbacks. The CMIP6 experimental design did not allow the methane lifetime or methane emission changes to affect climate, so we found a robust negative contribution from interactive aerosols and chemistry to climate sensitivity in CMIP6 Earth system models.
- Published
- 2021
- Full Text
- View/download PDF
12. Geostationary Emission Explorer for Europe (G3E): mission concept and initial performance assessment
- Author
-
A. Butz, J. Orphal, R. Checa-Garcia, F. Friedl-Vallon, T. von Clarmann, H. Bovensmann, O. Hasekamp, J. Landgraf, T. Knigge, D. Weise, O. Sqalli-Houssini, and D. Kemper
- Subjects
Environmental engineering ,TA170-171 ,Earthwork. Foundations ,TA715-787 - Abstract
The Geostationary Emission Explorer for Europe (G3E) is a concept for a geostationary satellite sounder that aims to constrain the sources and sinks of greenhouse gases carbon dioxide (CO2) and methane (CH4) for continental-scale regions. Its primary focus is on central Europe. G3E carries a spectrometer system that collects sunlight backscattered from the Earth's surface and atmosphere in the near-infrared (NIR) and shortwave-infrared (SWIR) spectral range. Solar absorption spectra allow for spatiotemporally dense observations of the column-average concentrations of carbon dioxide (XCO2), methane (XCH4), and carbon monoxide (XCO). The mission concept in particular facilitates sampling of the diurnal variation with several measurements per day during summer. Here, we present the mission concept and carry out an initial performance assessment of the retrieval capabilities. The radiometric performance of the 4 grating spectrometers is tuned to reconcile small ground-pixel sizes (~2 km × 3 km at 50° latitude) with short single-shot exposures (~2.9 s) that allow for sampling continental regions such as central Europe within 2 h while providing a sufficient signal-to-noise ratio. The noise errors to be expected for XCO2, XCH4, and XCO are assessed through retrieval simulations for a European trial ensemble. Generally, single-shot precision for the targeted XCO2 and XCH4 is better than 0.5 % with some exception for scenes with low infrared surface albedo observed under low sun conditions in winter. For XCO, precision is generally better than 10 %. Performance for aerosol and cirrus loaded atmospheres is assessed by mimicking G3E's slant view on Europe for an ensemble of atmospheric scattering properties used previously for evaluating nadir-viewing low-Earth-orbit (LEO) satellites. While retrieval concepts developed for LEO configurations generally succeed in mitigating aerosol- and cirrus-induced retrieval errors for G3E's setup, residual errors are somewhat greater in geostationary orbit (GEO) than in LEO. G3E's deployment in the vicinity of the Meteosat Third Generation (MTG) satellites has the potential to make synergistic use of MTG's sounding capabilities e.g. with respect to characterization of aerosol and cloud properties or with respect to enhancing carbon monoxide retrievals by combining G3E's solar and MTG's thermal infrared spectra.
- Published
- 2015
- Full Text
- View/download PDF
13. Mapping spectroscopic uncertainties into prospective methane retrieval errors from Sentinel-5 and its precursor
- Author
-
R. Checa-Garcia, J. Landgraf, A. Galli, F. Hase, V. A. Velazco, H. Tran, V. Boudon, F. Alkemade, and A. Butz
- Subjects
Environmental engineering ,TA170-171 ,Earthwork. Foundations ,TA715-787 - Abstract
Sentinel-5 (S5) and its precursor (S5P) are future European satellite missions aiming at global monitoring of methane (CH4) column-average dry air mole fractions (XCH4). The spectrometers to be deployed onboard the satellites record spectra of sunlight backscattered from the Earth's surface and atmosphere. In particular, they exploit CH4 absorption in the shortwave infrared spectral range around 1.65 μm (S5 only) and 2.35 μm (both S5 and S5P) wavelength. Given an accuracy goal of better than 2 % for XCH4 to be delivered on regional scales, assessment and reduction of potential sources of systematic error such as spectroscopic uncertainties is crucial. Here, we investigate how spectroscopic errors propagate into retrieval errors on the global scale. To this end, absorption spectra of a ground-based Fourier transform spectrometer (FTS) operating at very high spectral resolution serve as estimate for the quality of the spectroscopic parameters. Feeding the FTS fitting residuals as a perturbation into a global ensemble of simulated S5- and S5P-like spectra at relatively low spectral resolution, XCH4 retrieval errors exceed 0.6 % in large parts of the world and show systematic correlations on regional scales, calling for improved spectroscopic parameters.
- Published
- 2015
- Full Text
- View/download PDF
14. Improved representation of the global dust cycle using observational constraints on dust properties and abundance
- Author
-
J. F. Kok, A. A. Adebiyi, S. Albani, Y. Balkanski, R. Checa-Garcia, M. Chin, P. R. Colarco, D. S. Hamilton, Y. Huang, A. Ito, M. Klose, D. M. Leung, L. Li, N. M. Mahowald, R. L. Miller, V. Obiso, C. Pérez García-Pando, A. Rocha-Lima, J. S. Wan, C. A. Whicker, Department of Atmospheric and Oceanic Sciences [Los Angeles] (AOS), University of California [Los Angeles] (UCLA), University of California (UC)-University of California (UC), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Modelling the Earth Response to Multiple Anthropogenic Interactions and Dynamics (MERMAID), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), European Project: 708119,H2020,H2020-MSCA-IF-2015,DUSC3(2016), University of California-University of California, Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Barcelona Supercomputing Center, Kok, J, Adebiyi, A, Albani, S, Balkanski, Y, Checa-Garcia, R, Chin, M, Colarco, P, Hamilton, D, Huang, Y, Ito, A, Klose, M, Leung, D, Li, L, Mahowald, N, Miller, R, Obiso, V, Perez Garcia-Pando, C, Rocha-Lima, A, Wan, J, and Whicker, C
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,QC1-999 ,Extinction (astronomy) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Dust emissions ,010502 geochemistry & geophysics ,Atmospheric sciences ,01 natural sciences ,Earth system -- environmental sciences ,Atmosphere ,Flux (metallurgy) ,Atmospheric models ,Simulació per ordinador ,ddc:550 ,Earth System Model ,Astrophysics::Solar and Stellar Astrophysics ,Atmospheric model simulations ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Aerosol ,QD1-999 ,Earth system ,Physics::Atmospheric and Oceanic Physics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Climate Model ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Physics ,Northern Hemisphere ,Dust ,Computer simulation ,Atmosfera -- Aspectes ambientals ,Earth sciences ,Model simulation ,Chemistry ,Deposition (aerosol physics) ,13. Climate action ,Enginyeria agroalimentària::Ciències de la terra i de la vida [Àrees temàtiques de la UPC] ,Environmental science ,Climate model ,Aerosols--Measurement ,Desert dust ,Astrophysics::Earth and Planetary Astrophysics ,Desenvolupament humà i sostenible::Degradació ambiental::Contaminació atmosfèrica [Àrees temàtiques de la UPC] - Abstract
Even though desert dust is the most abundant aerosol by mass in Earth's atmosphere, atmospheric models struggle to accurately represent its spatial and temporal distribution. These model errors are partially caused by fundamental difficulties in simulating dust emission in coarse-resolution models and in accurately representing dust microphysical properties. Here we mitigate these problems by developing a new methodology that yields an improved representation of the global dust cycle. We present an analytical framework that uses inverse modeling to integrate an ensemble of global model simulations with observational constraints on the dust size distribution, extinction efficiency, and regional dust aerosol optical depth. We then compare the inverse model results against independent measurements of dust surface concentration and deposition flux and find that errors are reduced by approximately a factor of 2 relative to current model simulations of the Northern Hemisphere dust cycle. The inverse model results show smaller improvements in the less dusty Southern Hemisphere, most likely because both the model simulations and the observational constraints used in the inverse model are less accurate. On a global basis, we find that the emission flux of dust with a geometric diameter up to 20 µm (PM20) is approximately 5000 Tg yr−1, which is greater than most models account for. This larger PM20 dust flux is needed to match observational constraints showing a large atmospheric loading of coarse dust. We obtain gridded datasets of dust emission, vertically integrated loading, dust aerosol optical depth, (surface) concentration, and wet and dry deposition fluxes that are resolved by season and particle size. As our results indicate that this dataset is more accurate than current model simulations and the MERRA-2 dust reanalysis product, it can be used to improve quantifications of dust impacts on the Earth system. This research has been supported by the National Science Foundation (NSF) (grant nos. 1552519 and 1856389) and the Army Research Office (cooperative agreement number W911NF-20-2-0150). This research was further supported by the University of California President's Postdoctoral Fellowship awarded to Adeyemi A. Adebiyi and the European Union's Horizon 2020 research and innovation program under Marie Skłodowska-Curie grant agreement no. 708119 awarded to Samuel Albani and no. 789630 awarded to Martina Klose. Ramiro Checa-Garcia received funding from the European Union Horizon 2020 research and innovation grant 641816 (CRESCENDO). Akinori Ito received support from JSPS KAKENHI grant number 20H04329 and Integrated Research Program for Advancing Climate Models (TOUGOU) grant number JPMXD0717935715 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. Peter R. Colarco and Adriana Rocha-Lima were supported by the NASA Atmospheric Composition: Modeling and Analysis Program (Richard Eckman, program manager) and the NASA Center for Climate Simulation (NCCS) for computational resources. Yue Huang was supported by NASA grant 80NSSC19K1346 awarded under the Future Investigators in NASA Earth and Space Science and Technology (FINESST) program. Ron L. Miller and Vincenzo Obiso received support from the NASA Modeling, Analysis and Prediction Program (NNG14HH42I) along with the NASA EMIT project and the Earth Venture Instrument program with computational resources from the NASA Center for Climate Simulation (NCCS). Samuel Albani received funding from MIUR (Progetto Dipartimenti di Eccellenza 2018-2022). Carlos Pérez García-Pando received support from the European Research Council (grant no. 773051, FRAGMENT), the EU H2020 project FORCES (grant no. 821205), the AXA Research Fund, and the Spanish Ministry of Science, Innovation and Universities (RYC-2015-18690 and CGL2017-88911-R). Longlei Li received support from the NASA EMIT project and the Earth Venture – Instrument program (grant no. E678605). Yves Balkanski and Ramiro Checa-Garcia received funding from the PolEASIA ANR project under allocation ANR-15-CE04-0005. Peer Reviewed "Article signat per 20 autors/es: Jasper F. Kok, Adeyemi A. Adebiyi, Samuel Albani, Yves Balkanski, Ramiro Checa-Garcia, Mian Chin, Peter R. Colarco, Douglas S. Hamilton, Yue Huang, Akinori Ito, Martina Klose, Danny M. Leung, Longlei Li, Natalie M. Mahowald, Ron L. Miller, Vincenzo Obiso, Carlos Pérez García-Pando, Adriana Rocha-Lima, Jessica S. Wan, and Chloe A. Whicker"
- Published
- 2020
- Full Text
- View/download PDF
15. The contribution of greenhouse gases to the recent slowdown in global-mean temperature trends.
- Author
-
R Checa-Garcia, K P Shine, and M I Hegglin
- Published
- 2016
- Full Text
- View/download PDF
16. Threefold reduction of modeled uncertainty in direct radiative effects over biomass burning regions by constraining absorbing aerosols.
- Author
-
Zhong Q, Schutgens N, van der Werf GR, Takemura T, van Noije T, Mielonen T, Checa-Garcia R, Lohmann U, Kirkevåg A, Olivié DJL, Kokkola H, Matsui H, Kipling Z, Ginoux P, Le Sager P, Rémy S, Bian H, Chin M, Zhang K, Bauer SE, and Tsigaridis K
- Abstract
Absorbing aerosols emitted from biomass burning (BB) greatly affect the radiation balance, cloudiness, and circulation over tropical regions. Assessments of these impacts rely heavily on the modeled aerosol absorption from poorly constrained global models and thus exhibit large uncertainties. By combining the AeroCom model ensemble with satellite and in situ observations, we provide constraints on the aerosol absorption optical depth (AAOD) over the Amazon and Africa. Our approach enables identification of error contributions from emission, lifetime, and MAC (mass absorption coefficient) per model, with MAC and emission dominating the AAOD errors over Amazon and Africa, respectively. In addition to primary emissions, our analysis suggests substantial formation of secondary organic aerosols over the Amazon but not over Africa. Furthermore, we find that differences in direct aerosol radiative effects between models decrease by threefold over the BB source and outflow regions after correcting the identified errors. This highlights the potential to greatly reduce the uncertainty in the most uncertain radiative forcing agent.
- Published
- 2023
- Full Text
- View/download PDF
17. No evidence of worsening Arctic springtime ozone losses over the 21st century.
- Author
-
Polvani LM, Keeble J, Banerjee A, Checa-Garcia R, Chiodo G, Rieder HE, and Rosenlof KH
- Published
- 2023
- Full Text
- View/download PDF
18. Using modelled relationships and satellite observations to attribute modelled aerosol biases over biomass burning regions.
- Author
-
Zhong Q, Schutgens N, van der Werf GR, van Noije T, Bauer SE, Tsigaridis K, Mielonen T, Checa-Garcia R, Neubauer D, Kipling Z, Kirkevåg A, Olivié DJL, Kokkola H, Matsui H, Ginoux P, Takemura T, Le Sager P, Rémy S, Bian H, and Chin M
- Subjects
- Aerosols analysis, Bias, Biomass, Environmental Monitoring methods, Air Pollutants analysis, Fires
- Abstract
Biomass burning (BB) is a major source of aerosols that remain the most uncertain components of the global radiative forcing. Current global models have great difficulty matching observed aerosol optical depth (AOD) over BB regions. A common solution to address modelled AOD biases is scaling BB emissions. Using the relationship from an ensemble of aerosol models and satellite observations, we show that the bias in aerosol modelling results primarily from incorrect lifetimes and underestimated mass extinction coefficients. In turn, these biases seem to be related to incorrect precipitation and underestimated particle sizes. We further show that boosting BB emissions to correct AOD biases over the source region causes an overestimation of AOD in the outflow from Africa by 48%, leading to a double warming effect compared with when biases are simultaneously addressed for both aforementioned factors. Such deviations are particularly concerning in a warming future with increasing emissions from fires., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
19. Improved representation of the global dust cycle using observational constraints on dust properties and abundance.
- Author
-
Kok JF, Adebiyi AA, Albani S, Balkanski Y, Checa-Garcia R, Chin M, Colarco PR, Hamilton DS, Huang Y, Ito A, Klose M, Leung DM, Li L, Mahowald NM, Miller RL, Obiso V, García-Pando CP, Rocha-Lima A, Wan JS, and Whicker CA
- Abstract
Even though desert dust is the most abundant aerosol by mass in Earth's atmosphere, atmospheric models struggle to accurately represent its spatial and temporal distribution. These model errors are partially caused by fundamental difficulties in simulating dust emission in coarse-resolution models and in accurately representing dust microphysical properties. Here we mitigate these problems by developing a new methodology that yields an improved representation of the global dust cycle. We present an analytical framework that uses inverse modeling to integrate an ensemble of global model simulations with observational constraints on the dust size distribution, extinction efficiency, and regional dust aerosol optical depth. We then compare the inverse model results against independent measurements of dust surface concentration and deposition flux and find that errors are reduced by approximately a factor of two relative to current model simulations of the Northern Hemisphere dust cycle. The inverse model results show smaller improvements in the less dusty Southern Hemisphere, most likely because both the model simulations and the observational constraints used in the inverse model are less accurate. On a global basis, we find that the emission flux of dust with geometric diameter up to 20 μm (PM
20 ) is approximately 5,000 Tg/year, which is greater than most models account for. This larger PM20 dust flux is needed to match observational constraints showing a large atmospheric loading of coarse dust. We obtain gridded data sets of dust emission, vertically integrated loading, dust aerosol optical depth, (surface) concentration, and wet and dry deposition fluxes that are resolved by season and particle size. As our results indicate that this data set is more accurate than current model simulations and the MERRA-2 dust reanalysis product, it can be used to improve quantifications of dust impacts on the Earth system., Competing Interests: Competing interests The authors declare that they have no conflict of interest.- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.