1. NEXO: Neutrinoless double beta decay search beyond $10^{28}$ year half-life sensitivity
- Author
-
G Adhikari, S Al Kharusi, E Angelico, G Anton, I J Arnquist, I Badhrees, J Bane, V Belov, E P Bernard, T Bhatta, A Bolotnikov, P A Breur, J P Brodsky, E Brown, T Brunner, E Caden, G F Cao, L Cao, C Chambers, B Chana, S A Charlebois, D Chernyak, M Chiu, B Cleveland, R Collister, S A Czyz, J Dalmasson, T Daniels, L Darroch, R DeVoe, M L Di Vacri, J Dilling, Y Y Ding, A Dolgolenko, M J Dolinski, A Dragone, J Echevers, M Elbeltagi, L Fabris, D Fairbank, W Fairbank, J Farine, S Ferrara, S Feyzbakhsh, Y S Fu, G Gallina, P Gautam, G Giacomini, W Gillis, C Gingras, D Goeldi, R Gornea, G Gratta, C A Hardy, K Harouaka, M Heffner, E W Hoppe, A House, A Iverson, A Jamil, M Jewell, X S Jiang, A Karelin, L J Kaufman, I Kotov, R Krücken, A Kuchenkov, K S Kumar, Y Lan, A Larson, K G Leach, B G Lenardo, D S Leonard, G Li, S Li, Z Li, C Licciardi, R Lindsay, R MacLellan, M Mahtab, P Martel-Dion, J Masbou, N Massacret, T McElroy, K McMichael, M Medina Peregrina, T Michel, B Mong, D C Moore, K Murray, J Nattress, C R Natzke, R J Newby, K Ni, F Nolet, O Nusair, J C Nzobadila Ondze, K Odgers, A Odian, J L Orrell, G S Ortega, C T Overman, S Parent, A Perna, A Piepke, A Pocar, J-F Pratte, N Priel, V Radeka, E Raguzin, G J Ramonnye, T Rao, H Rasiwala, S Rescia, F Retière, J Ringuette, V Riot, T Rossignol, P C Rowson, N Roy, R Saldanha, S Sangiorgio, X Shang, A K Soma, F Spadoni, V Stekhanov, X L Sun, M Tarka, S Thibado, A Tidball, J Todd, T Totev, S Triambak, R H M Tsang, T Tsang, F Vachon, V Veeraraghavan, S Viel, C Vivo-Vilches, P Vogel, J-L Vuilleumier, M Wagenpfeil, T Wager, M Walent, K Wamba, Q Wang, W Wei, L J Wen, U Wichoski, S Wilde, M Worcester, S X Wu, W H Wu, X Wu, Q Xia, W Yan, H Yang, L Yang, O Zeldovich, J Zhao, T Ziegler, Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), and nEXO
- Subjects
Nuclear and High Energy Physics ,background: effect ,Physics - Instrumentation and Detectors ,FOS: Physical sciences ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,time-projection chambers ,01 natural sciences ,neutrinoless double beta decay ,Monte Carlo simulations ,double-beta decay: (0neutrino) ,0103 physical sciences ,neutrino: mass ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,detector: design ,xenon: liquid ,010308 nuclear & particles physics ,neutrinos ,Instrumentation and Detectors (physics.ins-det) ,sensitivity ,time projection chamber ,3. Good health ,photon: scintillation counter ,copper ,radioactivity ,Xe-136 ,experimental results - Abstract
The nEXO neutrinoless double beta decay experiment is designed to use a time projection chamber and 5000 kg of isotopically enriched liquid xenon to search for the decay in $^{136}$Xe. Progress in the detector design, paired with higher fidelity in its simulation and an advanced data analysis, based on the one used for the final results of EXO-200, produce a sensitivity prediction that exceeds the half-life of $10^{28}$ years. Specifically, improvements have been made in the understanding of production of scintillation photons and charge as well as of their transport and reconstruction in the detector. The more detailed knowledge of the detector construction has been paired with more assays for trace radioactivity in different materials. In particular, the use of custom electroformed copper is now incorporated in the design, leading to a substantial reduction in backgrounds from the intrinsic radioactivity of detector materials. Furthermore, a number of assumptions from previous sensitivity projections have gained further support from interim work validating the nEXO experiment concept. Together these improvements and updates suggest that the nEXO experiment will reach a half-life sensitivity of $1.35\times 10^{28}$ yr at 90% confidence level in 10 years of data taking, covering the parameter space associated with the inverted neutrino mass ordering, along with a significant portion of the parameter space for the normal ordering scenario, for almost all nuclear matrix elements. The effects of backgrounds deviating from the nominal values used for the projections are also illustrated, concluding that the nEXO design is robust against a number of imperfections of the model., Comment: 26 pages, 19 figures, version accepted by Journal of Phys. G
- Published
- 2021
- Full Text
- View/download PDF