17 results on '"Rötter, Reimund Paul"'
Search Results
2. Drought patterns: their spatiotemporal variability and impacts on maize production in Limpopo province, South Africa
- Author
-
Ferreira, Nicole Costa Resende, primary, Rötter, Reimund Paul, additional, Bracho-Mujica, Gennady, additional, Nelson, William C. D., additional, Lam, Quang Dung, additional, Recktenwald, Claus, additional, Abdulai, Isaaka, additional, Odhiambo, Jude, additional, and Foord, Stefan, additional
- Published
- 2022
- Full Text
- View/download PDF
3. Impact of Different Methods of Root-Zone Application of Biochar-Based Fertilizers on Young Cocoa Plants: Insights from a Pot-Trial
- Author
-
Meyer zu Drewer, Johannes, primary, Köster, Mareike, additional, Abdulai, Issaka, additional, Rötter, Reimund Paul, additional, Hagemann, Nikolas, additional, and Schmidt, Hans Peter, additional
- Published
- 2022
- Full Text
- View/download PDF
4. Supplementary material to "Effects of alternative crop-livestock management scenarios on selected ecosystem services in smallholder farming – a landscape perspective"
- Author
-
Pfeiffer, Mirjam, primary, Hoffmann, Munir Paul, additional, Scheiter, Simon, additional, Nelson, William, additional, Isselstein, Johannes, additional, Ayisi, Kingsley Kwabena, additional, Odhiambo, Jude, additional, and Rötter, Reimund Paul, additional
- Published
- 2022
- Full Text
- View/download PDF
5. Effects of alternative crop-livestock management scenarios on selected ecosystem services in smallholder farming – a landscape perspective
- Author
-
Pfeiffer, Mirjam, primary, Hoffmann, Munir Paul, additional, Scheiter, Simon, additional, Nelson, William, additional, Isselstein, Johannes, additional, Ayisi, Kingsley Kwabena, additional, Odhiambo, Jude, additional, and Rötter, Reimund Paul, additional
- Published
- 2022
- Full Text
- View/download PDF
6. Quantifying sustainable intensification of agriculture: The contribution of metrics and modelling
- Author
-
Mouratiadou, Ioanna, Latka, Catharina, van der Hilst, Floor, Müller, Christoph, Berges, Regine, Bodirsky, Benjamin Leon, Ewert, Frank, Faye, Babacar, Heckelei, Thomas, Hoffmann, Munir, Lehtonen, Heikki, Lorite, Ignacio Jesus, Nendel, Claas, Palosuo, Taru, Rodríguez, Alfredo, Rötter, Reimund Paul, Ruiz-Ramos, Margarita, Stella, Tommaso, Webber, Heidi, Wicke, Birka, Biobased Economy, Energy and Resources, Biobased Economy, and Energy and Resources
- Subjects
0106 biological sciences ,Evolution ,Computer science ,Ex-ante scenario assessment ,Dashboard (business) ,Social sustainability ,General Decision Sciences ,Sustainable development goals ,010501 environmental sciences ,010603 evolutionary biology ,01 natural sciences ,Modelling of agricultural systems ,12. Responsible consumption ,Behavior and Systematics ,Multiple time dimensions ,11. Sustainability ,Indicators ,Resilience (network) ,QH540-549.5 ,Ecology, Evolution, Behavior and Systematics ,Sustainable intensification ,Metrics ,0105 earth and related environmental sciences ,2. Zero hunger ,Sustainable development ,Decision Sciences(all) ,Operationalization ,Ecology ,business.industry ,Environmental economics ,13. Climate action ,Agriculture ,Sustainability ,business - Abstract
Sustainable intensification (SI) of agriculture is a promising strategy for boosting the capacity of the agricultural sector to meet the growing demands for food and non-food products and services in a sustainable manner. Assessing and quantifying the options for SI remains a challenge due to its multiple dimensions and potential associated trade-offs. We contribute to overcoming this challenge by proposing an approach for the ex-ante evaluation of SI options and trade-offs to facilitate decision making in relation to SI. This approach is based on the utilization of a newly developed SI metrics framework (SIMeF) combined with agricultural systems modelling. We present SIMeF and its operationalization approach with modelling and evaluate the approach’s feasibility by assessing to what extent the SIMeF metrics can be quantified by representative agricultural systems models. SIMeF is based on the integration of academic and policy indicator frameworks, expert opinions, as well as the Sustainable Development Goals. Structured along seven SI domains and consisting of 37 themes, 142 sub-themes and 1128 metrics, it offers a holistic, generic, and policy-relevant dashboard for selecting the SI metrics to be quantified for the assessment of SI options in diverse contexts. The use of SIMeF with agricultural systems modelling allows the ex-ante assessment of SI options with respect to their productivity, resource use efficiency, environmental sustainability and, to a large extent, economic sustainability. However, we identify limitations to the use of modelling to represent several SI aspects related to social sustainability, certain ecological functions, the multi-functionality of agriculture, the management of losses and waste, and security and resilience. We suggest advancements in agricultural systems models and greater interdisciplinary and transdisciplinary integration to improve the ability to quantify SI metrics and to assess trade-offs across the various dimensions of SI.
- Published
- 2021
7. Quantifying sustainable intensification of agriculture: The contribution of metrics and modelling
- Author
-
Biobased Economy, Energy and Resources, Mouratiadou, Ioanna, Latka, Catharina, van der Hilst, Floor, Müller, Christoph, Berges, Regine, Bodirsky, Benjamin Leon, Ewert, Frank, Faye, Babacar, Heckelei, Thomas, Hoffmann, Munir, Lehtonen, Heikki, Lorite, Ignacio Jesus, Nendel, Claas, Palosuo, Taru, Rodríguez, Alfredo, Rötter, Reimund Paul, Ruiz-Ramos, Margarita, Stella, Tommaso, Webber, Heidi, Wicke, Birka, Biobased Economy, Energy and Resources, Mouratiadou, Ioanna, Latka, Catharina, van der Hilst, Floor, Müller, Christoph, Berges, Regine, Bodirsky, Benjamin Leon, Ewert, Frank, Faye, Babacar, Heckelei, Thomas, Hoffmann, Munir, Lehtonen, Heikki, Lorite, Ignacio Jesus, Nendel, Claas, Palosuo, Taru, Rodríguez, Alfredo, Rötter, Reimund Paul, Ruiz-Ramos, Margarita, Stella, Tommaso, Webber, Heidi, and Wicke, Birka
- Published
- 2021
8. Managing phenology for agronomic adaptation of global cropping systems to climate change
- Author
-
Lotze-Campen, Hermann, Rötter, Reimund Paul, Müller, Christoph, Minoli, Sara, Lotze-Campen, Hermann, Rötter, Reimund Paul, Müller, Christoph, and Minoli, Sara
- Abstract
Der Klimawandel fordert die Anbausysteme heraus, um das derzeitige Produktionsniveau zu verbessern oder sogar aufrechtzuerhalten. Es wird erwartet, dass zukünftige Trends bei Temperatur und Niederschlag die Ernteproduktivität beeinträchtigen. Es ist daher notwendig, möglicher Lösungen zur Anpassung der Anbausysteme an den Klimawandel zu untersuchen. Ziel dieser Arbeit ist es, das Wissen über die Anpassung von weltweit relevanten Getreidepflanzen an den Klimawandel zu erweitern. Die zentrale Fragestellung ist, ob globale Anbausysteme an den Klimawandel angepasst werden können, indem die Phänologie der Kulturpflanzen durch Anpassung von Wachstumsperioden und Sorten gesteuert wird. Die Phänologie und die Ertragsreaktionen sowohl auf den Temperaturanstieg als auch auf die Sortenselektion werden zunächst anhand eines Ensembles von “Global Gridded Crop Models” bewertet. Anschließend wird die Komplexität der Anpassung durch phänologisches Management analysiert, insbesondere unter Berücksichtigung der bestehenden großen Wissenslücken bei der Auswahl von Pflanzensorten. Das Ergebnis der Analyse ist ein regelbasierter Algorithmus, der phänologische Zyklen der Kulturpflanzen auswählt, um die Zeit für die Ertragsbildung zu maximieren und Temperatur- und Wasserbelastungen während der Wachstumszyklen der Kulturpflanzen zu minimieren. Die berechneten Aussaatdaten und Wachstumsperioden werden verwendet, um globale Muster von Sorten zu parametrisieren, die an aktuelle und zukünftige Klimaszenarien angepasst sind. Diese Arbeit zeigt, dass die Auswirkungen des Klimawandels auf die Pflanzenproduktivität erheblich variieren können, je nachdem, welche Annahmen für das agronomische Management getroffen werden. Änderungen im Management zu vernachlässigen, liefert die pessimistischste Prognose für die zukünftige Pflanzenproduktion. Relativ einfache Ansätze zur Berechnung angepasster Aussaatdaten und Sorten bieten eine Grundlage für die Berücksichtigung autonomer Anpassungsschemata als integ, Climate change is challenging cropping systems to enhance or even maintain current production levels. Future trends in temperature and precipitation are expected to negatively impact crop productivity. It is therefore necessary to explore adaptation options of cropping systems to changing climate. The aim of this thesis is to advance knowledge on adaptation of world-wide relevant grain crops to climate change. The central research question is whether global cropping systems can be adapted to climate change by managing crop phenology through adjusting growing periods and cultivars. Phenology and yield responses to both temperature increase and cultivar selection are first assessed making use of an ensemble of Global Gridded Crop Models. Then, the complexity of adaptation through phenological management is analysed, particularly addressing the existing large knowledge gaps on crop cultivar choice. The outcome of the analysis is a rule-based algorithm that selects crop phenological cycles aiming at maximizing the time for yield formation and minimizing temperature and water stresses during the crop growth cycles. The computed sowing dates and growing periods are used to parametrize global patterns of cultivars adapted to present and future climate scenarios. This thesis demonstrates that the impacts of climate change on crop productivity can vary substantially depending on which assumptions are made on agronomic management. Neglecting any changes in management return the most pessimistic projection on future crop production. Relatively simple approaches to compute adapted sowing dates and cultivars provide a base for considering autonomous adaptation schemes as an integral component of global scale modelling frameworks.
- Published
- 2020
9. Improving crop modeling approaches for supporting farmers to cope with weather risks
- Author
-
Lotze-Campen, Hermann, Rötter, Reimund Paul, Gornott, Christoph, Lotze-Campen, Hermann, Rötter, Reimund Paul, and Gornott, Christoph
- Abstract
Sich ändernde Klima- und Wetterbedingungen in Verbindung mit einer begrenzt ausdehnbaren Ackerfläche werden den Druck auf Nahrungsmittelproduktionssysteme weiter erhöhen. Um dieser Herausforderung gerecht zu werden, ist eine Erhöhung und Stabilisierung der Ernteerträge unverzichtbar. Dies erfordert aber ein tieferes Verständnis der Einflussfaktoren, die auf die Ertragsvariabilität wirken. Diese Dissertation leistet einen Forschungsbeitrag zu Ertragsmodellen in Deutschland, Tansania und auf globaler Ebene. Dazu analysiere und kombiniere ich statistische und prozessbasierte Ertragsmodelle in fünf Schritten: (i) Zunächst entwickele ich einen statistischen Modellansatz, um den Einfluss von Wetter und agronomischem Management auf Winterweizenerträge in Deutschland zu separieren. (ii) Auf der Grundlage dieses Modells erweitere ich die statistischen Methoden und wende sie für Winterweizen und Silomais auf regionale Ebene an. (iii) Diesen erweiterten Modellansatz verwende ich daraufhin zum Testen einer Kreuz-Validierung um zukünftige Ertragsänderungen unter Klimawandel zu projizieren. (iv) Anschließend wird in einer globalen statistischen Anwendung dieses Modell für kurzfristige Ertragsprognosen getestet. (v) Schließlich kombiniere ich für das Fallbeispiel Mais in Tansania statistische und prozessbasierte Ertragsmodelle, um wetterbedingte Ertragsverluste von nicht-wetterbedingten Ertragsverlusten zu separieren. Als Ergebnis lässt sich zusammenfassen, dass der Anteil der wetterbedingten Ertragsvariabilität in Deutschland höher ist als in Tansania. Dementsprechend sind die Ertragsschwankungen in Tansania eher auf das agronomische Management und sozioökonomische Einflüsse zurückzuführen. Für beide Länder stelle ich fest, dass der Anteil der wetterbedingte Ertragsvariabilität auf aggregierter Ebene höher ist als auf regionaler Ebene. Der kombinierte statistisch-prozessbasierte Ansatz zur Bewertung von wetterbedingten Ertragsverlusten kann für Versicherungszwecke genutzt werden., Due to changing climate and weather patterns in combination with limitations to extend global arable land area, the pressure on food production systems will increase. To cope with this challenge, it will be indispensable to increase and stabilize crop yields. This requires, however, a deeper understanding of the factors influencing crop yield variability. This dissertation contributes to that research need as I further develop and apply crop models to assess regional wheat and maize yield variability in Germany, Tanzania and on a global scale. For this, I analyze and combine statistical and process-based crop models within five steps: (i) First, I develop a statistical crop modeling approach to decompose the influence of weather and agronomic management on winter wheat yields in Germany. (ii) Based on the first step, I expand the statistical methods and apply augmented models for winter wheat and silage maize on a disaggregated level. (iii) Then this model approach is used to investigate an out-of-sample cross validation to demonstrate the models’ capability to project future yield changes under climate change. (iv) In a global statistical application, this models’ capability of projecting yields is tested for short-term yield forecasts. (v) Finally, I combine statistical and process-based crop modeling to decompose weather-related maize yield losses from losses caused by non-weather factors for the case of Tanzania. Across these five steps, I find that the share of weather-related yield variability is higher in Germany than in Tanzania. Accordingly, crop yield variability in Tanzania is to a higher share attributable to agronomic management and socio-economic influences. For both countries, I find that the share of explained weather-related yield variability is higher on an aggregated level than on the regional level. Finally, this combined statistical-process-based approach can be used for assessing weather-related crop yield losses for insurance purposes.
- Published
- 2018
10. DATA Aggregation effects in regional yield simulations
- Author
-
Hoffmann, Holger, Kersebaum, Kurt Christian, Zhao, Gang, Asseng, Senthold, Bindi, Marco, Cammarano, Davide, Constantin, Julie, Coucheney, Elsa, Dechow, Rene, Doro, Luca, Eckersten, Henrik, Gaiser, Thomas, Grosz, Balazs, Haas, Edwin, Kassie, Belay T., Kiese, Ralf, Klatt, Steffen, Kuhnert, Matthias, Lewan, Elisabet, Moriondo, Marco, Nendel, Claas, Raynal, Helene, Roggero, Pier Paolo, Rötter, Reimund Paul, Siebert, Stefan J., Sosa, Carmen, Specka, Xenia, Tao, Fulu, Teixeira, Edmar, Trombi, Giacomo, Yeluripati, Jagadeesh, Vanuytrecht, Eline, Wallach, Daniel, Wang, Enli, Weihermueller, Lutz, Zhao, Zhigan, Ewert, Frank, Institute of Crop Science and Resource Conservation, University of Bonn-Division of Plant Nutrition, Leibniz-Zentrum für Agrarlandschaftsforschung = Leibniz Centre for Agricultural Landscape Research (ZALF), INRES, Rheinische Friedrich-Wilhelms-Universität Bonn, University of Florida [Gainesville], University of Florence (UNIFI), The James Hutton Institute, UMR : AGroécologie, Innovations, TeRritoires, Ecole Nationale Supérieure Agronomique de Toulouse, Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Thünen Institute of Climate Smart Agriculture, Texas A&M University System, Department of Crop Production Ecology, Institut für Meteorologie und Klimaforschung (IMK), Karlsruher Institut für Technologie (KIT), Agricultural and Biological Engineering, Institut für Meteorologie und Klimaforschung - Atmosphärische Umweltforschung (IMK-IFU), Biological and Environmental Sciences, University of Stirling, Unité de Mathématiques et Informatique Appliquées de Toulouse (MIAT INRA), Institut National de la Recherche Agronomique (INRA), Università degli Studi di Sassari, Department of Crop Sciences, University of Goettingen, Instutute of Landscape Biogeochemistry, Climate Impacts Group, New Zealand Institute for Plant and Food Research Limited, Department of Agri-Food Production and Environmental Sciences, University delgi Studi di Firenze, Information and Computational Sciences Group, Department of Earth and Environmental Sciences [Leuven] (EES), Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), CSIRO, Institute of Bio- and Geosciences Agrosphere (IBG-3), China Agricultural University, Institute of Crop Science and Resource Conservation [Bonn] (INRES), University of Florida [Gainesville] (UF), Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI), AGroécologie, Innovations, teRritoires (AGIR), Institut National de la Recherche Agronomique (INRA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Departement of Soil and Environment, Institute for Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology (KIT), Department of Agricultural and Biological Engineering [Gainesville] (UF|ABE), Institute of Food and Agricultural Sciences [Gainesville] (UF|IFAS), University of Florida [Gainesville] (UF)-University of Florida [Gainesville] (UF), University of Göttingen - Georg-August-Universität Göttingen, Plant & Food Research, and China Agricultural University (CAU)
- Subjects
[SDV]Life Sciences [q-bio] - Abstract
Session: AgMIP: Advances in Crop & Soil Model Intercomparison and Improvement Oral; Regional yield simulations with process-based models often rely on input data of coarse spatial resolution (Ewert et al., 2015; Zhao et al., 2015). Using aggregated data as input for process-based models entails the risks of introducing so-called aggregation errors (AE). Such AE depend on the model structure in combination with the aggregation method, the type of aggregated data as well as its spatial heterogeneity. While the regional crop yield bias is usually
- Published
- 2016
11. Using ensembles of models in climate and crop modeling
- Author
-
Wallach, Daniel, Mearns, Linda O., Asseng, Senthold, Rötter, Reimund Paul, AGroécologie, Innovations, teRritoires (AGIR), Institut National de la Recherche Agronomique (INRA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, National Center for Atmospheric Research [Boulder] (NCAR), Department of Agricultural and Biological Engineering [Gainesville] (UF|ABE), Institute of Food and Agricultural Sciences [Gainesville] (UF|IFAS), University of Florida [Gainesville] (UF)-University of Florida [Gainesville] (UF), Agrifood Research Finland, The authors gratefully acknowledge the AgMIP and MACSUR projects, which have made possible the collaborations that gave rise to this article, and ProdInra, Migration
- Subjects
[SDV] Life Sciences [q-bio] ,[SDE] Environmental Sciences ,[SDV]Life Sciences [q-bio] ,[SDE]Environmental Sciences ,[SHS] Humanities and Social Sciences ,ComputingMilieux_MISCELLANEOUS ,[SHS]Humanities and Social Sciences - Abstract
International audience
- Published
- 2014
12. ‘Fingerprints’ of four crop models as affected by soil input data aggregation
- Author
-
Angulo, Carlos, primary, Gaiser, Thomas, additional, Rötter, Reimund Paul, additional, Børgesen, Christen Duus, additional, Hlavinka, Petr, additional, Trnka, Mirek, additional, and Ewert, Frank, additional
- Published
- 2014
- Full Text
- View/download PDF
13. Rhine basin study: Land use projections based on biophysical and socio-economic analysis. Volume 1: Biophysical classification as a general framework
- Author
-
Rötter, Reimund Paul
- Published
- 1994
- Full Text
- View/download PDF
14. A Modelling Framework for Assessing Adaptive Management Options of Finnish Agrifood Systems to Climate Change
- Author
-
Lehtonen, Heikki Sakari, primary, Rötter, Reimund Paul, additional, Palosuo, Taru Irmeli, additional, Salo, Tapio Juhani, additional, Helin, Janne Antero, additional, Pavlova, Yulia, additional, and Kahiluoto, Helena Maria, additional
- Published
- 2010
- Full Text
- View/download PDF
15. Managing phenology for agronomic adaptation of global cropping systems to climate change
- Author
-
Minoli, Sara, Lotze-Campen, Hermann, Rötter, Reimund Paul, and Müller, Christoph
- Subjects
Klimawandel ,Wachstumsphase ,ZC 11300 ,Ertrag ,adaptation ,crop yield ,ZA 57500 ,phenology ,577 Ökologie ,Pflanzenmodellierung ,climate change ,crop cultivar ,global scale ,633 Feld- und Plantagenfrüchte ,globaler Maßstab ,Anpassung ,Phänologie ,ZC 31000 ,ddc:577 ,growing period ,ddc:633 ,Pflanzensorten ,crop modelling - Abstract
Der Klimawandel fordert die Anbausysteme heraus, um das derzeitige Produktionsniveau zu verbessern oder sogar aufrechtzuerhalten. Es wird erwartet, dass zukünftige Trends bei Temperatur und Niederschlag die Ernteproduktivität beeinträchtigen. Es ist daher notwendig, möglicher Lösungen zur Anpassung der Anbausysteme an den Klimawandel zu untersuchen. Ziel dieser Arbeit ist es, das Wissen über die Anpassung von weltweit relevanten Getreidepflanzen an den Klimawandel zu erweitern. Die zentrale Fragestellung ist, ob globale Anbausysteme an den Klimawandel angepasst werden können, indem die Phänologie der Kulturpflanzen durch Anpassung von Wachstumsperioden und Sorten gesteuert wird. Die Phänologie und die Ertragsreaktionen sowohl auf den Temperaturanstieg als auch auf die Sortenselektion werden zunächst anhand eines Ensembles von “Global Gridded Crop Models” bewertet. Anschließend wird die Komplexität der Anpassung durch phänologisches Management analysiert, insbesondere unter Berücksichtigung der bestehenden großen Wissenslücken bei der Auswahl von Pflanzensorten. Das Ergebnis der Analyse ist ein regelbasierter Algorithmus, der phänologische Zyklen der Kulturpflanzen auswählt, um die Zeit für die Ertragsbildung zu maximieren und Temperatur- und Wasserbelastungen während der Wachstumszyklen der Kulturpflanzen zu minimieren. Die berechneten Aussaatdaten und Wachstumsperioden werden verwendet, um globale Muster von Sorten zu parametrisieren, die an aktuelle und zukünftige Klimaszenarien angepasst sind. Diese Arbeit zeigt, dass die Auswirkungen des Klimawandels auf die Pflanzenproduktivität erheblich variieren können, je nachdem, welche Annahmen für das agronomische Management getroffen werden. Änderungen im Management zu vernachlässigen, liefert die pessimistischste Prognose für die zukünftige Pflanzenproduktion. Relativ einfache Ansätze zur Berechnung angepasster Aussaatdaten und Sorten bieten eine Grundlage für die Berücksichtigung autonomer Anpassungsschemata als integraler Bestandteil globaler Modellierungsrahmen., Climate change is challenging cropping systems to enhance or even maintain current production levels. Future trends in temperature and precipitation are expected to negatively impact crop productivity. It is therefore necessary to explore adaptation options of cropping systems to changing climate. The aim of this thesis is to advance knowledge on adaptation of world-wide relevant grain crops to climate change. The central research question is whether global cropping systems can be adapted to climate change by managing crop phenology through adjusting growing periods and cultivars. Phenology and yield responses to both temperature increase and cultivar selection are first assessed making use of an ensemble of Global Gridded Crop Models. Then, the complexity of adaptation through phenological management is analysed, particularly addressing the existing large knowledge gaps on crop cultivar choice. The outcome of the analysis is a rule-based algorithm that selects crop phenological cycles aiming at maximizing the time for yield formation and minimizing temperature and water stresses during the crop growth cycles. The computed sowing dates and growing periods are used to parametrize global patterns of cultivars adapted to present and future climate scenarios. This thesis demonstrates that the impacts of climate change on crop productivity can vary substantially depending on which assumptions are made on agronomic management. Neglecting any changes in management return the most pessimistic projection on future crop production. Relatively simple approaches to compute adapted sowing dates and cultivars provide a base for considering autonomous adaptation schemes as an integral component of global scale modelling frameworks.
- Published
- 2020
- Full Text
- View/download PDF
16. Expected effects of climate change on the production and water use of crop rotation management reproduced by crop model ensemble for Czech Republic sites.
- Author
-
Pohanková, Eva, Hlavinka, Petr, Kersebaum, Kurt-Christian, Rodríguez, Alfredo, Jan Balek, Bednařík, Martin, Dubrovský, Martin, Gobin, Anne, Hoogenboom, Gerrit, Moriondo, Marco, Nendel, Claas, Olesen, Jørgen E., Rötter, Reimund Paul, Ruiz-Ramos, Margarita, Shelia, Vakhtang, Stella, Tommaso, Hoffmann, Munir Paul, Takáč, Jozef, Eitzinger, Josef, and Dibari, Camilla
- Subjects
- *
CROP management , *CROP rotation , *DRY farming , *CLIMATE change , *WATER use , *COVER crops , *GROUNDWATER recharge , *CROP residues - Abstract
Crop rotation, fertilization and residue management affect the water balance and crop production and can lead to different sensitivities to climate change. To assess the impacts of climate change on crop rotations (CRs), the crop model ensemble (APSIM,AQUACROP, CROPSYST, DAISY, DSSAT, HERMES, MONICA) was used. The yields and water balance of two CRs with the same set of crops (winter wheat, silage maize, spring barley and winter rape) in a continuous transient run from 1961 to 2080 were simulated. CR1 was without cover crops and without manure application. Straw after the harvest was exported from the fields. CR2 included cover crops, manure application and crop residue retention left on field. Simulations were performed using two soil types (Chernozem, Cambisol) within three sites in the Czech Republic, which represent temperature and precipitation gradients for crops in Central Europe. For the description of future climatic conditions, seven climate scenarios were used. Six of them had increasing CO2 concentrations according RCP 8.5, one had no CO 2 increase in the future. The output of an ensemble expected higher productivity by 0.82 t/ha/year and 2.04 t/ha/year for yields and aboveground biomass in the future (2051–2080). However, if the direct effect of a CO 2 increase is not considered, the average yields for lowlands will be lower. Compared to CR1, CR2 showed higher average yields of 1.26 t/ha/year for current climatic conditions and 1.41 t/ha/year for future climatic conditions. For the majority of climate change scenarios, the crop model ensemble agrees on the projected yield increase in C3 crops in the future for CR2 but not for CR1. Higher agreement for future yield increases was found for Chernozem,while for Cambisol, lower yields under dry climate scenarios are expected. For silage maize, changes in simulated yields depend on locality. If the same hybrid will be used in the future, then yield reductions should be expected within lower altitudes. The results indicate the potential for higher biomass production from cover crops, but CR2 is associated with almost 120 mm higher evapotranspiration compared to that of CR1 over a 5-year cycle for lowland stations in the future, which in the case of the rainfed agriculture could affect the long-term soil water balance. This could affect groundwater replenishment, especially for locations with fine textured soils, although the findings of this study highlight the potential for the soil water-holding capacity to buffer against the adverse weather conditions. • Models were applied for 2 rotations, 4 crops, 2 soils, 7 scenarios, 3 locations. • The potential for yield increase in the future is higher within good soils. • A higher annual actual evapotranspiration is expected in the future. • Results could be used in a wider context also for Central Europe. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
17. Improving crop modeling approaches for supporting farmers to cope with weather risks
- Author
-
Gornott, Christoph, Lotze-Campen, Hermann, and Rötter, Reimund Paul
- Subjects
630 Landwirtschaft und verwandte Bereiche ,Ertragsmodell ,ZC 11000 ,crop model ,Tansania ,ZA 57500 ,Tanzania ,ZC 22000 ,weather ,Germany ,Wetter ,ddc:630 ,Risiko ,Deutschland ,risk - Abstract
Sich ändernde Klima- und Wetterbedingungen in Verbindung mit einer begrenzt ausdehnbaren Ackerfläche werden den Druck auf Nahrungsmittelproduktionssysteme weiter erhöhen. Um dieser Herausforderung gerecht zu werden, ist eine Erhöhung und Stabilisierung der Ernteerträge unverzichtbar. Dies erfordert aber ein tieferes Verständnis der Einflussfaktoren, die auf die Ertragsvariabilität wirken. Diese Dissertation leistet einen Forschungsbeitrag zu Ertragsmodellen in Deutschland, Tansania und auf globaler Ebene. Dazu analysiere und kombiniere ich statistische und prozessbasierte Ertragsmodelle in fünf Schritten: (i) Zunächst entwickele ich einen statistischen Modellansatz, um den Einfluss von Wetter und agronomischem Management auf Winterweizenerträge in Deutschland zu separieren. (ii) Auf der Grundlage dieses Modells erweitere ich die statistischen Methoden und wende sie für Winterweizen und Silomais auf regionale Ebene an. (iii) Diesen erweiterten Modellansatz verwende ich daraufhin zum Testen einer Kreuz-Validierung um zukünftige Ertragsänderungen unter Klimawandel zu projizieren. (iv) Anschließend wird in einer globalen statistischen Anwendung dieses Modell für kurzfristige Ertragsprognosen getestet. (v) Schließlich kombiniere ich für das Fallbeispiel Mais in Tansania statistische und prozessbasierte Ertragsmodelle, um wetterbedingte Ertragsverluste von nicht-wetterbedingten Ertragsverlusten zu separieren. Als Ergebnis lässt sich zusammenfassen, dass der Anteil der wetterbedingten Ertragsvariabilität in Deutschland höher ist als in Tansania. Dementsprechend sind die Ertragsschwankungen in Tansania eher auf das agronomische Management und sozioökonomische Einflüsse zurückzuführen. Für beide Länder stelle ich fest, dass der Anteil der wetterbedingte Ertragsvariabilität auf aggregierter Ebene höher ist als auf regionaler Ebene. Der kombinierte statistisch-prozessbasierte Ansatz zur Bewertung von wetterbedingten Ertragsverlusten kann für Versicherungszwecke genutzt werden., Due to changing climate and weather patterns in combination with limitations to extend global arable land area, the pressure on food production systems will increase. To cope with this challenge, it will be indispensable to increase and stabilize crop yields. This requires, however, a deeper understanding of the factors influencing crop yield variability. This dissertation contributes to that research need as I further develop and apply crop models to assess regional wheat and maize yield variability in Germany, Tanzania and on a global scale. For this, I analyze and combine statistical and process-based crop models within five steps: (i) First, I develop a statistical crop modeling approach to decompose the influence of weather and agronomic management on winter wheat yields in Germany. (ii) Based on the first step, I expand the statistical methods and apply augmented models for winter wheat and silage maize on a disaggregated level. (iii) Then this model approach is used to investigate an out-of-sample cross validation to demonstrate the models’ capability to project future yield changes under climate change. (iv) In a global statistical application, this models’ capability of projecting yields is tested for short-term yield forecasts. (v) Finally, I combine statistical and process-based crop modeling to decompose weather-related maize yield losses from losses caused by non-weather factors for the case of Tanzania. Across these five steps, I find that the share of weather-related yield variability is higher in Germany than in Tanzania. Accordingly, crop yield variability in Tanzania is to a higher share attributable to agronomic management and socio-economic influences. For both countries, I find that the share of explained weather-related yield variability is higher on an aggregated level than on the regional level. Finally, this combined statistical-process-based approach can be used for assessing weather-related crop yield losses for insurance purposes.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.