47 results on '"Réjane Paumelle"'
Search Results
2. Endoplasmic reticulum stress actively suppresses hepatic molecular identity in damaged liver
- Author
-
Vanessa Dubois, Céline Gheeraert, Wouter Vankrunkelsven, Julie Dubois‐Chevalier, Hélène Dehondt, Marie Bobowski‐Gerard, Manjula Vinod, Francesco Paolo Zummo, Fabian Güiza, Maheul Ploton, Emilie Dorchies, Laurent Pineau, Alexis Boulinguiez, Emmanuelle Vallez, Eloise Woitrain, Eric Baugé, Fanny Lalloyer, Christian Duhem, Nabil Rabhi, Ronald E van Kesteren, Cheng‐Ming Chiang, Steve Lancel, Hélène Duez, Jean‐Sébastien Annicotte, Réjane Paumelle, Ilse Vanhorebeek, Greet Van den Berghe, Bart Staels, Philippe Lefebvre, and Jérôme Eeckhoute
- Subjects
liver injury ,NFIL3 ,PAR‐bZIP ,sepsis ,super‐enhancer ,Biology (General) ,QH301-705.5 ,Medicine (General) ,R5-920 - Abstract
Abstract Liver injury triggers adaptive remodeling of the hepatic transcriptome for repair/regeneration. We demonstrate that this involves particularly profound transcriptomic alterations where acute induction of genes involved in handling of endoplasmic reticulum stress (ERS) is accompanied by partial hepatic dedifferentiation. Importantly, widespread hepatic gene downregulation could not simply be ascribed to cofactor squelching secondary to ERS gene induction, but rather involves a combination of active repressive mechanisms. ERS acts through inhibition of the liver‐identity (LIVER‐ID) transcription factor (TF) network, initiated by rapid LIVER‐ID TF protein loss. In addition, induction of the transcriptional repressor NFIL3 further contributes to LIVER‐ID gene repression. Alteration to the liver TF repertoire translates into compromised activity of regulatory regions characterized by the densest co‐recruitment of LIVER‐ID TFs and decommissioning of BRD4 super‐enhancers driving hepatic identity. While transient repression of the hepatic molecular identity is an intrinsic part of liver repair, sustained disequilibrium between the ERS and LIVER‐ID transcriptional programs is linked to liver dysfunction as shown using mouse models of acute liver injury and livers from deceased human septic patients.
- Published
- 2020
- Full Text
- View/download PDF
3. NASH-related increases in plasma bile acid levels depend on insulin resistance
- Author
-
Guillaume Grzych, Oscar Chávez-Talavera, Amandine Descat, Dorothée Thuillier, An Verrijken, Mostafa Kouach, Vanessa Legry, Hélène Verkindt, Violeta Raverdy, Benjamin Legendre, Robert Caiazzo, Luc Van Gaal, Jean-Francois Goossens, Réjane Paumelle, Sven Francque, François Pattou, Joel T. Haas, Anne Tailleux, and Bart Staels
- Subjects
NASH ,NAFLD ,Bile acids ,Diabetes ,Insulin resistance ,Obesity ,Diseases of the digestive system. Gastroenterology ,RC799-869 - Abstract
Background & Aims: Plasma bile acids (BAs) have been extensively studied as pathophysiological actors in non-alcoholic steatohepatitis (NASH). However, results from clinical studies are often complicated by the association of NASH with type 2 diabetes (T2D), obesity, and insulin resistance (IR). Here, we sought to dissect the relationship between NASH, T2D, and plasma BA levels in a large patient cohort. Methods: Four groups of patients from the Biological Atlas of Severe Obesity (ABOS) cohort (Clinical Trials number NCT01129297) were included based on the presence or absence of histologically evaluated NASH with or without coincident T2D. Patients were matched for BMI, homeostatic model assessment 2 (HOMA2)-assessed IR, glycated haemoglobin, age, and gender. To study the effect of IR and BMI on the association of plasma BA and NASH, patients from the HEPADIP study were included. In both cohorts, fasting plasma BA concentrations were measured. Results: Plasma BA concentrations were higher in NASH compared with No-NASH patients both in T2D and NoT2D patients from the ABOS cohort. As we previously reported that plasma BA levels were unaltered in NASH patients of the HEPADIP cohort, we assessed the impact of BMI and IR on the association of NASH and BA on the combined BA datasets. Our results revealed that NASH-associated increases in plasma total cholic acid (CA) concentrations depend on the degree of HOMA2-assessed systemic IR, but not on β-cell function nor on BMI. Conclusions: Plasma BA concentrations are elevated only in those NASH patients exhibiting pronounced IR. Lay summary: Non-alcoholic steatohepatitis (NASH) is a progressive liver disease that frequently occurs in patients with obesity and type 2 diabetes. Reliable markers for the diagnosis of NASH are needed. Plasma bile acids have been proposed as NASH biomarkers. Herein, we found that plasma bile acids are only elevated in patients with NASH when significant insulin resistance is present, limiting their utility as NASH markers.
- Published
- 2021
- Full Text
- View/download PDF
4. Control of cell death/survival balance by the MET dependence receptor
- Author
-
Leslie Duplaquet, Catherine Leroy, Audrey Vinchent, Sonia Paget, Jonathan Lefebvre, Fabien Vanden Abeele, Steve Lancel, Florence Giffard, Réjane Paumelle, Gabriel Bidaux, Laurent Heliot, Laurent Poulain, Alessandro Furlan, and David Tulasne
- Subjects
apoptosis ,receptor tyrosine kinase ,calcium ,hepatocyte ,Medicine ,Science ,Biology (General) ,QH301-705.5 - Abstract
Control of cell death/survival balance is an important feature to maintain tissue homeostasis. Dependence receptors are able to induce either survival or cell death in presence or absence of their ligand, respectively. However, their precise mechanism of action and their physiological importance are still elusive for most of them including the MET receptor. We evidence that pro-apoptotic fragment generated by caspase cleavage of MET localizes to the mitochondria-associated membrane region. This fragment triggers a calcium transfer from endoplasmic reticulum to mitochondria, which is instrumental for the apoptotic action of the receptor. Knock-in mice bearing a mutation of MET caspase cleavage site highlighted that p40MET production is important for FAS-driven hepatocyte apoptosis, and demonstrate that MET acts as a dependence receptor in vivo. Our data shed light on new signaling mechanisms for dependence receptors’ control of cell survival/death balance, which may offer new clues for the pathophysiology of epithelial structures.
- Published
- 2020
- Full Text
- View/download PDF
5. Bone marrow p16INK4a-deficiency does not modulate obesity, glucose homeostasis or atherosclerosis development.
- Author
-
Kristiaan Wouters, Céline Cudejko, Marion J J Gijbels, Lucia Fuentes, Kadiombo Bantubungi, Jonathan Vanhoutte, Rebecca Dièvart, Charlotte Paquet, Emmanuel Bouchaert, Sarah Anissa Hannou, Florence Gizard, Anne Tailleux, Menno P J de Winther, Bart Staels, and Réjane Paumelle
- Subjects
Medicine ,Science - Abstract
ObjectiveA genomic region near the CDKN2A locus, encoding p16(INK4a), has been associated to type 2 diabetes and atherosclerotic vascular disease, conditions in which inflammation plays an important role. Recently, we found that deficiency of p16(INK4a) results in decreased inflammatory signaling in murine macrophages and that p16(INK4a) influences the phenotype of human adipose tissue macrophages. Therefore, we investigated the influence of immune cell p16(INK4a) on glucose tolerance and atherosclerosis in mice.Methods and resultsBone marrow p16(INK4a)-deficiency in C57Bl6 mice did not influence high fat diet-induced obesity nor plasma glucose and lipid levels. Glucose tolerance tests showed no alterations in high fat diet-induced glucose intolerance. While bone marrow p16(INK4a)-deficiency did not affect the gene expression profile of adipose tissue, hepatic expression of the alternative markers Chi3l3, Mgl2 and IL10 was increased and the induction of pro-inflammatory Nos2 was restrained on the high fat diet. Bone marrow p16(INK4a)-deficiency in low density lipoprotein receptor-deficient mice did not affect western diet-induced atherosclerotic plaque size or morphology. In line, plasma lipid levels remained unaffected and p16(INK4a)-deficient macrophages displayed equal cholesterol uptake and efflux compared to wild type macrophages.ConclusionBone marrow p16(INK4a)-deficiency does not affect plasma lipids, obesity, glucose tolerance or atherosclerosis in mice.
- Published
- 2012
- Full Text
- View/download PDF
6. The ubiquitin-like modifier FAT10 is upregulated during NASH and impairs PPAR-alpha activity
- Author
-
Ludivine Clavreul, Alexia Cotte, Lucie Bernard, Joel Haas, Nathalie Hennuyer, An Verrijken, Luc Van Gaal, Sven Francque, Guillaume Lassailly, Bart Staels, and Réjane Paumelle
- Subjects
Hepatology - Published
- 2022
- Full Text
- View/download PDF
7. Control of cell death/survival balance by the MET dependence receptor
- Author
-
Catherine Leroy, Réjane Paumelle, Florence Giffard, Fabien Vanden Abeele, Steve Lancel, Leslie Duplaquet, Laurent Héliot, Audrey Vinchent, Laurent Poulain, Jonathan Lefebvre, Alessandro Furlan, Gabriel Bidaux, David Tulasne, Sonia Paget, Mécanismes de tumorigenèse et thérapies ciblées, Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physiologie Cellulaire : Canaux ioniques, inflammation et cancer - U 1003 (PHYCELL), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille, Récepteurs Nucléaires, Maladies Métaboliques et Cardiovasculaires (RNMCD - U1011), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Unité de recherche interdisciplinaire pour la prévention et le traitement des cancers (ANTICIPE), CHU Caen, Normandie Université (NU)-Tumorothèque de Caen Basse-Normandie (TCBN)-Normandie Université (NU)-Tumorothèque de Caen Basse-Normandie (TCBN)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre Régional de Lutte contre le Cancer François Baclesse [Caen] (UNICANCER/CRLC), UNICANCER-Tumorothèque de Caen Basse-Normandie (TCBN)-Normandie Université (NU)-UNICANCER, Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut National Du Cancer : David Tulasne, Cancéropôle Nord-Ouest : David Tulasne, Région Hauts-de-France (CPER Photonics) : Alessandro Furlan, Ligue Contre le Cancer : David Tulasne, Institut National Du Cancer (SIRIC OncoLille) : David Tulasne, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Cytogénétique des Populations Animales (CPA), Ecole Nationale Vétérinaire de Toulouse (ENVT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Recherche Agronomique (INRA), Mécanismes de la Tumorigénèse et Thérapies Ciblées (M3T) - UMR 8161 (M3T), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Cardiovasculaire, métabolisme, diabétologie et nutrition (CarMeN), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Hospices Civils de Lyon (HCL), Leibniz Institute for Tropospheric Research (TROPOS), Site de Recherche Intégrée en Cancérologie (SIRIC-ONCOLille), Université de Lille, Sciences et Technologies-Université de Lille, Sciences Humaines et Sociales-Centre Régional de Lutte contre le Cancer Oscar Lambret [Lille] (UNICANCER/Lille), UNICANCER-Université Lille Nord de France (COMUE)-UNICANCER-Université Lille Nord de France (COMUE)-Cancéropole Nord-Ouest-Université de Lille, Droit et Santé-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Institut de biologie de Lille - IBL (IBLI), Université de Lille, Sciences et Technologies-Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Droit et Santé, Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-CHU Caen, Normandie Université (NU)-Tumorothèque de Caen Basse-Normandie (TCBN)-Tumorothèque de Caen Basse-Normandie (TCBN)-Centre Régional de Lutte contre le Cancer François Baclesse [Caen] (UNICANCER/CRLC), Normandie Université (NU)-UNICANCER-Tumorothèque de Caen Basse-Normandie (TCBN)-UNICANCER-Institut National de la Santé et de la Recherche Médicale (INSERM), Récepteurs Nucléaires, Maladies Métaboliques et Cardiovasculaires - U1011 (RNMCD), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Vétérinaire de Toulouse (ENVT), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Service de neurochirurgie [Rennes], Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Hôpital Pontchaillou-CHU Pontchaillou [Rennes], Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche Interdisciplinaire [Villeneuve d'Ascq] (IRI), and Université de Lille, Sciences et Technologies-Université de Lille, Droit et Santé-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,[SDV]Life Sciences [q-bio] ,declared ,Dependence receptor ,Endoplasmic Reticulum ,Receptor tyrosine kinase ,Mice ,0302 clinical medicine ,Membrane region ,cell biology ,Biology (General) ,Receptor ,Cells, Cultured ,Tissue homeostasis ,Cell Death ,biology ,Chemistry ,General Neuroscience ,apoptosis ,General Medicine ,Proto-Oncogene Proteins c-met ,Mitochondria ,Cell biology ,Protein Transport ,030220 oncology & carcinogenesis ,Medicine ,medicine.symptom ,Research Article ,Programmed cell death ,QH301-705.5 ,Cell Survival ,Science ,Mice, Transgenic ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,medicine ,hepatocyte ,Animals ,Humans ,mouse ,calcium ,General Immunology and Microbiology ,030104 developmental biology ,Mechanism of action ,Apoptosis ,Proteolysis ,biology.protein ,receptor tyrosine kinase - Abstract
International audience; Control of cell death/survival balance is an important feature to maintain tissue homeostasis. Dependence receptors are able to induce either survival or cell death in presence or absence of their ligand, respectively. However, their precise mechanism of action and their physiological importance are still elusive for most of them including the MET receptor. We evidence that pro-apoptotic fragment generated by caspase cleavage of MET localizes to the mitochondria-associated membrane region. This fragment triggers a calcium transfer from endoplasmic reticulum to mitochondria, which is instrumental for the apoptotic action of the receptor. Knock-in mice bearing a mutation of MET caspase cleavage site highlighted that p40MET production is important for FAS-driven hepatocyte apoptosis, and demonstrate that MET acts as a dependence receptor in vivo. Our data shed light on new signaling mechanisms for dependence receptors' control of cell survival/death balance, which may offer new clues for the pathophysiology of epithelial structures.
- Published
- 2020
- Full Text
- View/download PDF
8. Author response: Control of cell death/survival balance by the MET dependence receptor
- Author
-
Réjane Paumelle, Florence Giffard, Laurent Poulain, Catherine Leroy, Gabriel Bidaux, David Tulasne, Alessandro Furlan, Leslie Duplaquet, Fabien Vanden Abeele, Audrey Vinchent, Laurent Héliot, Sonia Paget, Jonathan Lefebvre, and Steve Lancel
- Subjects
medicine.medical_specialty ,Programmed cell death ,Endocrinology ,Balance (accounting) ,business.industry ,Internal medicine ,Medicine ,Dependence receptor ,Response control ,business - Published
- 2020
- Full Text
- View/download PDF
9. Plasma BCAA Changes in Patients With NAFLD Are Sex Dependent
- Author
-
Luisa Vonghia, Sven Francque, Réjane Paumelle, Luc Van Gaal, Marie Joncquel-Chevalier Curt, Jonas Weyler, Guillaume Grzych, Bart Staels, Anne Tailleux, Joel T. Haas, Eveline Dirinck, Marie-Adélaïde Bout, and An Verrijken
- Subjects
Adult ,Blood Glucose ,Male ,medicine.medical_specialty ,Cross-sectional study ,Endocrinology, Diabetes and Metabolism ,Clinical Biochemistry ,Context (language use) ,Biochemistry ,Body Mass Index ,03 medical and health sciences ,0302 clinical medicine ,Endocrinology ,Insulin resistance ,Sex Factors ,Non-alcoholic Fatty Liver Disease ,Tandem Mass Spectrometry ,Internal medicine ,Nonalcoholic fatty liver disease ,Medicine ,Humans ,Insulin ,Obesity ,030304 developmental biology ,2. Zero hunger ,0303 health sciences ,business.industry ,Biochemistry (medical) ,Confounding ,nutritional and metabolic diseases ,Middle Aged ,medicine.disease ,Cross-Sectional Studies ,Cohort ,Homeostatic model assessment ,030211 gastroenterology & hepatology ,Female ,Human medicine ,Insulin Resistance ,business ,Body mass index ,Amino Acids, Branched-Chain - Abstract
Context Plasma branched chain amino acid (BCAA) concentrations correlate positively with body mass index (BMI), measures of insulin resistance (IR), and severity of nonalcoholic fatty liver disease (NAFLD). Moreover, plasma BCAA concentrations also differ between the sexes, which display different susceptibilities to cardio-metabolic diseases. Objective Assess whether plasma BCAA concentrations associate with NAFLD severity independently of BMI, IR, and sex. Patients Patients visiting the obesity clinic of the Antwerp University Hospital were consecutively recruited from 2006 to 2014. Design and Setting A cross-sectional study cohort of 112 obese patients (59 women and 53 men) was divided into 4 groups according to NAFLD severity. Groups were matched for sex, age, BMI, homeostatic model assessment of IR, and hemoglobin A1c. Main Outcome Measures Fasting plasma BCAA concentrations were measured by tandem mass spectrometry using the aTRAQ™ method. Results In the study cohort, a modest positive correlation was observed between plasma BCAA concentrations and NAFLD severity, as well as a strong effect of sex on plasma BCAA levels. Subgroup analysis by sex revealed that while plasma BCAA concentrations increased with severity of NAFLD in women, they tended to decrease in men. Additionally, only women displayed significantly increased plasma BCAAs with increasing fibrosis. Conclusion Plasma BCAA concentrations display sex-dimorphic changes with increasing severity of NAFLD, independently of BMI, IR, and age. Additionally, plasma BCAA are associated with significant fibrosis in women, but not in men. These results highlight the importance of a careful consideration of sex as a major confounding factor in cross-sectional studies of NAFLD.
- Published
- 2019
10. Hepatic PPARα is critical in the metabolic adaptation to sepsis
- Author
-
Nathalie Hennuyer, Bruno Derudas, Fanny Lalloyer, Céline Gheeraert, Vanessa Legry, Emmanuelle Vallez, Emmanuel Bouchaert, Hélène Dehondt, Bart Staels, Yann Deleye, Dieter Mesotten, Steve Lancel, Greet Van den Berghe, Céline Cudejko, Hervé Guillou, Réjane Paumelle, Sébastien Fleury, Alexandra Montagner, Kristiaan Wouters, Anne Tailleux, Joel T. Haas, Lies Langouche, Jonathan Vanhoutte, Eric Baugé, Pierre Gourdy, David Dombrowicz, Sarra Smati, Walter Wahli, Arnaud Polizzi, Sarah Anissa Hannou, Récepteurs nucléaires, maladies cardiovasculaires et diabète - U 1011 (RNMCD), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Institut National de la Santé et de la Recherche Médicale (INSERM), Department of Intensive care Medicine, Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Maastricht University [Maastricht], Toxicologie Intégrative & Métabolisme (ToxAlim-TIM), ToxAlim (ToxAlim), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Vétérinaire de Toulouse (ENVT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole d'Ingénieurs de Purpan (INPT - EI Purpan), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Recherche Agronomique (INRA), Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Integrative Genomics - Institute of Bioinformatics, Génopode (CIG), Swiss Institute of Bioinformatics [Lausanne] (SIB), Université de Lausanne (UNIL)-Université de Lausanne (UNIL), Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), European Project: 694717,H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) ,ImmunoBile(2016), Récepteurs nucléaires, maladies cardiovasculaires et diabète (EGID), Université de Lille, Droit et Santé-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Nanyang Technological University [Singapour], Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Lausanne = University of Lausanne (UNIL)-Université de Lausanne = University of Lausanne (UNIL), Derudas, Marie-Hélène, Bile acid, immune-metabolism, lipid and glucose homeostasis - ImmunoBile - - H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) 2016-09-01 - 2021-08-31 - 694717 - VALID, Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Vétérinaire de Toulouse (ENVT), Université Fédérale Toulouse Midi-Pyrénées-Ecole d'Ingénieurs de Purpan (INPT - EI Purpan), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Interne Geneeskunde, RS: CARIM - R3 - Vascular biology, RS: Carim - V01 Vascular complications of diabetes and metabolic syndrome, and Lee Kong Chian School of Medicine (LKCMedicine)
- Subjects
0301 basic medicine ,BACTERIAL ,Peroxisome proliferator-activated receptor ,nuclear receptors ,PROTECTS ,sepsis ,Mice ,0302 clinical medicine ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Nuclear receptors ,Ketogenesis ,GENE-EXPRESSION ,chemistry.chemical_classification ,Fatty Acids ,INTENSIVE INSULIN THERAPY ,Bacterial Infections ,Adaptation, Physiological ,3. Good health ,Liver ,SURVIVAL ,[SDV.MHEP.MI] Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,030211 gastroenterology & hepatology ,lipids (amino acids, peptides, and proteins) ,hepatocytes ,medicine.symptom ,medicine.medical_specialty ,FATTY-ACID OXIDATION ,Inflammation ,Article ,Sepsis ,03 medical and health sciences ,Internal medicine ,medicine ,[SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Animals ,Humans ,Medicine [Science] ,PPAR alpha ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,TOLERANCE ,Hepatology ,business.industry ,Lipid metabolism ,Lipid signaling ,medicine.disease ,Mice, Inbred C57BL ,030104 developmental biology ,Endocrinology ,Glucose ,Metabolism ,chemistry ,PROLIFERATOR-ACTIVATED RECEPTORS ,inflammation ,Metabolic control analysis ,Hepatocytes ,Steatosis ,business ,metabolism - Abstract
Background & Aims: Although the role of inflammation to combat infection is known, the contribution of metabolic changes in response to sepsis is poorly understood. Sepsis induces the release of lipid mediators, many of which activate nuclear receptors such as the peroxisome proliferator-activated receptor (PPAR)alpha, which controls both lipid metabolism and inflammation. We aimed to elucidate the previously unknown role of hepatic PPAR alpha in the response to sepsis.Methods: Sepsis was induced by intraperitoneal injection of Escherichia coli in different models of cell-specific PPAR alpha-deficiency and their controls. The systemic and hepatic metabolic response was analyzed using biochemical, transcriptomic and functional assays. PPAR alpha expression was analyzed in livers from elective surgery and critically ill patients and correlated with hepatic gene expression and blood parameters.Results: Both whole body and non-hematopoietic PPAR alpha-deficiency in mice decreased survival upon bacterial infection. Livers of septic PPAR alpha-deficient mice displayed an impaired metabolic shift from glucose to lipid utilization resulting in more severe hypoglycemia, impaired induction of hyperketonemia and increased steatosis due to lower expression of genes involved in fatty acid catabolism and ketogenesis. Hepatocyte-specific deletion of PPAR alpha impaired the metabolic response to sepsis and was sufficient to decrease survival upon bacterial infection. Hepatic PPAR alpha expression was lower in critically ill patients and correlated positively with expression of lipid metabolism genes, but not with systemic inflammatory markers.Conclusion: During sepsis, PPAR alpha-deficiency in hepatocytes is deleterious as it impairs the adaptive metabolic shift from glucose to FA utilization. Metabolic control by PPAR alpha in hepatocytes plays a key role in the host defense against infection.Lay summary: As the main cause of death in critically ill patients, sepsis remains a major health issue lacking efficacious therapies. While current clinical literature suggests an important role for inflammation, metabolic aspects of sepsis have mostly been overlooked. Here, we show that mice with an impaired metabolic response, due to deficiency of the nuclear receptor PPAR alpha in the liver, exhibit enhanced mortality upon bacterial infection despite a similar inflammatory response, suggesting that metabolic interventions may be a viable strategy for improving sepsis outcomes. (C) 2019 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
- Published
- 2019
- Full Text
- View/download PDF
11. PPARα gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis
- Author
-
Réjane Paumelle, Bruno Derudas, Janne Prawitt, Luc Van Gaal, Wim Van Hul, Bart Staels, Peter Michielsen, Philippe Lefebvre, An Verrijken, Eric Van Marck, Sven Francque, Guy Hubens, Marja-Riitta Taskinen, Ilse Mertens, and Sandrine Caron
- Subjects
Adult ,Male ,medicine.medical_specialty ,Adolescent ,Biopsy ,Peroxisome proliferator-activated receptor ,Biology ,Real-Time Polymerase Chain Reaction ,Young Adult ,Animal data ,Insulin resistance ,Non-alcoholic Fatty Liver Disease ,Internal medicine ,medicine ,Humans ,PPAR alpha ,Prospective Studies ,Aged ,chemistry.chemical_classification ,Hepatology ,medicine.diagnostic_test ,Adiponectin ,Middle Aged ,medicine.disease ,Endocrinology ,Gene Expression Regulation ,Liver ,chemistry ,Liver biopsy ,RNA ,Female ,Human medicine ,Steatosis ,Steatohepatitis ,Metabolic syndrome ,Follow-Up Studies - Abstract
Background & Aims Peroxisome proliferator-activated receptors (PPARs) have been implicated in non-alcoholic steatohepatitis (NASH) pathogenesis, mainly based on animal data. Gene expression data in NASH patients are scarce. We studied liver PPARα, β/δ, and γ expression in a large cohort of obese patients assessed for presence of NAFLD at baseline and 1year follow-up. Methods Patients presented to the obesity clinic underwent a hepatic work-up. If NAFLD was suspected, liver biopsy was performed. Gene expression was studied by mRNA quantification. Patients were reassessed after 1year. Results 125 patients were consecutively included in the study, of which 85 patients had paired liver biopsy taken at 1year of follow-up. Liver PPARα expression negatively correlated with the presence of NASH ( p =0.001) and with severity of steatosis ( p =0.003), ballooning ( p =0.001), NASH activity score ( p =0.008) and fibrosis ( p =0.003). PPARα expression was positively correlated to adiponectin (R 2 =0.345, p =0.010) and inversely correlated to visceral fat (R 2 =−0.343, p 2 =−0.411, p 2 =−0.233, p =0.012). Liver PPARβ/δ and PPARγ expression did not correlate with any histological feature nor with glucose metabolism or serum lipids. At 1year, correlation of PPARα expression with liver histology was confirmed. In longitudinal analysis, an increase in expression of PPARα and its target genes was significantly associated with histological improvement ( p =0.008). Conclusion Human liver PPARα gene expression negatively correlates with NASH severity, visceral adiposity and insulin resistance and positively with adiponectin. Histological improvement is associated with an increase in expression of PPARα and its target genes. These data might suggest that PPARα is a potential therapeutic target in NASH.
- Published
- 2015
- Full Text
- View/download PDF
12. Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: what have we learned from GWASs?
- Author
-
Kristiaan Wouters, Bart Staels, Sarah Anissa Hannou, Réjane Paumelle, Interne Geneeskunde, and RS: CARIM - R3 - Vascular biology
- Subjects
Endocrinology, Diabetes and Metabolism ,Locus (genetics) ,Single-nucleotide polymorphism ,Genome-wide association study ,Coronary Artery Disease ,Disease ,Biology ,Polymorphism, Single Nucleotide ,CDKN2B ,CDKN2A ,Mice ,Endocrinology ,cardiovascular disease ,GWAS ,Animals ,Humans ,ANRIL ,Genetic Predisposition to Disease ,Cyclin-Dependent Kinase Inhibitor p16 ,Cyclin-Dependent Kinase Inhibitor p15 ,Genetic association ,Mice, Knockout ,Genetics ,Genomics ,Diabetes Mellitus, Type 2 ,Genetic Loci ,type 2 diabetes ,Chromosomes, Human, Pair 9 ,Functional genomics ,Genome-Wide Association Study - Abstract
Genome-wide association studies (GWASs) provide an unprecedented opportunity to examine, on a large scale, the association of common genetic variants with complex diseases like type 2 diabetes (T2D) and cardiovascular disease (CVD), thus allowing the identification of new potential disease loci. Using this approach, numerous studies have associated SNPs on chromosome 9p21.3 situated near the cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) locus with the risk for coronary artery disease (CAD) and T2D. However, identifying the function of the nearby gene products (CDKN2A/B and ANRIL) in the pathophysiology of these conditions requires functional genomic studies. We review the current knowledge, from studies using human and mouse models, describing the function of CDKN2A/B gene products, which may mechanistically link the 9p21.3 risk locus with CVD and diabetes.
- Published
- 2015
- Full Text
- View/download PDF
13. The tumour suppressor CDKN2A/p16(INK4a) regulates adipogenesis and bone marrow-dependent development of perivascular adipose tissue
- Author
-
Emmanuelle Vallez, Augustin Coisne, François Pattou, Casper G. Schalkwijk, Sarah Anissa Hannou, David Montaigne, Jonathan Vanhoutte, Réjane Paumelle, Bart Staels, Madjid Tagzirt, Emmanuel Bouchaert, Yann Deleye, Kristiaan Wouters, Christian Duhem, Xavier Marechal, Bruno Derudas, Interne Geneeskunde, RS: CARIM - R3.01 - Vascular complications of diabetes and the metabolic syndrome, and MUMC+: DA KG Polikliniek (9)
- Subjects
0301 basic medicine ,medicine.medical_specialty ,FGF21 ,bone marrow ,POLARIZATION ,CDK4 ,Endocrinology, Diabetes and Metabolism ,Adipose tissue macrophages ,Adipose tissue ,White adipose tissue ,DISEASE ,adipogenesis ,03 medical and health sciences ,CDKN2A ,0302 clinical medicine ,Internal medicine ,Precursor cell ,perivascular adipose tissue ,Internal Medicine ,medicine ,LOCUS ,MACROPHAGES ,neoplasms ,2. Zero hunger ,business.industry ,PPAR-GAMMA ACTIVATION ,030104 developmental biology ,Endocrinology ,medicine.anatomical_structure ,Adipogenesis ,030220 oncology & carcinogenesis ,CELLS ,Bone marrow ,Stem cell ,Cardiology and Cardiovascular Medicine ,business ,p16(INK4a) - Abstract
The genomic CDKN2A/B locus, encoding p16(INK4a) among others, is linked to an increased risk for cardiovascular disease and type 2 diabetes. Obesity is a risk factor for both cardiovascular disease and type 2 diabetes. p16(INK4a) is a cell cycle regulator and tumour suppressor. Whether it plays a role in adipose tissue formation is unknown. p16(INK4a) knock-down in 3T3/L1 preadipocytes or p16(INK4a) deficiency in mouse embryonic fibroblasts enhanced adipogenesis, suggesting a role for p16(INK4a) in adipose tissue formation. p16(INK4a)-deficient mice developed more epicardial adipose tissue in response to the adipogenic peroxisome proliferator activated receptor gamma agonist rosiglitazone. Additionally, adipose tissue around the aorta from p16(INK4a)-deficient mice displayed enhanced rosiglitazone-induced gene expression of adipogenic markers and stem cell antigen, a marker of bone marrow-derived precursor cells. Mice transplanted with p16(INK4a)-deficient bone marrow had more epicardial adipose tissue compared to controls when fed a high-fat diet. In humans, p16(INK4a) gene expression was enriched in epicardial adipose tissue compared to other adipose tissue depots. Moreover, epicardial adipose tissue from obese humans displayed increased expression of stem cell antigen compared to lean controls, supporting a bone marrow origin of epicardial adipose tissue. These results show that p16(INK4a) modulates epicardial adipose tissue development, providing a potential mechanistic link between the genetic association of the CDKN2A/B locus and cardiovascular disease risk.
- Published
- 2017
14. The tumour suppressor CDKN2A/p16
- Author
-
Kristiaan, Wouters, Yann, Deleye, Sarah A, Hannou, Jonathan, Vanhoutte, Xavier, Maréchal, Augustin, Coisne, Madjid, Tagzirt, Bruno, Derudas, Emmanuel, Bouchaert, Christian, Duhem, Emmanuelle, Vallez, Casper G, Schalkwijk, François, Pattou, David, Montaigne, Bart, Staels, and Réjane, Paumelle
- Subjects
Adult ,Male ,bone marrow ,Genotype ,Transfection ,adipogenesis ,Rosiglitazone ,Mice ,CDKN2A ,p16INK4a ,3T3-L1 Cells ,perivascular adipose tissue ,Adipocytes ,Animals ,Cyclin-Dependent Kinase Inhibitor p18 ,Humans ,Obesity ,neoplasms ,Cyclin-Dependent Kinase Inhibitor p16 ,Adiposity ,Aged ,Bone Marrow Transplantation ,Mice, Knockout ,Stem Cells ,Original Articles ,Middle Aged ,Mice, Inbred C57BL ,PPAR gamma ,Disease Models, Animal ,Phenotype ,Adipose Tissue ,Receptors, LDL ,Case-Control Studies ,Female ,RNA Interference ,Thiazolidinediones ,Signal Transduction - Abstract
The genomic CDKN2A/B locus, encoding p16INK4a among others, is linked to an increased risk for cardiovascular disease and type 2 diabetes. Obesity is a risk factor for both cardiovascular disease and type 2 diabetes. p16INK4a is a cell cycle regulator and tumour suppressor. Whether it plays a role in adipose tissue formation is unknown. p16INK4a knock-down in 3T3/L1 preadipocytes or p16INK4a deficiency in mouse embryonic fibroblasts enhanced adipogenesis, suggesting a role for p16INK4a in adipose tissue formation. p16INK4a-deficient mice developed more epicardial adipose tissue in response to the adipogenic peroxisome proliferator activated receptor gamma agonist rosiglitazone. Additionally, adipose tissue around the aorta from p16INK4a-deficient mice displayed enhanced rosiglitazone-induced gene expression of adipogenic markers and stem cell antigen, a marker of bone marrow-derived precursor cells. Mice transplanted with p16INK4a-deficient bone marrow had more epicardial adipose tissue compared to controls when fed a high-fat diet. In humans, p16INK4a gene expression was enriched in epicardial adipose tissue compared to other adipose tissue depots. Moreover, epicardial adipose tissue from obese humans displayed increased expression of stem cell antigen compared to lean controls, supporting a bone marrow origin of epicardial adipose tissue. These results show that p16INK4a modulates epicardial adipose tissue development, providing a potential mechanistic link between the genetic association of the CDKN2A/B locus and cardiovascular disease risk.
- Published
- 2017
15. The logic of transcriptional regulator recruitment architecture at cis-regulatory modules controlling liver functions
- Author
-
Jason S. Carroll, Nathalie Hennuyer, Bruno Derudas, Eric Baugé, Parisa Mazrooei, Aurélien A. Sérandour, Julie Dubois-Chevalier, Jérôme Eeckhoute, Bart Staels, Guillemette Marot, Philippe Lefebvre, Mathieu Lupien, Céline Gheeraert, Vanessa Dubois, Penderia Guillaume, Hélène Dehondt, Réjane Paumelle, Claire Mazuy, Université de Lille, Droit et Santé, Récepteurs nucléaires, maladies cardiovasculaires et diabète - U 1011 (RNMCD), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Department of Medical Biophysics (MBP), University of Toronto, University of Cambridge [UK] (CAM), MOdel for Data Analysis and Learning (MODAL), Laboratoire Paul Painlevé (LPP), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Evaluation des technologies de santé et des pratiques médicales - ULR 2694 (METRICS), Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-École polytechnique universitaire de Lille (Polytech Lille), European Project: 694717,H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) ,ImmunoBile(2016), Carroll, Jason [0000-0003-3643-0080], Apollo - University of Cambridge Repository, Marot, Guillemette, Bile acid, immune-metabolism, lipid and glucose homeostasis - ImmunoBile - - H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) 2016-09-01 - 2021-08-31 - 694717 - VALID, CHU Lille, INSERM, Inserm, Université de Lille, Récepteurs nucléaires, Maladies Cardiovasculaires et Diabète (EGID) - U1011, Récepteurs nucléaires, maladies cardiovasculaires et diabète - U 1011 [RNMCD], METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694, Department of Medical Biophysics [MBP], University of Cambridge [UK] [CAM], Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS], Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire Paul Painlevé - UMR 8524 (LPP), and Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-École polytechnique universitaire de Lille (Polytech Lille)
- Subjects
0301 basic medicine ,Transcription, Genetic ,Cytoplasmic and Nuclear/deficiency ,[SDV]Life Sciences [q-bio] ,Receptors, Cytoplasmic and Nuclear ,Mice ,0302 clinical medicine ,[STAT.ML]Statistics [stat]/Machine Learning [stat.ML] ,Receptors ,Transcriptional regulation ,Regulatory Elements, Transcriptional ,Genetics (clinical) ,Epigenomics ,Cis-regulatory module ,Regulation of gene expression ,Mice, Knockout ,PPAR alpha/deficiency ,[STAT.ME] Statistics [stat]/Methodology [stat.ME] ,[SDV.BIBS] Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,Genome ,Genomics ,[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,[SDV] Life Sciences [q-bio] ,Liver ,Transcriptional ,Transcription ,[STAT.ME]Statistics [stat]/Methodology [stat.ME] ,Algorithms ,Liver/metabolism ,Knockout ,Computational biology ,PPAR alpha/genetics ,Biology ,03 medical and health sciences ,Genetic ,Genetics ,Animals ,PPAR alpha ,Enhancer ,Gene ,Gene Expression Profiling ,fungi ,Regulatory Elements ,[STAT.ML] Statistics [stat]/Machine Learning [stat.ML] ,Genomics/methods ,Gene expression profiling ,030104 developmental biology ,Gene Expression Regulation ,Cytoplasmic and Nuclear/genetics ,030217 neurology & neurosurgery - Abstract
Control of gene transcription relies on concomitant regulation by multiple transcriptional regulators (TRs). However, how recruitment of a myriad of TRs is orchestrated at cis-regulatory modules (CRMs) to account for coregulation of specific biological pathways is only partially understood. Here, we have used mouse liver CRMs involved in regulatory activities of the hepatic TR, NR1H4 (FXR; farnesoid X receptor), as our model system to tackle this question. Using integrative cistromic, epigenomic, transcriptomic, and interactomic analyses, we reveal a logical organization where trans-regulatory modules (TRMs), which consist of subsets of preferentially and coordinately corecruited TRs, assemble into hierarchical combinations at hepatic CRMs. Different combinations of TRMs add to a core TRM, broadly found across the whole landscape of CRMs, to discriminate promoters from enhancers. These combinations also specify distinct sets of CRM differentially organized along the genome and involved in regulation of either housekeeping/cellular maintenance genes or liver-specific functions. In addition to these TRMs which we define as obligatory, we show that facultative TRMs, such as one comprising core circadian TRs, are further recruited to selective subsets of CRMs to modulate their activities. TRMs transcend TR classification into ubiquitous versus liver-identity factors, as well as TR grouping into functional families. Hence, hierarchical superimpositions of obligatory and facultative TRMs bring about independent transcriptional regulatory inputs defining different sets of CRMs with logical connection to regulation of specific gene sets and biological pathways. Altogether, our study reveals novel principles of concerted transcriptional regulation by multiple TRs at CRMs.
- Published
- 2017
- Full Text
- View/download PDF
16. Bile Acid Alterations Are Associated With Insulin Resistance, but Not With NASH, in Obese Subjects
- Author
-
Philippe Lefebvre, Sven Francque, Vanessa Legry, Mostafa Kouach, An Verrijken, Emmanuelle Vallez, Sophie Lestavel, Luc Van Gaal, Sandrine Caron, Anne Tailleux, Joel T. Haas, Eveline Dirinck, Oscar Chávez-Talavera, Réjane Paumelle, Ann Verhaegen, Bart Staels, and Luisa Vonghia
- Subjects
Adult ,Male ,0301 basic medicine ,medicine.medical_specialty ,medicine.drug_class ,Endocrinology, Diabetes and Metabolism ,Clinical Biochemistry ,Context (language use) ,Biochemistry ,Energy homeostasis ,Bile Acids and Salts ,03 medical and health sciences ,0302 clinical medicine ,Endocrinology ,Insulin resistance ,Non-alcoholic Fatty Liver Disease ,Internal medicine ,medicine ,Vitamin D and neurology ,Humans ,Obesity ,2. Zero hunger ,Bile acid ,Chemistry ,Biochemistry (medical) ,Metabolism ,Middle Aged ,medicine.disease ,030104 developmental biology ,Gene Expression Regulation ,Liver ,Case-Control Studies ,Female ,030211 gastroenterology & hepatology ,Human medicine ,Insulin Resistance ,Body mass index ,Homeostasis - Abstract
Context: Bile acids (BAs) are signaling molecules controlling energy homeostasis that can be both toxic and protective for the liver. BA alterations have been reported in obesity, insulin resistance (IR), and nonalcoholic steatohepatitis (NASH). However, whether BA alterations contribute to NASH independently of the metabolic status is unclear. Objective: To assess BA alterations associated with NASH independently of body mass index and IR. Design and Setting: Patients visiting the obesity clinic of the Antwerp University Hospital (a tertiary referral facility) were recruited from 2006 to 2014. Patients: Obese patients with biopsy-proven NASH (n = 32) and healthy livers (n = 26) were matched on body mass index and homeostasis model assessment of IR. Main Outcome Measures: Transcriptomic analyses were performed on liver biopsies. Plasma concentrations of 21 BA species and 7 alpha-hydroxy-4-cholesten-3-one, a marker of BA synthesis, were determined by liquid chromatography-tandem mass spectrometry. Plasma fibroblast growth factor 19 was measured by enzyme-linked immunosorbent assay. Results: Plasma BA concentrations did not correlate with any hepatic lesions, whereas, as previously reported, primary BA strongly correlated with IR. Transcriptomic analyses showed unaltered hepatic BA metabolism in NASH patients. In line, plasma 7 alpha-hydroxy-4-cholesten-3-one was unchanged in NASH. Moreover, no sign of hepaticBAaccumulation or activation of BA receptors-farnesoid X, pregnane X, and vitamin Dreceptors-was found. Finally, plasma fibroblast growth factor 19, secondary-to-primary BA, and free-to-conjugated BA ratios were similar, suggesting unaltered intestinal BA metabolism and signaling. Conclusions: In obese patients, BA alterations are related to the metabolic phenotype associated with NASH, especially IR, but not liver necroinflammation.
- Published
- 2017
- Full Text
- View/download PDF
17. Cdkn2a/p16Ink4a Regulates Fasting-Induced Hepatic Gluconeogenesis Through the PKA-CREB-PGC1α Pathway
- Author
-
Emmanuelle Vallez, Morgane Baron, Anthony Lucas, Anne Tailleux, Bart Staels, Sarah-Anissa Hannou, Emmanuel Bouchaert, Sandrine Caron-Houde, Réjane Paumelle, and Kadiombo Bantubungi
- Subjects
medicine.medical_specialty ,Endocrinology, Diabetes and Metabolism ,Type 2 diabetes ,CREB ,Cell Line ,Pathogenesis ,Mice ,Insulin resistance ,Downregulation and upregulation ,Internal medicine ,Internal Medicine ,medicine ,Animals ,Cyclic AMP Response Element-Binding Protein ,neoplasms ,Cyclin-Dependent Kinase Inhibitor p16 ,Mice, Knockout ,biology ,Gluconeogenesis ,Fasting ,Cell cycle ,medicine.disease ,Cyclic AMP-Dependent Protein Kinases ,Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ,Endocrinology ,Liver ,biology.protein ,Phosphorylation ,Homeostasis ,Signal Transduction ,Transcription Factors - Abstract
Type 2 diabetes (T2D) is hallmarked by insulin resistance, impaired insulin secretion, and increased hepatic glucose production. The worldwide increasing prevalence of T2D calls for efforts to understand its pathogenesis in order to improve disease prevention and management. Recent genome-wide association studies have revealed strong associations between the CDKN2A/B locus and T2D risk. The CDKN2A/B locus contains genes encoding cell cycle inhibitors, including p16Ink4a, which have not yet been implicated in the control of hepatic glucose homeostasis. Here, we show that p16Ink4a deficiency enhances fasting-induced hepatic glucose production in vivo by increasing the expression of key gluconeogenic genes. p16Ink4a downregulation leads to an activation of PKA-CREB-PGC1α signaling through increased phosphorylation of PKA regulatory subunits. Taken together, these results provide evidence that p16Ink4a controls fasting glucose homeostasis and could as such be involved in T2D development.
- Published
- 2014
- Full Text
- View/download PDF
18. The logic of transcriptional regulator recruitment architecture at
- Author
-
Julie, Dubois-Chevalier, Vanessa, Dubois, Hélène, Dehondt, Parisa, Mazrooei, Claire, Mazuy, Aurélien A, Sérandour, Céline, Gheeraert, Penderia, Guillaume, Eric, Baugé, Bruno, Derudas, Nathalie, Hennuyer, Réjane, Paumelle, Guillemette, Marot, Jason S, Carroll, Mathieu, Lupien, Bart, Staels, Philippe, Lefebvre, and Jérôme, Eeckhoute
- Subjects
Mice, Knockout ,Genome ,Transcription, Genetic ,Gene Expression Profiling ,Research ,fungi ,Receptors, Cytoplasmic and Nuclear ,Genomics ,Mice ,Gene Expression Regulation ,Liver ,Animals ,PPAR alpha ,Regulatory Elements, Transcriptional ,Algorithms - Abstract
Control of gene transcription relies on concomitant regulation by multiple transcriptional regulators (TRs). However, how recruitment of a myriad of TRs is orchestrated at cis-regulatory modules (CRMs) to account for coregulation of specific biological pathways is only partially understood. Here, we have used mouse liver CRMs involved in regulatory activities of the hepatic TR, NR1H4 (FXR; farnesoid X receptor), as our model system to tackle this question. Using integrative cistromic, epigenomic, transcriptomic, and interactomic analyses, we reveal a logical organization where trans-regulatory modules (TRMs), which consist of subsets of preferentially and coordinately corecruited TRs, assemble into hierarchical combinations at hepatic CRMs. Different combinations of TRMs add to a core TRM, broadly found across the whole landscape of CRMs, to discriminate promoters from enhancers. These combinations also specify distinct sets of CRM differentially organized along the genome and involved in regulation of either housekeeping/cellular maintenance genes or liver-specific functions. In addition to these TRMs which we define as obligatory, we show that facultative TRMs, such as one comprising core circadian TRs, are further recruited to selective subsets of CRMs to modulate their activities. TRMs transcend TR classification into ubiquitous versus liver-identity factors, as well as TR grouping into functional families. Hence, hierarchical superimpositions of obligatory and facultative TRMs bring about independent transcriptional regulatory inputs defining different sets of CRMs with logical connection to regulation of specific gene sets and biological pathways. Altogether, our study reveals novel principles of concerted transcriptional regulation by multiple TRs at CRMs.
- Published
- 2016
19. Chromatin recruitment of activated AMPK drives fasting response genes co-controlled by GR and PPARα
- Author
-
Dariusz Ratman, Lode De Cauwer, Nathalie Hennuyer, Réjane Paumelle, Michał Pawlak, Nadia Bougarne, Sandrine Caron, Viacheslav Mylka, Claude Libert, Karolien De Bosscher, Bart Staels, Mark H. Rider, Jonathan Thommis, Jan Tavernier, Sam Lievens, UCL - SSS/DDUV - Institut de Duve, and UCL - SSS/DDUV/PHOS - Protein phosphorylation
- Subjects
0301 basic medicine ,RECEPTOR-ALPHA ,NF-KAPPA-B ,Peroxisome proliferator-activated receptor ,ENERGY SENSOR ,0302 clinical medicine ,Glucocorticoid receptor ,Medicine and Health Sciences ,TRANSCRIPTION FACTOR ,Receptor ,DEPENDENT PROTEIN-KINASE ,Cells, Cultured ,Mice, Knockout ,chemistry.chemical_classification ,Fasting ,Chromatin ,GLUCOCORTICOID-RECEPTOR ,HEPATOMA-CELLS ,Protein Transport ,Enhancer Elements, Genetic ,030220 oncology & carcinogenesis ,SKELETAL-MUSCLE ,BETA-OXIDATION ,Transcriptional Activation ,medicine.medical_specialty ,FATTY-ACID OXIDATION ,Biology ,03 medical and health sciences ,Receptors, Glucocorticoid ,Internal medicine ,Genetics ,medicine ,Animals ,PPAR alpha ,Protein kinase A ,Transcription factor ,Binding Sites ,Base Sequence ,Gene regulation, Chromatin and Epigenetics ,Adenylate Kinase ,AMPK ,Sequence Analysis, DNA ,Lipid Metabolism ,Mice, Inbred C57BL ,030104 developmental biology ,Endocrinology ,Nuclear receptor ,chemistry ,Hepatocytes ,Transcriptome - Abstract
Adaptation to fasting involves both Glucocorticoid Receptor (GRα) and Peroxisome Proliferator-Activated Receptor α (PPARα) activation. Given both receptors can physically interact we investigated the possibility of a genome-wide cross-talk between activated GR and PPARα, using ChIP- and RNA-seq in primary hepatocytes. Our data reveal extensive chromatin co-localization of both factors with cooperative induction of genes controlling lipid/glucose metabolism. Key GR/PPAR co-controlled genes switched from transcriptional antagonism to cooperativity when moving from short to prolonged hepatocyte fasting, a phenomenon coinciding with gene promoter recruitment of phosphorylated AMP-activated protein kinase (AMPK) and blocked by its pharmacological inhibition. In vitro interaction studies support trimeric complex formation between GR, PPARα and phospho-AMPK. Long-term fasting in mice showed enhanced phosphorylation of liver AMPK and GRα Ser211. Phospho-AMPK chromatin recruitment at liver target genes, observed upon prolonged fasting in mice, is dampened by refeeding. Taken together, our results identify phospho-AMPK as a molecular switch able to cooperate with nuclear receptors at the chromatin level and reveal a novel adaptation mechanism to prolonged fasting.
- Published
- 2016
20. p16INK4a deficiency promotes IL-4-induced polarization and inhibits proinflammatory signaling in macrophages.: p16INK4a function in macrophages
- Author
-
Réjane Paumelle, Sébastien Fleury, Emmanuel Bouchaert, Jonathan Vanhoutte, Céline Cudejko, Giulia Chinetti-Gbaguidi, Bart Staels, Anne Tailleux, Sarah Anissa Hannou, Patrick Rémy, Lucía Fuentes, Kadiombo Bantubungi, Kristiaan Wouters, David Dombrowicz, Charlotte Paquet, Récepteurs nucléaires, maladies cardiovasculaires et diabète - U 1011 (RNMCD), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Service de Production des Antigènes, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP), and This work was supported by the Fondation pour la Recherche Médicale (DCV20070409276 to B.S.), the EFSD/GSK Program 2009, the Cost Action (BM0602) and the Conseil régional Nord Pas-de-Calais and FEDER. C.Cudejko was supported by a doctoral fellowship from the Nouvelle Société Française d'Athérosclérose/ Schering-Plough/MSD. K.Wouters was supported by a European FP7 Marie Curie grant (PIEF-GA-2009-235221) and a European Atherosclerosis Society grant.
- Subjects
MESH: Signal Transduction ,MESH: Genes, p16 ,MESH: Inflammation ,Lipopolysaccharides ,Lipopolysaccharide ,p16 ,Inbred C57BL ,Biochemistry ,MESH: Janus Kinase 2 ,chemistry.chemical_compound ,Mice ,0302 clinical medicine ,Schistosomiasis ,MESH: Animals ,STAT1 ,Phosphorylation ,MESH: Bone Marrow Transplantation ,Non-U.S. Gov't ,Bone Marrow Transplantation ,0303 health sciences ,MESH: Cytokines ,Research Support, Non-U.S. Gov't ,MESH: Macrophage Activation ,Hematology ,I-kappa B Kinase ,STAT1 Transcription Factor ,Liver ,MESH: STAT6 Transcription Factor ,030220 oncology & carcinogenesis ,MESH: Cyclin-Dependent Kinase Inhibitor p16 ,Radiation Chimera ,MESH: Schistosomiasis ,Cytokines ,medicine.symptom ,Signal transduction ,Signal Transduction ,MESH: Radiation Chimera ,MESH: Interferon-gamma ,Immunology ,Macrophage polarization ,Inflammation ,Biology ,Research Support ,Article ,Proinflammatory cytokine ,03 medical and health sciences ,Interferon-gamma ,MESH: Mice, Inbred C57BL ,medicine ,Journal Article ,Animals ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,MESH: I-kappa B Kinase ,neoplasms ,MESH: Mice ,Interleukin 4 ,Cyclin-Dependent Kinase Inhibitor p16 ,Protein Processing ,030304 developmental biology ,MESH: Phosphorylation ,Genes, p16 ,Macrophages ,Post-Translational ,MESH: Macrophages ,Cell Biology ,MESH: Interleukin-4 ,Janus Kinase 2 ,Macrophage Activation ,Molecular biology ,Mice, Inbred C57BL ,chemistry ,Genes ,MESH: Protein Processing, Post-Translational ,biology.protein ,MESH: STAT1 Transcription Factor ,Interleukin-4 ,MESH: Lipopolysaccharides ,STAT6 Transcription Factor ,Protein Processing, Post-Translational ,MESH: Liver - Abstract
The CDKN2A locus, which contains the tumor suppressor gene p16INK4a, is associated with an increased risk of age-related inflammatory diseases, such as cardiovascular disease and type 2 diabetes, in which macrophages play a crucial role. Monocytes can polarize toward classically (CAMφ) or alternatively (AAMφ) activated macrophages. However, the molecular mechanisms underlying the acquisition of these phenotypes are not well defined. Here, we show that p16INK4a deficiency (p16−/−) modulates the macrophage phenotype. Transcriptome analysis revealed that p16−/− BM-derived macrophages (BMDMs) exhibit a phenotype resembling IL-4–induced macrophage polarization. In line with this observation, p16−/− BMDMs displayed a decreased response to classically polarizing IFNγ and LPS and an increased sensitivity to alternative polarization by IL-4. Furthermore, mice transplanted with p16−/− BM displayed higher hepatic AAMφ marker expression levels on Schistosoma mansoni infection, an in vivo model of AAMφ phenotype skewing. Surprisingly, p16−/− BMDMs did not display increased IL-4–induced STAT6 signaling, but decreased IFNγ-induced STAT1 and lipopolysaccharide (LPS)–induced IKKα,β phosphorylation. This decrease correlated with decreased JAK2 phosphorylation and with higher levels of inhibitory acetylation of STAT1 and IKKα,β. These findings identify p16INK4a as a modulator of macrophage activation and polarization via the JAK2-STAT1 pathway with possible roles in inflammatory diseases.
- Published
- 2011
- Full Text
- View/download PDF
21. LEPROT and LEPROTL1 cooperatively decrease hepatic growth hormone action in mice.: LEPROTs decrease growth hormone signaling
- Author
-
Céline Cudejko, Eric Bauge, Jean-Pierre Salles, Réjane Paumelle, Thierry Touvier, Bernard Bailleul, Olivier Briand, Bart Staels, Sandrine Caron, Francoise Conte-Auriol, Yves Rouillé, Récepteurs nucléaires, lipoprotéines et athérosclérose, Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille, Droit et Santé, Centre de Physiopathologie Toulouse Purpan (CPTP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut de biologie de Lille - IBL (IBLI), Université de Lille, Sciences et Technologies-Institut Pasteur de Lille, and Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Université de Lille, Droit et Santé-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Male ,MESH: Signal Transduction ,Suppressor of Cytokine Signaling Proteins ,MESH: Recombinant Proteins ,MESH: Hepatocytes ,Mice ,0302 clinical medicine ,STAT5 Transcription Factor ,MESH: Diabetes Mellitus, Experimental ,Glucose homeostasis ,MESH: Animals ,Receptor ,SOCS2 ,STAT5 ,0303 health sciences ,biology ,Intracellular Signaling Peptides and Proteins ,Fasting ,General Medicine ,MESH: Suppressor of Cytokine Signaling Proteins ,Recombinant Proteins ,Liver ,Female ,RNA Interference ,Signal transduction ,MESH: Receptors, Somatotropin ,Signal Transduction ,Research Article ,Genetically modified mouse ,medicine.medical_specialty ,MESH: Rats ,MESH: Mice, Transgenic ,Transgene ,MESH: RNA Interference ,MESH: Fasting ,Mice, Transgenic ,MESH: Carrier Proteins ,030209 endocrinology & metabolism ,Cell Line ,Diabetes Mellitus, Experimental ,03 medical and health sciences ,MESH: Mice, Inbred C57BL ,Internal medicine ,medicine ,Animals ,Humans ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,RNA, Messenger ,MESH: Mice ,MESH: RNA, Messenger ,030304 developmental biology ,MESH: Humans ,MESH: STAT5 Transcription Factor ,Receptors, Somatotropin ,MESH: Male ,Rats ,MESH: Cell Line ,Mice, Inbred C57BL ,Endocrinology ,Membrane protein ,Growth Hormone ,MESH: Growth Hormone ,Hepatocytes ,biology.protein ,Carrier Proteins ,MESH: Female ,MESH: Liver - Abstract
International audience; Growth hormone (GH) is a major metabolic regulator that functions by stimulating lipolysis, preventing protein catabolism, and decreasing insulin-dependent glucose disposal. Modulation of hepatic sensitivity to GH and the downstream effects on the GH/IGF1 axis are important events in the regulation of metabolism in response to variations in food availability. For example, during periods of reduced nutrient availability, the liver becomes resistant to GH actions. However, the mechanisms controlling hepatic GH resistance are currently unknown. Here, we investigated the role of 2 tetraspanning membrane proteins, leptin receptor overlapping transcript (LEPROT; also known as OB-RGRP) and LEPROT-like 1 (LEPROTL1), in controlling GH sensitivity. Transgenic mice expressing either human LEPROT or human LEPROTL1 displayed growth retardation, reduced plasma IGF1 levels, and impaired hepatic sensitivity to GH, as measured by STAT5 phosphorylation and Socs2 mRNA expression. These phenotypes were accentuated in transgenic mice expressing both proteins. Moreover, gene silencing of either endogenous Leprot or Leprotl1 in H4IIE hepatocytes increased GH signaling and enhanced cell-surface GH receptor. Importantly, we found that both LEPROT and LEPROTL1 expression were regulated in the mouse liver by physiologic and pathologic changes in glucose homeostasis. Together, these data provide evidence that LEPROT and LEPROTL1 influence liver GH signaling and that regulation of the genes encoding these proteins may constitute a molecular link between nutritional signals and GH actions on body growth and metabolism.
- Published
- 2009
- Full Text
- View/download PDF
22. Thioredoxin-1 and Its Natural Inhibitor, Vitamin D3 Up-Regulated Protein 1, Are Differentially Regulated by PPARα in Human Macrophages
- Author
-
Thomas Simmet, Mustapha Rouis, Clarisse Cuaz-Pérolin, Réjane Paumelle, Ludivine Billiet, Michel Raymondjean, and Christophe Furman
- Subjects
Molecular Sequence Data ,Peroxisome proliferator-activated receptor ,Apoptosis ,Biology ,Retinoid X receptor ,Thioredoxins ,Structural Biology ,Gene expression ,Humans ,PPAR alpha ,Promoter Regions, Genetic ,Molecular Biology ,Transcription factor ,Regulation of gene expression ,chemistry.chemical_classification ,Binding Sites ,Base Sequence ,Retinoid X receptor alpha ,Activator (genetics) ,Macrophages ,Phenylurea Compounds ,Molecular biology ,Chromatin ,Transcription Factor AP-1 ,Butyrates ,Oxidative Stress ,Gene Expression Regulation ,chemistry ,Carrier Proteins ,Chromatin immunoprecipitation ,Protein Binding - Abstract
Macrophage-derived reactive oxygen species contribute to the initiation and development of atherosclerosis. The cellular balance between oxidative and reductive states depends on the endogenous antioxidant capacity, with the thioredoxin-1 (Trx-1) system playing a major role. Peroxisome proliferator-activated receptor-alpha (PPARalpha) is expressed by human macrophages and exhibits anti-inflammatory properties. Here we show that the selective PPARalpha activator GW647 significantly increased the Trx-1 mRNA and protein expression in human macrophages as determined by quantitative polymerase chain reaction and Western immunoblotting. Consistently, the Trx-1 activity was significantly increased by PPARalpha activation. By contrast, PPARalpha activation led to the down-regulation of vitamin D(3) up-regulated protein 1 (VDUP-1), the physiological inhibitor of Trx-1. Analysis of the Trx-1 and VDUP-1 promoters with gene reporter assays, mutational analysis, gel shift assays and chromatin immunoprecipitation analyses revealed the presence of a functional response element specific for PPARalpha in the Trx-1 promoter and the presence of a functional activator protein 1 (AP-1) site in the VDUP-1 promoter. The interference of PPARalpha/retinoid X receptor alpha with the AP-1 transcription factor elements c-Jun/c-Fos resulted in the inhibition of AP-1 binding and down-regulation of the VDUP-1 gene expression. Finally, PPARalpha activation reduced the lidocaine-induced caspase-3 activity and apoptosis, which might be due to the VDUP-1-mediated regulation of the Bax/Bcl-2 ratio. Together these data indicate that stimulation of PPARalpha in human macrophages might reduce arterial inflammation through differential regulation of the Trx-1 and VDUP-1 gene expression.
- Published
- 2008
- Full Text
- View/download PDF
23. Phosphorylation of Farnesoid X Receptor by Protein Kinase C Promotes Its Transcriptional Activity
- Author
-
Jean-Charles Fruchart, Bart Staels, Alexis Aquilina, Stéphane Helleboid, Romain Gineste, Dean W. Hum, Réjane Paumelle, Raphaël Darteil, and Audrey Sirvent
- Subjects
Transcriptional Activation ,Protein Kinase C-alpha ,Molecular Sequence Data ,Receptors, Cytoplasmic and Nuclear ,Biology ,Ligands ,Cell Line ,chemistry.chemical_compound ,Transactivation ,Endocrinology ,Chenodeoxycholic acid ,Humans ,Amino Acid Sequence ,Phosphorylation ,Protein Kinase Inhibitors ,Molecular Biology ,Heat-Shock Proteins ,Protein kinase C ,Binding Sites ,Base Sequence ,Activator (genetics) ,DNA ,General Medicine ,Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ,Recombinant Proteins ,Protein Structure, Tertiary ,DNA-Binding Proteins ,Amino Acid Substitution ,Biochemistry ,Nuclear receptor ,chemistry ,Mutagenesis, Site-Directed ,Phorbol ,Tetradecanoylphorbol Acetate ,Calcium ,Farnesoid X receptor ,Signal Transduction ,Transcription Factors - Abstract
The farnesoid X receptor (FXR, NR1H4) belongs to the nuclear receptor superfamily and is activated by bile acids such as chenodeoxycholic acid, or synthetic ligands such as GW4064. FXR is implicated in the regulation of bile acid, lipid, and carbohydrate metabolism. Posttranslational modifications regulating its activity have not been investigated yet. Here, we demonstrate that calcium-dependent protein kinase C (PKC) inhibition impairs ligand-mediated regulation of FXR target genes. Moreover, in a transactivation assay, we show that FXR transcriptional activity is modulated by PKC. Furthermore, phorbol 12-myristate 13-acetate , a PKC activator, induces the phosphorylation of endogenous FXR in HepG2 cells and PKCα phosphorylates in vitro FXR in its DNA-binding domain on S135 and S154. Mutation of S135 and S154 to alanine residues reduces in cell FXR phosphorylation. In contrast to wild-type FXR, mutant FXRS135AS154A displays an impaired PKCα-induced transactivation and a decreased ligand-dependent FXR transactivation. Finally, phosphorylation of FXR by PKC promotes the recruitment of peroxisomal proliferator-activated receptor γ coactivator 1α. In conclusion, these findings show that the phosphorylation of FXR induced by PKCα directly modulates the ability of agonists to activate FXR.
- Published
- 2008
- Full Text
- View/download PDF
24. Peroxisome Proliferator–Activated Receptor α Induces NADPH Oxidase Activity in Macrophages, Leading to the Generation of LDL with PPAR-α Activation Properties
- Author
-
Giulia Chinetti, Jean-Charles Fruchart, Elisabeth Teissier, Bart Staels, Ajay M. Shah, Ralf P. Brandes, Atsushi Nohara, Réjane Paumelle, and Bertrand Cariou
- Subjects
Physiology ,Nitric Oxide Synthase Type II ,Peroxisome proliferator-activated receptor ,Monocytes ,Proinflammatory cytokine ,Mice ,chemistry.chemical_compound ,Animals ,Humans ,PPAR alpha ,Receptor ,Inflammation ,chemistry.chemical_classification ,Reactive oxygen species ,Oxidase test ,NADPH oxidase ,biology ,Superoxide ,Macrophages ,NADPH Oxidases ,Glutathione ,Cell biology ,Enzyme Activation ,Lipoproteins, LDL ,Mice, Inbred C57BL ,Nitric oxide synthase ,Pyrimidines ,chemistry ,Biochemistry ,Macrophages, Peritoneal ,biology.protein ,Nitric Oxide Synthase ,Reactive Oxygen Species ,Cardiology and Cardiovascular Medicine - Abstract
Peroxisome proliferator–activated receptors (PPARs) are nuclear receptors controlling lipid and glucose metabolism as well as inflammation. PPARs are expressed in macrophages, cells that also generate reactive oxygen species (ROS). In this study, we investigated whether PPARs regulate ROS production in macrophages. Different PPAR-α, but not PPAR-γ agonists, increased the production of ROS (H2O2and) in human and murine macrophages. PPAR-α activation did not induce cellular toxicity, but significantly decreased intracellular glutathione levels. The increase in ROS production was not attributable to inherent prooxidant effects of the PPAR-α agonists tested, but was mediated by PPAR-α, because the effects were lost in bone marrow–derived macrophages from PPAR-α−/−mice. The PPAR-α–induced increase in ROS was attributable to the induction of NADPH oxidase, because (1) preincubation with the NADPH oxidase inhibitor diphenyleneiodinium prevented the increase in ROS production; (2) PPAR-α agonists increasedproduction measured by superoxide dismutase–inhibitable cytochrome c reduction; (3) PPAR-α agonists induced mRNA levels of the NADPH oxidase subunits p47phox, p67phox, and gp91phoxand membrane p47phoxprotein levels; and (4) induction of ROS production was abolished in p47phox−/−and gp91phox−/−macrophages. Finally, induction of NADPH oxidase by PPAR-α agonists resulted in the formation of oxidized LDL metabolites that exert PPAR-α–independent proinflammatory and PPAR-α–dependent decrease of lipopolysaccharide-induced inducible nitric oxide synthase expression in macrophages. These data identify a novel mechanism of autogeneration of endogenous PPAR-α ligands via stimulation of NADPH oxidase activity.
- Published
- 2004
- Full Text
- View/download PDF
25. PPARα controlling HDL metabolism and atherosclerosis
- Author
-
Bart Staels, Daniel Duran-Sandoval, Réjane Paumelle, and Jean-Charles Fruchart
- Subjects
medicine.medical_specialty ,Cholesterol ,Reverse cholesterol transport ,Lipid metabolism ,General Medicine ,Biology ,chemistry.chemical_compound ,Endocrinology ,Mediator ,chemistry ,Nuclear receptor ,Internal medicine ,medicine ,lipids (amino acids, peptides, and proteins) ,Receptor ,Transcription factor ,Lipoprotein - Abstract
Low serum high-density lipoprotein (HDL) cholesterol concentrations are a feature of the metabolic syndrome that is increasingly being recognized as an important risk factor for cardiovascular disease. HDL is a key mediator of reverse cholesterol transport (RCT), a pathway transporting cholesterol from extrahepatic cells and tissues to the liver for excretion. HDL metabolism is controlled by the interaction of its protein constituents, the apolipoproteins, such as apoA-I and apoA-II, with different enzymes (LCAT, HL, LPL), transfer proteins (CETP, PLTP,…) and lipoprotein receptors (ABCA-1, SR-BI,…). The level of expression of most of these proteins is partly controlled at the level of transcription by transcription factors, among which are the nuclear receptors. Nuclear receptors are activated by small lipophilic signalling molecules. Among these nuclear receptors, peroxisome proliferator-activated receptors were first identified to play a role in the control of lipid metabolism. In this paper, we will focus on the role of PPARα in HDL metabolism, its molecular action mechanism and its potential as pharmacological targets for future drug discovery.
- Published
- 2004
- Full Text
- View/download PDF
26. Sequential Activation of ERK and Repression of JNK by Scatter Factor/Hepatocyte Growth Factor in Madin-Darby Canine Kidney Epithelial Cells
- Author
-
Véronique Fafeur, Bernard Vandenbunder, Réjane Paumelle, Catherine Leroy, David Tulasne, and Jean Coll
- Subjects
MAPK/ERK pathway ,Transcription, Genetic ,Protein tyrosine phosphatase ,Protein Serine-Threonine Kinases ,Biology ,Kidney ,Article ,Dephosphorylation ,Dogs ,medicine ,Animals ,Phosphorylation ,Molecular Biology ,Cells, Cultured ,Hepatocyte Growth Factor ,Kinase ,JNK Mitogen-Activated Protein Kinases ,Epithelial Cells ,Cell Biology ,Molecular biology ,Enzyme Activation ,Transcription Factor AP-1 ,AP-1 transcription factor ,ras Proteins ,Hepatocyte growth factor ,Mitogen-Activated Protein Kinases ,Protein Tyrosine Phosphatases ,Signal transduction ,Cell Division ,medicine.drug - Abstract
The scattering of Madin-Darby canine kidney (MDCK) epithelial cells by scatter factor/hepatocyte growth factor (SF/HGF) is associated with transcriptional induction of the urokinase gene, which occurs essentially through activation of an EBS/AP1 response element. We have investigated the signal transduction pathways leading to this transcriptional response. We found that SF/HGF induces rapid and sustained phosphorylation of the extracellular signal-regulated kinase (ERK) MAPK while stimulating weakly and then repressing phosphorylation of the JUN N-terminal kinase (JNK) MAPK for several hours. This delayed repression of JNK was preceded by phosphorylation of the MKP2 phosphatase, and both MKP2 induction and JNK dephosphorylation were under the control of MEK, the upstream kinase of ERK. ERK and MKP2 stimulate the EBS/AP1-dependent transcriptional response to SF/HGF, but not JNK, which inhibits this response. We further demonstrated that depending on cell density, the RAS-ERK-MKP2 pathway controls this transrepressing effect of JNK. Together, these data demonstrate that in a sequential manner SF/HGF activates ERK and MKP2, which in turn dephosphorylates JNK. This sequence of events provides a model for efficient cell scattering by SF/HGF at low cell density.
- Published
- 2000
- Full Text
- View/download PDF
27. Bone Marrow p16INK4a-Deficiency Does Not Modulate Obesity, Glucose Homeostasis or Atherosclerosis Development
- Author
-
Marion J.J. Gijbels, Anne Tailleux, Céline Cudejko, Bart Staels, Réjane Paumelle, Rebecca Dièvart, Sarah Anissa Hannou, Lucía Fuentes, Charlotte Paquet, Kristiaan Wouters, Emmanuel Bouchaert, Kadiombo Bantubungi, Jonathan Vanhoutte, Florence Gizard, Menno P.J. de Winther, Pathologie, Moleculaire Genetica, Genetica & Celbiologie, RS: CARIM School for Cardiovascular Diseases, Medical Biochemistry, Amsterdam Cardiovascular Sciences, and Amsterdam institute for Infection and Immunity
- Subjects
Male ,Adipose tissue ,030204 cardiovascular system & hematology ,Cardiovascular ,Biochemistry ,chemistry.chemical_compound ,Mice ,0302 clinical medicine ,Endocrinology ,Bone Marrow ,Glucose homeostasis ,Homeostasis ,0303 health sciences ,Multidisciplinary ,Animal Models ,medicine.anatomical_structure ,Low-density lipoprotein ,Medicine ,medicine.symptom ,Research Article ,medicine.medical_specialty ,Adipose tissue macrophages ,Science ,Immunology ,Inflammation ,Hyperlipidemias ,Carbohydrate metabolism ,Biology ,Diet, High-Fat ,03 medical and health sciences ,Model Organisms ,Internal medicine ,Glucose Intolerance ,medicine ,Animals ,Humans ,Obesity ,neoplasms ,Cyclin-Dependent Kinase Inhibitor p16 ,030304 developmental biology ,Nutrition ,Diabetic Endocrinology ,Immunity ,Atherosclerosis ,Mice, Inbred C57BL ,Glucose ,chemistry ,Receptors, LDL ,Bone marrow - Abstract
ObjectiveA genomic region near the CDKN2A locus, encoding p16(INK4a), has been associated to type 2 diabetes and atherosclerotic vascular disease, conditions in which inflammation plays an important role. Recently, we found that deficiency of p16(INK4a) results in decreased inflammatory signaling in murine macrophages and that p16(INK4a) influences the phenotype of human adipose tissue macrophages. Therefore, we investigated the influence of immune cell p16(INK4a) on glucose tolerance and atherosclerosis in mice.Methods and resultsBone marrow p16(INK4a)-deficiency in C57Bl6 mice did not influence high fat diet-induced obesity nor plasma glucose and lipid levels. Glucose tolerance tests showed no alterations in high fat diet-induced glucose intolerance. While bone marrow p16(INK4a)-deficiency did not affect the gene expression profile of adipose tissue, hepatic expression of the alternative markers Chi3l3, Mgl2 and IL10 was increased and the induction of pro-inflammatory Nos2 was restrained on the high fat diet. Bone marrow p16(INK4a)-deficiency in low density lipoprotein receptor-deficient mice did not affect western diet-induced atherosclerotic plaque size or morphology. In line, plasma lipid levels remained unaffected and p16(INK4a)-deficient macrophages displayed equal cholesterol uptake and efflux compared to wild type macrophages.ConclusionBone marrow p16(INK4a)-deficiency does not affect plasma lipids, obesity, glucose tolerance or atherosclerosis in mice.
- Published
- 2012
28. Downregulation of the tumour suppressor p16INK4A contributes to the polarisation of human macrophages toward an adipose tissue macrophage (ATM)-like phenotype
- Author
-
Céline Cudejko, Réjane Paumelle, Lucía Fuentes, Sarah Anissa Hannou, Thérèse Hèrvée Mayi, François Pattou, Giulia Chinetti-Gbaguidi, Elena Rigamonti, Kristiaan Wouters, Bart Staels, Bruno Derudas, Récepteurs nucléaires, maladies cardiovasculaires et diabète - U 1011 (RNMCD), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Service de chirurgie générale et endocrinienne, Hôpital Claude Huriez [Lille], CHU Lille-CHU Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Therapie Cellulaire du Diabete, Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille, Droit et Santé, This work was supported by the EU FP6 grant (EIF 040851 to L. Fuentes), EU FP7 grants (PIEFGA- 2009-23522 to K. Wouters and grant no. 201608 to T. H. Mayi), an EFSD/GlaxoSmithKline Research Grant 2009 (K. Wouters and B. Staels), the Spanish Government MEC (Ministerio de Educación y Ciencia to L. Fuentes) and the Fondation pour la Recherche Médicale (DCV20070409276 to B. Staels), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Institut National de la Santé et de la Recherche Médicale (INSERM), and Derudas, Marie-Hélène
- Subjects
Male ,Endocrinology, Diabetes and Metabolism ,Adipose tissue ,MESH: NF-kappa B ,MESH: Down-Regulation ,law.invention ,0302 clinical medicine ,law ,MESH: RNA, Small Interfering ,MESH: Obesity ,MESH: Gene Silencing ,RNA, Small Interfering ,0303 health sciences ,Adipose tissue macrophages ,NF-kappa B ,Cell Polarity ,Type 2 diabetes ,MESH: Toll-Like Receptor 4 ,Phenotype ,Plaque, Atherosclerotic ,Adipose Tissue ,030220 oncology & carcinogenesis ,MESH: Cyclin-Dependent Kinase Inhibitor p16 ,Female ,medicine.symptom ,MESH: Cell Polarity ,MESH: Adipose Tissue ,MESH: Diabetes Mellitus, Type 2 ,Down-Regulation ,Inflammation ,Biology ,Senescence ,Article ,03 medical and health sciences ,CDKN2A ,Downregulation and upregulation ,[SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Internal Medicine ,medicine ,Humans ,Gene silencing ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Gene Silencing ,Obesity ,MESH: Plaque, Atherosclerotic ,neoplasms ,Cyclin-Dependent Kinase Inhibitor p16 ,030304 developmental biology ,MESH: Humans ,Macrophages ,MESH: Macrophages ,Macrophage polarisation ,NFKB1 ,MESH: Male ,Toll-Like Receptor 4 ,Diabetes Mellitus, Type 2 ,Immunology ,Cancer research ,Suppressor ,MESH: Female - Abstract
Human adipose tissue macrophages (ATMs) display an alternatively activated (M2) phenotype, but are still able to produce excessive inflammatory mediators. However, the processes driving this particular ATM phenotype are not understood. Genome-wide association studies associated the CDKN2A locus, encoding the tumour suppressor p16(INK4A), with the development of type 2 diabetes. In the present study, p16(INK4A) levels in human ATMs and the role of p16(INK4A) in acquiring the ATM phenotype were assessed.Gene expression of p16 ( INK4A ) in ATMs was analysed and compared with that in monocyte-derived macrophages (MDMs) from obese patients or with macrophages from human atherosclerotic plaques (AMs). Additionally, p16(INK4A) levels were studied during macrophage differentiation and polarisation of monocytes isolated from healthy donors. The role of p16(INK4A) in MDMs from healthy donors was investigated by small interfering (si)RNA-mediated silencing or adenovirus-mediated overproduction of p16(INK4A).Compared with MDMs and AMs, ATMs from obese patients expressed lower levels of p16 ( INK4A ). In vitro, IL-4-induced M2 polarisation resulted in lower p16(INK4A) protein levels after differentiation of monocytes from healthy donors in macrophages. Silencing of p16(INK4A) in MDMs mediated by siRNA increased the expression of M2 marker genes and enhanced the response to lipopolysaccharide (LPS), to give a phenotype resembling that of ATM. By contrast, adenovirus-mediated overproduction of p16(INK4A) in MDMs diminished M2 marker gene expression and the response to LPS. Western blot analysis revealed that p16(INK4A) overproduction inhibits LPS- and palmitate-induced Toll-like receptor 4 (TLR4)-nuclear factor of κ light polypeptide gene enhancer in B cells (NF-κB) signalling.These results show that p16(INK4A) inhibits the acquisition of the ATM phenotype. The age-related increase in p16(INK4A) level may thus influence normal ATM function and contribute to type 2 diabetes risk.
- Published
- 2011
- Full Text
- View/download PDF
29. Circumventing glucocorticoid-mediated hyperinsulinemia via the activation of PPARalpha
- Author
-
Réjane Paumelle, Nadia Bougarne, Guy Haegeman, Bart Staels, and Karolien De Bosscher
- Subjects
medicine.medical_specialty ,Peroxisome proliferator-activated receptor ,Gene Expression ,Biology ,Transactivation ,Glucocorticoid receptor ,Fenofibrate ,Internal medicine ,Hyperinsulinism ,Neoplasms ,medicine ,Hyperinsulinemia ,Humans ,PPAR alpha ,Molecular Biology ,Glucocorticoids ,Transrepression ,Hypolipidemic Agents ,chemistry.chemical_classification ,Cell Biology ,NFKB1 ,medicine.disease ,Endocrinology ,chemistry ,Nuclear receptor ,Glucocorticoid ,Developmental Biology ,medicine.drug - Abstract
Comment on: PPARα blocks glucocorticoid receptor α-mediated transactivation but cooperates with the activated glucocorticoid receptor alpha for transrepression on NFκB. Bougarne N, Paumelle R, Caron S, Hennuyer N, Mansouri R, Gervois P, Staels B, Haegeman G, De Bosscher K. Proc Natl Acad Sci USA 2009; 106:7397-402. PMID: 19376972
- Published
- 2009
30. PPARalpha blocks glucocorticoid receptor alpha-mediated transactivation but cooperates with the activated glucocorticoid receptor alpha for transrepression on NF-kappaB
- Author
-
Réjane Paumelle, Philippe Gervois, Nathalie Hennuyer, Bart Staels, Guy Haegeman, Nadia Bougarne, Roxane Mansouri, Karolien De Bosscher, and Sandrine Caron
- Subjects
Transcriptional Activation ,Peroxisome proliferator-activated receptor ,Gene Expression ,Biology ,Transactivation ,Mice ,Glucocorticoid receptor ,Receptors, Glucocorticoid ,Fenofibrate ,Cell Line, Tumor ,Hyperinsulinism ,Animals ,Humans ,PPAR alpha ,Promoter Regions, Genetic ,Transcription factor ,Glucocorticoids ,Transrepression ,chemistry.chemical_classification ,Hormone response element ,Mice, Knockout ,Multidisciplinary ,NF-kappa B ,Biological Sciences ,NFKB1 ,Dietary Fats ,chemistry ,Cancer research ,Hepatocytes ,Signal transduction - Abstract
Glucocorticoid receptor alpha (GRalpha) and peroxisome proliferator-activated receptor alpha (PPARalpha) are transcription factors with clinically important immune-modulating properties. Either receptor can inhibit cytokine gene expression, mainly through interference with nuclear factor kappaB (NF-kappaB)-driven gene expression. The present work aimed to investigate a functional cross-talk between PPARalpha- and GRalpha-mediated signaling pathways. Simultaneous activation of PPARalpha and GRalpha dose-dependently enhances transrepression of NF-kappaB-driven gene expression and additively represses cytokine production. In sharp contrast and quite unexpectedly, PPARalpha agonists inhibit the expression of classical glucocorticoid response element (GRE)-driven genes in a PPARalpha-dependent manner, as demonstrated by experiments using PPARalpha wild-type and knockout mice. The underlying mechanism for this transcriptional antagonism relies on a PPARalpha-mediated interference with the recruitment of GRalpha, and concomitantly of RNA polymerase II, to GRE-driven gene promoters. Finally, the biological relevance of this phenomenon is underscored by the observation that treatment with the PPARalpha agonist fenofibrate prevents glucocorticoid-induced hyperinsulinemia of mice fed a high-fat diet. Taken together, PPARalpha negatively interferes with GRE-mediated GRalpha activity while potentiating its antiinflammatory effects, thus providing a rationale for combination therapy in chronic inflammatory disorders.
- Published
- 2009
31. Rimonabant, a selective cannabinoid CB1 receptor antagonist, inhibits atherosclerosis in LDL receptor-deficient mice
- Author
-
Réjane Paumelle, Paul Schaeffer, Françoise Bono, Andries J. Gilde, Nathalie Hennuyer, Perrine Desitter, Bart Staels, Anne-Marie Mares, Virgile Visentin, and Frédérique Dol-Gleizes
- Subjects
medicine.medical_specialty ,Cannabinoid receptor ,medicine.medical_treatment ,Article ,Proinflammatory cytokine ,chemistry.chemical_compound ,Mice ,Rimonabant ,Piperidines ,Receptor, Cannabinoid, CB1 ,Internal medicine ,medicine ,Animals ,Chemokine CCL2 ,Inflammation ,Mice, Knockout ,Cholesterol ,Cannabinoids ,Antagonist ,Atherosclerosis ,Interleukin-12 ,Endocrinology ,chemistry ,Receptors, LDL ,Low-density lipoprotein ,LDL receptor ,Cytokines ,Pyrazoles ,Female ,Cannabinoid ,Cardiology and Cardiovascular Medicine ,Energy Intake ,medicine.drug - Abstract
Objective— The objective of this study was to determine whether the potent selective cannabinoid receptor-1 antagonist rimonabant has antiatherosclerotic properties. Methods and Results— Rimonabant (50 mg/kg/d in the diet) significantly reduced food intake (from 3.35±.04 to 2.80±0.03 g/d), weight gain (from 14.6±0.7 g to −0.6±0.3 g), serum total cholesterol (from 8.39±0.54 to 5.32±0.18 g/L), and atherosclerotic lesion development in the aorta (from 1.7±0.22 to 0.21±0.037 mm 2 ) and aortic sinus (from 101 000±7800 to 27 000±2900 μm 2 ) of LDLR −/− mice fed a Western-type diet for 3 months. Rimonabant also reduced plasma levels of the proinflammatory cytokines MCP-1 and IL12 by 85% ( P P 2 , 49% reduction, P Conclusions— These results show that rimonabant has antiatherosclerotic effects in LDLR −/− mice. These effects are partly unrelated to serum cholesterol modulation and could be related to an antiinflammatory effect.
- Published
- 2008
32. Cross-talk between statins and PPARalpha in cardiovascular diseases: clinical evidence and basic mechanisms
- Author
-
Bart Staels and Réjane Paumelle
- Subjects
chemistry.chemical_classification ,nutritional and metabolic diseases ,Alpha (ethology) ,Peroxisome proliferator-activated receptor ,Inflammation ,Reductase ,Peroxisome ,Pharmacology ,Biology ,Clofibric Acid ,Nuclear receptor ,chemistry ,Cardiovascular Diseases ,medicine ,Humans ,lipids (amino acids, peptides, and proteins) ,PPAR alpha ,medicine.symptom ,Signal transduction ,Hydroxymethylglutaryl-CoA Reductase Inhibitors ,Cardiology and Cardiovascular Medicine ,Receptor ,Dyslipidemias ,Signal Transduction - Abstract
Although a change in lifestyle is the first choice in controlling cardiovascular risk, lipid-lowering drugs are effective in normalizing different forms of atherogenic dyslipidemia. Although statins are a class of drugs which primarily lower low-density lipoprotein cholesterol, fibrates decrease triglycerides, normalize the low-density lipoprotein cholesterol profile, and increase high-density lipoprotein cholesterol. As lipids are important determinants for cardiovascular diseases, these drugs reduce cardiovascular morbidity. However, a number of recent studies indicate that, in addition to their lipid-normalizing activities, statins and fibrates exhibit pleiotropic actions, such as inhibit inflammation, improve endothelial function, suppress the production of reactive oxygen species, etc. Statins are competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme of cholesterol synthesis, whereas fibrates are activators of the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha). The similarity between the pleiotropic effects of statins and fibrates is remarkable and suggests a mechanistic link between these two classes of drugs. Here we discuss recent data on the cross-talk between statins and PPARalpha agonists and the mechanisms behind these actions.
- Published
- 2007
33. Peroxisome proliferator-activated receptor alpha improves pancreatic adaptation to insulin resistance in obese mice and reduces lipotoxicity in human islets
- Author
-
Folkert Kuipers, Frédéric Percevault, Jean-Charles Fruchart, François Pattou, Catherine Fievet, Fanny Lalloyer, Réjane Paumelle, Bart Staels, Gérard Torpier, Brigitte Vandewalle, Julie Kerr-Conte, Maaike H. Oosterveer, and Center for Liver, Digestive and Metabolic Diseases (CLDM)
- Subjects
Male ,Endocrinology, Diabetes and Metabolism ,Palmitates ,Gene Expression ,Mice, Obese ,Peroxisome proliferator-activated receptor ,Apoptosis ,REVERSES ,Type 2 diabetes ,Mice ,Insulin Secretion ,Insulin ,Glucose homeostasis ,GENE-EXPRESSION ,Mice, Knockout ,chemistry.chemical_classification ,geography.geographical_feature_category ,Age Factors ,food and beverages ,Middle Aged ,Islet ,medicine.anatomical_structure ,Lipotoxicity ,cardiovascular system ,(PPAR)-ALPHA ACTIVATION ,SECRETION ,lipids (amino acids, peptides, and proteins) ,Peroxisome proliferator-activated receptor alpha ,SENSITIVITY ,Adult ,medicine.medical_specialty ,FATTY-ACID OXIDATION ,In Vitro Techniques ,Biology ,NULL MICE ,digestive system ,RATS ,Islets of Langerhans ,Insulin resistance ,BETA-CELLS ,Internal medicine ,Internal Medicine ,medicine ,Animals ,Humans ,PPAR alpha ,Pancreas ,Triglycerides ,geography ,Dose-Response Relationship, Drug ,Pancreatic islets ,Body Weight ,nutritional and metabolic diseases ,medicine.disease ,PPAR-GAMMA ACTIVATION ,Glucose ,Endocrinology ,chemistry ,Hyperglycemia ,Insulin Resistance - Abstract
Peroxisome proliferator-activated receptor (PPAR) alpha is a transcription factor controlling lipid and glucose homeostasis. PPAR alpha-deficient (-/-) mice are protected from high-fat diet-induced insulin resistance. However, the impact of PPAR alpha in the pathophysiological setting of obesity-related insulin resistance is unknown. Therefore, PPAR alpha(-/-) mice in an obese (ob/ob) background were generated. PPAR alpha deficiency did not influence the growth curves of the obese mice but surprisingly resulted in a severe, age-dependent hyperglycemia. PPAR alpha deficiency did not aggravate peripheral insulin resistance. By contrast, PPAR alpha(-/-) ob/ob mice developed pancreatic beta-cell dysfunction characterized by reduced mean islet area and decreased insulin secretion in response to glucose in vitro and in vivo. In primary human pancreatic islets, PPAR alpha agonist treatment prevented fatty acid-induced impairment of glucose-stimulated insulin secretion, apoptosis, and triglyceride accumulation. These results indicate that PPAR alpha improves the adaptative response of the pancreatic beta-cell to pathological conditions. PPAR alpha could thus represent a promising target in the prevention of type 2 diabetes.
- Published
- 2006
34. Acute antiinflammatory properties of statins involve peroxisome proliferator-activated receptor-alpha via inhibition of the protein kinase C signaling pathway
- Author
-
Corine Glineur, Christophe Blanquart, Olivier Barbier, Réjane Paumelle, Olivier Briand, Christian Duhem, David Dombrowicz, Gaëtane Woerly, Frédéric Percevault, Bart Staels, and Jean-Charles Fruchart
- Subjects
medicine.medical_specialty ,Simvastatin ,Physiology ,Peroxisome proliferator-activated receptor ,Inflammation ,Biology ,Reductase ,Pharmacology ,Protein kinase C signaling ,Mice ,Internal medicine ,medicine ,Animals ,Edema ,PPAR alpha ,cardiovascular diseases ,Protein kinase C ,Protein Kinase C ,chemistry.chemical_classification ,Mice, Knockout ,nutritional and metabolic diseases ,Extremities ,Mice, Inbred C57BL ,Endocrinology ,Enzyme ,chemistry ,Nuclear receptor ,lipids (amino acids, peptides, and proteins) ,Signal transduction ,medicine.symptom ,Hydroxymethylglutaryl-CoA Reductase Inhibitors ,Cardiology and Cardiovascular Medicine ,Signal Transduction - Abstract
Statins are inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase used in the prevention of cardiovascular disease (CVD). In addition to their cholesterol-lowering activities, statins exert pleiotropic antiinflammatory effects, which might contribute to their beneficial effects not only on CVD but also on lipid-unrelated immune and inflammatory diseases, such as rheumatoid arthritis, asthma, stroke, and transplant rejection. However, the molecular mechanisms involved in these antiinflammatory properties of statins are unresolved. Here we show that the peroxisome proliferator-activated receptor (PPAR) alpha mediates antiinflammatory effects of simvastatin in vivo in models of acute inflammation. The inhibitory effects of statins on lipopolysaccharide-induced inflammatory response genes were abolished in PPARalpha-deficient macrophages and neutrophils. Moreover, simvastatin inhibited PPARalpha phosphorylation by lipopolysaccharide-activated protein kinase C (PKC) alpha. A constitutive active form of PKCalpha inhibited nuclear factor kappaB transrepression by PPARalpha whereas simvastatin enhanced transrepression activity of wild-type PPARalpha, but not of PPARalpha mutated in its PKC phosphorylation sites. These data indicate that the acute antiinflammatory effect of simvastatin occurs via PPARalpha by a mechanism involving inhibition of PKCalpha inactivation of PPARalpha transrepression activity.
- Published
- 2006
35. PS1 - 2. Role of the tumour suppressor CDKN2A/p16INK4a in the development of perivascular adipose tissue
- Author
-
Céline Cudejko, Casper G. Schalkwijk, Sarah Anissa Hannou, Anthony Lucas, Bart Staels, Kadiombo Bantubungi, Emanuel Bouchaert, Anne Tailleux, Réjane Paumelle, Jonathan Vanhoutte, Kristiaan Wouters, and Emanuelle Vallez
- Subjects
Pathology ,medicine.medical_specialty ,Adipose tissue ,Genome-wide association study ,Type 2 diabetes ,Biology ,medicine.disease ,Phenotype ,law.invention ,Increased risk ,CDKN2A ,law ,Diabetes mellitus ,cardiovascular system ,medicine ,Suppressor - Abstract
Genome wide association studies have been linked the CDKN2A/B locus to an increased risk for atherosclerosis, type 2 diabetes and aneurysm development. These conditions all are linked to perivascular adipose tissue (pAT) accumulation, which has an inflammatory phenotype.
- Published
- 2013
- Full Text
- View/download PDF
36. The protein kinase C signaling pathway regulates a molecular switch between transactivation and transrepression activity of the peroxisome proliferator-activated receptor alpha
- Author
-
Bart Staels, Roxane M. Mansouri, Corine Glineur, Christophe Blanquart, Réjane Paumelle, and Jean-Charles Fruchart
- Subjects
Transcriptional Activation ,Peroxisome proliferator-activated receptor ,Gene Expression ,Biology ,Ligands ,digestive system ,Protein kinase C signaling ,Transactivation ,Endocrinology ,Cell Line, Tumor ,Serine ,Humans ,PPAR alpha ,RNA, Messenger ,Enzyme Inhibitors ,Phosphorylation ,Protein kinase A ,Molecular Biology ,Protein kinase C ,Protein Kinase C ,Transrepression ,chemistry.chemical_classification ,Alanine ,food and beverages ,nutritional and metabolic diseases ,Fibrinogen ,General Medicine ,Cell biology ,Repressor Proteins ,Biochemistry ,chemistry ,cardiovascular system ,Mutagenesis, Site-Directed ,lipids (amino acids, peptides, and proteins) ,Signal transduction ,Signal Transduction - Abstract
Peroxisome proliferator-activated receptor (PPAR) alpha is a nuclear receptor implicated in several physiological processes such as lipid and lipoprotein metabolism, glucose homeostasis, and the inflammatory response. PPARalpha is activated by natural fatty acids and synthetic compounds like fibrates. PPARalpha activity has been shown to be modulated by its phosphorylation status. PPARalpha is phosphorylated by kinases such as the MAPKs and cAMP-activated protein kinase A. In this report, we show that protein kinase C (PKC) inhibition impairs ligand-activated PPARalpha transcriptional activity. Furthermore, PKC inhibition decreases PPARalpha ligand-induction of its target genes including PPARalpha itself and carnitine palmitoyltransferase I. By contrast, PKC inhibition enhances PPARalpha transrepression properties as demonstrated using the fibrinogen-beta gene as model system. Finally, PKC inhibition decreases PPARalpha phosphorylation activity of hepatocyte cell extracts. In addition, PPARalpha purified protein is phosphorylated in vitro by recombinant PKCalpha and betaII. The replacement of serines 179 and 230 by alanine residues reduces the phosphorylation of the PPARalpha protein. The PPARalpha S179A-S230A protein displays an impaired ligand-induced transactivation activity and an enhanced trans-repression activity. Altogether, our data indicate that the PKC signaling pathway acts as a molecular switch dissociating the transactivation and transrepression functions of PPARalpha, which involved phosphorylation of serines 179 and 230.
- Published
- 2004
37. Inhibition of JNK by HGF/SF prevents apoptosis induced by TNF-alpha
- Author
-
Véronique Fafeur, Catherine Leroy, Sylvie Reveneau, Réjane Paumelle, Julien Deheuninck, and Yvan de Launoit
- Subjects
Programmed cell death ,Cell Survival ,MAP Kinase Kinase 4 ,Morpholines ,Apoptosis ,General Biochemistry, Genetics and Molecular Biology ,Cell Line ,Dogs ,History and Philosophy of Science ,medicine ,Animals ,Inducer ,Urothelium ,Enzyme Inhibitors ,Psychological repression ,PI3K/AKT/mTOR pathway ,Mitogen-Activated Protein Kinase Kinases ,Chemistry ,Hepatocyte Growth Factor ,Tumor Necrosis Factor-alpha ,General Neuroscience ,JNK Mitogen-Activated Protein Kinases ,Cell culture ,Chromones ,Cancer research ,Hepatocyte growth factor ,medicine.drug - Abstract
We investigated whether repression of JNK by hepatocyte growth factor/scatter factor (HGF/SF) in MDCK epithelial cells is linked to its ability to protect cells from apoptosis. To this purpose, cells were treated by TNF-alpha, a well-known inducer of JNK and of cell death, and the effects of HGF/SF were investigated under these conditions. We identified repression of JNK as a signaling target of HGF/SF for protection against TNF-alpha-induced cell death. This effect of HGF/SF occurs via the activation of the PI3K and MEK1 pathways.
- Published
- 2004
38. Involvement of RAS-ERK signaling in multiple biological responses to HGF/SF
- Author
-
David Tulasne, Catherine Leroy, Sylvie Reveneau, Véronique Fafeur, Bernard Vandenbunder, and Réjane Paumelle
- Subjects
MAPK/ERK pathway ,Chemistry ,Hepatocyte Growth Factor ,MAP Kinase Signaling System ,General Neuroscience ,Morphogenesis ,Motility ,General Biochemistry, Genetics and Molecular Biology ,History and Philosophy of Science ,ETS1 ,Cancer research ,ras Proteins ,Animals ,C met receptor ,Mitogen-Activated Protein Kinases - Published
- 2002
39. O23 Cdkn2a/p16Ink4a régule la néoglucogenèse hépatique via la voie PKA-CREB-PGC1A
- Author
-
Morgane Baron, Bart Staels, Réjane Paumelle, Emmanuelle Vallez, Emmanuel Bouchaert, Anthony Lucas, Sarah Anissa Hannou, K. Bantubungi-Blum, Sandrine Caron-Houde, and Anne Tailleux
- Subjects
Endocrinology ,Endocrinology, Diabetes and Metabolism ,Internal Medicine ,General Medicine - Abstract
Introduction Le diabete de type 2 (T2D) est un trouble metabolique de l'homeostasie du glucose. Il est caracterise par une hyperglycemie chronique qui resulte en partie d'une production excessive de glucose par le foie consequence au developpement d'une resistance a l'insuline. Le T2D est une pathologie multifactorielle a la fois genetique et environnementale. Recemment des etudes d'associations de genes (GWAS) dans differentes cohortes ont mis en evidence une forte correlation entre le locus CDKN2A et le risque de developpement du T2D en se basant sur certains parametres metaboliques tel que la glycemie a jeun. Le locus CDKN2A code pour des proteines regulatrices du cycle cellulaire dont la proteine p16INK4a. p16INK4a est largement decrite dans la litterature pour son role suppresseur de tumeurs et comme marqueur de senescence, cependant son role dans le controle de l'homeostasie hepatique du glucose n'a jamais ete rapporte Materiels et methodes Afin de determiner le role de p16INK4a dans le metabolisme hepatique du glucose, nous avons utilise in vivo des souris sauvages (p16+/+) et deficientes pour p16INK4a (p16-/-) et in vitro des hepatocytes primaires ainsi que la lignee AML12. Resultats Nous avons montre qu'apres un jeune, les souris p16-/- presentent une hypoglycemie moins prononcee qui se traduit par une expression hepatique plus elevee de genes de la neoglucogenese tels que PEPCK, G6Pase et PGC1a. De plus, les hepatocytes primaires de souris p16-/- presentent une meilleur reponse au glucagon que ceux des p16+/+. Enfin, nous avons montre que la diminution d'expression de p16INK4a par siRNA dans les AML12 suffit a induire l'expression des genes de la neoglucogenese et potentialise la reponse de ces cellules a differents stimuli gluconeogenique. L'effet observe depend de l'activation de la voie PKA-CREB-PGC1A. Conclusion L'ensemble de ces donnees montrent pour la premiere fois que p16INK4a pourrait jouer un role un cours du developpement du T2D.
- Published
- 2014
- Full Text
- View/download PDF
40. O8 Rôle du gène suppresseur de tumeur CDKN2A/p16INK4a dans le développement du tissu adipeux périvasculaire
- Author
-
Sarah Anissa Hannou, Xavier Marechal, David Montaigne, Emmanuelle Vallez, Jonathan Vanhoutte, Kristiaan Wouters, Bruno Derudas, Bart Staels, and Réjane Paumelle
- Subjects
Endocrinology ,Endocrinology, Diabetes and Metabolism ,Internal Medicine ,General Medicine - Abstract
Introduction Des analyses d'association de genes montrent que le locus CDKN2A/B qui code notamment la proteine p16INK4a, pourrait etre associe au developpement des maladies coronariennes, de l'atherosclerose et du diabete de type 2. Ces pathologies sont associees a l'expansion et a l'inflammation de differents depots de tissu adipeux (TA), notamment le tissu adipeux perivasculaire (PVAT). p16INK4a est un regulateur du cycle cellulaire cependant sa fonction dans l'adipogenese reste encore inconnue. Materiels et methodes Dans cette etude, nous avons etudie le role de p16INK4a dans l'adipogenese in vitro en utilisant des preadipocytes 3T3L1 transfectes par un siRNA-CDKN2A ou des fibroblastes embryonnaires (MEF) isoles des souris p16+/+ et p16−/−, et in vivo, chez l'homme, en etudiant l'expression de p16INK4a dans le PVAT, et chez la souris, en etudiant le developpement des depots de TA induit par un traitement Rosiglitazone. Le role de p16INK4a dans le developpement du PVAT a partir de la moelle osseuse a ete etudie chez des souris chimeres p16−/−LDLRKO et p16+/+LDLRKO soumises a un regime western. Resultats La diminution de l'expression de p16INK4a dans les pre-adipocytes 3T3L1 augmente l'adipogenese, mesuree par une augmentation de l'expression de PPARgamma, adiponectine, perilipine et CEBPalpha et une accumulation de lipides, sans affecter l'expansion clonale. Des resultats similaires ont ete obtenus dans les MEF p16−/−. Chez l'homme, p16INK4a est fortement exprime dans le PVAT cardiaque compare aux autres depots de TA. Chez la souris, bien que la deficience de p16INK4a n'influence pas le developpement des differents depots de TA, le traitement des souris p16−/− par la Rosiglitazone augmente specifiquement le developpement du PVAT, associe a une augmentation de l'expression de marqueurs de cellules precurseurs des adipocytes de la moelle. La deficience de p16INK4a dans la moelle osseuse de souris chimeres p16−/− LDLRKO augmente le developpement du PVAT induit par un regime western. Conclusion L'ensemble de ces donnees demontre un nouveau role de p16INK4a dans l'adipogenese et le developpement du PVAT.
- Published
- 2014
- Full Text
- View/download PDF
41. The multisubstrate docking site of the MET receptor is dispensable for MET-mediated RAS signaling and cell scattering
- Author
-
Véronique Fafeur, David Tulasne, Réjane Paumelle, Bernard Vandenbunder, and K. Michael Weidner
- Subjects
Transcriptional Activation ,GRB10 Adaptor Protein ,Biology ,Transfection ,Tropomyosin receptor kinase C ,Receptor tyrosine kinase ,Article ,Cell Line ,Phosphatidylinositol 3-Kinases ,Dogs ,Cell surface receptor ,Cell Movement ,Proto-Oncogene Proteins ,medicine ,Animals ,Phosphorylation ,Molecular Biology ,Adaptor Proteins, Signal Transducing ,Binding Sites ,Proto-Oncogene Proteins c-ets ,Hepatocyte Growth Factor ,Proteins ,Cell Biology ,Proto-Oncogene Proteins c-met ,Phosphoproteins ,Molecular biology ,Recombinant Proteins ,Cell biology ,Transcription Factor AP-1 ,Adaptor Proteins, Vesicular Transport ,Shc Signaling Adaptor Proteins ,ROR1 ,Mutation ,biology.protein ,ras Proteins ,Tyrosine ,Hepatocyte growth factor ,Signal transduction ,Tyrosine kinase ,medicine.drug ,Signal Transduction ,Transcription Factors - Abstract
The scatter factor/hepatocyte growth factor regulates scattering and morphogenesis of epithelial cells through activation of the MET tyrosine kinase receptor. In particular, the noncatalytic C-terminal tail of MET contains two autophosphorylation tyrosine residues, which form a multisubstrate-binding site for several cytoplasmic effectors and are thought to be essential for signal transduction. We show here that a MET receptor mutated on the four C-terminal tyrosine residues, Y1311F, Y1347F, Y1354F, and Y1363F, can induce efficiently a transcriptional response and cell scattering, whereas it cannot induce cell morphogenesis. Although the mutated receptor had lost its ability to recruit and/or activate known signaling molecules, such as GRB2, SHC, GAB1, and PI3K, by using a sensitive association–kinase assay we found that the mutated receptor can still associate and phosphorylate a ∼250-kDa protein. By further examining signal transduction mediated by the mutated MET receptor, we established that it can transmit efficient RAS signaling and that cell scattering by the mutated MET receptor could be inhibited by a pharmacological inhibitor of the MEK-ERK (MAP kinase kinase–extracellular signal-regulated kinase) pathway. We propose that signal transduction by autophosphorylation of the C-terminal tyrosine residues is not the sole mechanism by which the activated MET receptor can transmit RAS signaling and cell scattering.
- Published
- 1999
42. O89 Suppression of the tumour suppressor p16ink4a drives human macrophages towards a phenotype resembling adipose tissue macrophages (ATMs)
- Author
-
E. Rigamonti, Charlotte Paquet, Giulia Chinetti, Kristiaan Wouters, Anne Tailleux, Réjane Paumelle, Céline Cudejko, Bart Staels, and L. Fuentes
- Subjects
Endocrinology, Diabetes and Metabolism ,Adipose tissue macrophages ,General Medicine ,Cell cycle ,Biology ,Phenotype ,Cell biology ,Interleukin 10 ,Endocrinology ,Immunology ,Internal Medicine ,TLR4 ,Gene silencing ,Tumor necrosis factor alpha ,neoplasms ,Interleukin 4 - Abstract
Rationnel Recently, it has been shown that the genomic locus CDKN2A, which partially codes for p16 ink4a , is associated with the development of type 2 diabetes (T2D) in several populations. P16 ink4a is a tumour suppressor that controls the cell cycle and cellular senescence. Macrophages are known to play an instrumental role during the development of T2D. They can present different polarization states : classical (M1 : pro-inflammatory) or alternative (M2 : anti-inflammatory). We therefore aim to investigate the role of p16 ink4a during differentiation and polarization of human monocyte-derived macrophages. Materiels et Methodes p16 ink4a mRNA and protein levels were measured in classically differentiated and in alternatively differentiated (by IL4) human monocyte-derived macrophages. To explore the role of p16 ink4a , its levels were lowered by RNA interference, after which macrophage phenotype was analyzed. In addition, p16 ink4a expression levels were compared between ATMs and monocyte-derived macrophages isolated from obese patients. Resultats p16 ink4a was induced during classical macrophage differentiation. Interestingly, alternative differentiation inhibited p16 ink4a expression. Silencing p16 ink4a resulted in an increase of a number of M2 marker genes (MR, AMAC1, TGFbeta, IL1Ra, IL10, MMP2, ItgB). Surprisingly, despite this M2 phenotype, these cells had increased responses to LPS, shown by amplified expression of pro-inflammatory markers as Cox2, Mcp1, and TNF, possibly as the result from an increase in Tlr4 expression. Additionally, these cells secreted higher levels of TNF protein. Discussion This phenotype closely resembles the one of adipose tissue macrophages (ATMs). Confirming the inverse correlation of p16 ink4a expression levels with an ATM phenotype, we found that in ATMs from obese patients, p16 ink4a levels were lower than in monocyte-derived macrophages of the same subjects. Conclusion Suppression of p16 ink4a in human macrophages leads to a phenotype resembling that of ATMs. P16 ink4a may thus play a role in ATM development and function.
- Published
- 2010
- Full Text
- View/download PDF
43. L'hepatocyte growth factor/scatter factor et son récepteur MET
- Author
-
Réjane Paumelle, David Tulasne, and Véronique Fafeur
- Subjects
medicine.medical_specialty ,Chemistry ,Scatter Factor ,Biological activity ,General Medicine ,General Biochemistry, Genetics and Molecular Biology ,Cell biology ,Endocrinology ,Growth factor receptor ,Internal medicine ,medicine ,Hepatocyte growth factor ,Signal transduction ,medicine.drug - Published
- 2001
- Full Text
- View/download PDF
44. DOWN-REGULATION OF THE TUMOR SUPPRESSOR P16INK4A CONTRIBUTES TO THE POLARIZATION OF HUMAN MACROPHAGES TOWARDS AN ATM-LIKE PHENOTYPE
- Author
-
Wouters, K., Fuentes, L., Cudejko, C., Hannou, S., Mayi, T., Tailleux, A., Chinetti-Gbaguidi, G., Pattou, F., Staels, B., and Réjane Paumelle
45. P16INK4A-DEFICIENCY PROMOTES MACROPHAGES FROM CLASSICAL TO ALTERNATIVE ACTIVATION
- Author
-
Cudejko, C., Wouters, K., Fuentes, L., Hannou, S., Paquet, C., Tailleux, A., Chinetti, G., Dombrowicz, D., Staels, B., and Réjane Paumelle
46. Role of the cell cycle regulator p16INK4a in type 2 diabetes and Non-Alcoholic Fatty Liver Disease development : control of hepatic gluconeogenesis through the the cell cycle regulator p16INK4a
- Author
-
Hannou, Sarah Anissa, STAR, ABES, Récepteurs nucléaires, maladies cardiovasculaires et diabète - U 1011 (RNMCD), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Institut National de la Santé et de la Recherche Médicale (INSERM), Université du Droit et de la Santé - Lille II, Réjane Paumelle, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), and Réjane Paumelle-Lestrelin
- Subjects
[SDV.MHEP] Life Sciences [q-bio]/Human health and pathology ,Suppresseur de tumeur ,NAFLD ,Diabetes ,neoplasms ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology ,Diabète de type 2 ,Non-alcoholic fatty liver disease - Abstract
P16INK4a is a tumor suppressor protein well described as a cell cycle regulator. p16INK4a blocks cyclin D/ cyclin dependent kinase (CDK) 4 activity by binding to the catalytic subunit of CDK4, preventing retinoblastoma protein phosphorylation and subsequently the release of the E2F1 transcription factor. As a consequence; the transcription of genes required for progression to the S phase is restrained. Recently, genome-wide association studies (GWAS) associated the CDKN2A locus, encoding, amongst other genes, p16INK4A, with an increased risk of type 2 diabetes (T2D) development. However, the pathophysiological link between p16INK4a and hepatic glucose homeostasis remains unknown. In this context, we investigated the role of p16INK4a in hepatic glucose metabolism in vivo using p16+/+ and p16-/- mice and in vitro using primary hepatocytes and the AML12 hepatocyte cell line.p16-/- mice exhibited a higher response to fasting as shown by an increased hepatic gluconeogenic gene expression including phosphoenolpyruvate carboxykinase (PEPCK), fructose-1,6-biphosphatase (F1,6P) and glucose-6-phosphatase (G6Pase). p16-/- mice displayed an enhanced hepatic gluconeogenic activity in vivo upon administration of pyruvate, a gluconeogenic substrate. Consistent with this, in vitro data show that p16-/- primary hepatocytes display an enhanced gluconeogenic response to glucagon. In addition, knock down of p16INK4a by siRNA in AML12 cells increased gluconeogenic gene expression. These effects were associated with an increased activity of the PKA-CREB signaling pathway which leads to increased PPARg coactivator 1 (PGC1)α expression, a key transcriptional co-activator that regulates genes involved in energy metabolism. These findings describe a new function for p16INK4a as an actor in the hepatic adaptation to metabolic stress and suggest that p16INK4a could play a role during T2D development ., Le diabète de type 2 (T2D) est un trouble métabolique de l’homéostasie du glucose. Il est caractérisé par une hyperglycémie chronique qui résulte en partie d’une production excessive de glucose par le foie conséquence au développement d’une résistance à l’insuline. Le T2D est une pathologie multifactorielle à la fois génétique et environnementale. Récemment des études d’associations de gènes (GWAS) dans différentes cohortes ont mis en évidence une forte corrélation entre le locus CDKN2A et le risque de développement du T2D en se basant sur certains paramètres métaboliques tel que la glycémie à jeun. Le locus CDKN2A code pour des protéines régulatrices du cycle cellulaire dont la protéine p16INK4a. p16INK4a est largement décrite dans la littérature pour son rôle suppresseur de tumeurs et comme marqueur de sénescence, cependant son rôle dans le contrôle de l’homéostasie hépatique du glucose n’a jamais été rapporté. Afin de déterminer le rôle de p16INK4a dans le métabolisme hépatique du glucose, nous avons utilisé in vivo des souris sauvages (p16+/+) et déficientes pour p16INK4a (p16-/-) et in vitro des hépatocytes primaires ainsi que la lignée AML12. Nous avons montrés qu’après un jeune, les souris p16-/- présentent une hypoglycémie moins prononcée qui se traduit par une expression hépatique plus élevée de gènes de la néoglucogenèse tels que PEPCK, G6Pase et PGC1a. De plus, les hépatocytes primaires de souris p16-/- présentent une meilleur réponse au glucagon que ceux des p16+/+. Enfin, nous avons montrés que la diminution d’expression de p16INK4a par siRNA dans les AML12 suffit à induire l’expression des gènes de la néoglucogenèse et potentialise la réponse de ces cellules à différents stimuli gluconéogenique. L’effet observé dépend de l’activation de la voie PKA-CREB-PGC1A. L’ensemble de ces données montrent pour la première fois que p16INK4a pourrait jouer un rôle un cours du développement du T2D.
- Published
- 2014
47. Rôle du gène suppresseur de tumeur p16INK4a dans le métabolisme hépatique des lipides au cours du jeûne
- Author
-
Deleye, Yann, Récepteurs nucléaires, maladies cardiovasculaires et diabète - U 1011 (RNMCD), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Université de Lille, and Réjane Paumelle-Lestrelin
- Subjects
AMPK ,PPARalpha ,P16INK4a ,Cycle cellulaire ,Cell cycle ,Mitochondrie ,Métabolisme hépatique des lipides ,B-oxydation des acides gras ,CDKN2A ,SIRT1 ,Liver ,NAFLD ,Cétogenèse ,Fat metabolism ,Jeûne ,Foie ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology - Abstract
P16INK4a is a tumor suppressor protein that is a well described cell cycle regulator. Recently, genome-wide association studies (GWAS) associated the CDKN2A locus, from which p16INK4A is encoded, with increased risk for development of type 2 diabetes. A pathophysiological link between p16INK4a and hepatic glucose homeostasis has been unraveled recently, through the control of gluconeogenesis. Patients with T2D also present with disturbances in fat metabolism, associated with an increased prevalence to Non Alcoholic Fatty liver diseases (NAFLD). In this context, we investigated the role of p16INK4a in hepatic lipid metabolism in vitro using primary hepatocytes, the murin AML12 and human IHH hepatocyte cell line transfected respectively with siRNA-CDKN2A and siRNA-p16 and in vivo using p16+/+ and p16-/- mice.Transcriptomic analyses of p16+/+ and p16-/- primary hepatocytes using microarrays revealed that metabolic and PPARα signaling pathways were among the most modulated in p16 absence. Moreover, in primary hepatocytes and in hepatocyte cell lines, p16 deficiency modulates a subset of PPARα target genes associated to fatty acids oxidation (FAO). These effects were associated with an increased response to GW647, a PPAR945; agonist, and reversed by siRNA targeting PPAR45;. Investigating known PPAR945; activators and transcriptional co-activators in vitro, we found that upregulation of FAO genes expression was linked to SIRT1. AMPK is a known activator of FAO and has been shown to induce SIRT1 activation through increase of NAD/NADH ratio. Interestingly, downregulation of p16 expression in vitro led to increased AMPK phosphorylation and activation.In vitro, p16-/- primary hepatocytes demonstrated enhanced fatty acid oxidation of oleate compared to p16+/+. During fasting, enhanced FAO leads to a shift of acetyl-coA utilization from the TCA cycle to ketogenesis. Interestingly, p16-/- mice showed a tendency to produce more ketone bodies than their control littermate after sodium octanoate injection. These findings describe a new function for p16INK4a in hepatic lipid metabolism through activation of AMPK-SIRT1-PPARα pathway.; Plusieurs études génétiques d’association de gènes ont mis en évidence le locus CDKN2A, codant notamment la protéine p16INK4a (p16), un gène suppresseur de tumeur, comme étant associé au risque de développement du diabète de type 2 (T2D) et des maladies cardiovasculaires. Le T2D, caractérisé par une hyperglycémie et/ou une insulinorésistance, s’accompagne fréquemment d’une stéatose hépatique prédisposant au développement de la NASH (Non Alcoholic Steatohepatitis), et contribuant à un risque accru de complications cardiovasculaires. Nous avons montré que la déficience de p16 augmente la néoglucogenèse hépatique lors d'un jeûne suggérant un rôle de p16 dans le T2D. Cependant, le rôle de p16 dans l’homéostasie hépatique des lipides n’est à ce jour pas connu. Afin de déterminer le rôle de p16 dans le métabolisme hépatique des lipides, nous avons utilisé des hépatocytes primaires isolés de souris p16+/+ et p16-/- ainsi que les lignées d’hépatocytes murins AML12 et humains IHH transfectées respectivement avec un siRNA-CDKN2A ou siRNA-p16.Nous avons montré par l’étude transcriptomique des hépatocytes primaires de souris par puces à ADN, que l’absence de p16 module les voies métaboliques associées à PPARα et contrôle préférentiellement l’expression de certains gènes cibles de PPARα, associés au catabolisme des acides gras. _x000D_Dans les lignées cellulaires hépatocytaires, certains de ces gènes sont également modulés après diminution de l’expression de p16 par siRNA. Ces effets sont associés à une meilleure réponse à l’agoniste de PPARα, le GW647, et abolis par un siRNA ciblant PPARα. Afin d’étudier par quel(s) mécanisme(s) l’absence de p16 module l’expression des gènes cibles de PPARα, le rôle de certains de ses coactivateurs transcriptionnels a été étudié par l’utilisation d’inhibiteurs pharmacologiques ou de siRNA. De manière intéressante, nous avons pu montrer que l’absence de p16 active la voie AMPK-SIRT1 afin d’augmenter l’expression des gènes cibles de la β-oxydation et de la cétogenèse. De plus, ces effets sont indépendants du rôle de p16 dans le cycle cellulaire. In vitro, les hépatocytes primaires p16-/-, incubés avec de l’oléate radiomarqué, présentent une β-oxydation augmentée comparés aux hépatocytes primaires p16+/+. Au cours du jeûne, l’acétyl-CoA provenant de la β-oxydation est redirigé vers la production de corps cétoniques. De manière intéressante, les souris p16-/- injectées avec du sodium octanoate, un acide gras à chaîne courte préférentiellement utilisé via la cétogenèse, ont une tendance à avoir une production plus importante de corps cétoniques.Nous avons ainsi pu mettre en évidence que la déficience de p16 dans les hépatocytes favorise l’utilisation des acides gras, via l’activation de la voie SIRT1-AMPK-PPARα.
- Published
- 2018
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.