21 results on '"Quiroga Artigas, Gonzalo"'
Search Results
2. Storage cell proliferation during somatic growth establishes that tardigrades are not eutelic organisms
- Author
-
Quiroga-Artigas, Gonzalo, primary and Moriel-Carretero, María, additional
- Published
- 2024
- Full Text
- View/download PDF
3. The genome of the jellyfish Clytia hemisphaerica and the evolution of the cnidarian life-cycle
- Author
-
Leclère, Lucas, Horin, Coralie, Chevalier, Sandra, Lapébie, Pascal, Dru, Philippe, Peron, Sophie, Jager, Muriel, Condamine, Thomas, Pottin, Karen, Romano, Séverine, Steger, Julia, Sinigaglia, Chiara, Barreau, Carine, Quiroga Artigas, Gonzalo, Ruggiero, Antonella, Fourrage, Cécile, Kraus, Johanna E. M., Poulain, Julie, Aury, Jean-Marc, Wincker, Patrick, Quéinnec, Eric, Technau, Ulrich, Manuel, Michaël, Momose, Tsuyoshi, Houliston, Evelyn, and Copley, Richard R.
- Published
- 2019
- Full Text
- View/download PDF
4. Storage cell proliferation during somatic growth establishes that tardigrades are not eutelic organisms
- Author
-
Quiroga-Artigas, Gonzalo, primary and Moriel-Carretero, Maria, additional
- Published
- 2023
- Full Text
- View/download PDF
5. Gene knockdown via electroporation of short hairpin RNAs in embryos of the marine hydroid Hydractinia symbiolongicarpus
- Author
-
Quiroga-Artigas, Gonzalo, Duscher, Alexandrea, Lundquist, Katelyn, Waletich, Justin, and Schnitzler, Christine E.
- Published
- 2020
- Full Text
- View/download PDF
6. Publisher Correction: Gene knockdown via electroporation of short hairpin RNAs in embryos of the marine hydroid Hydractinia symbiolongicarpus
- Author
-
Quiroga-Artigas, Gonzalo, Duscher, Alexandrea, Lundquist, Katelyn, Waletich, Justin, and Schnitzler, Christine E.
- Published
- 2020
- Full Text
- View/download PDF
7. The genome of the colonial hydroid Hydractiniareveals that their stem cells use a toolkit of evolutionarily shared genes with all animals
- Author
-
Schnitzler, Christine E., Chang, E. Sally, Waletich, Justin, Quiroga-Artigas, Gonzalo, Wong, Wai Yee, Nguyen, Anh-Dao, Barreira, Sofia N., Doonan, Liam B., Gonzalez, Paul, Koren, Sergey, Gahan, James M., Sanders, Steven M., Bradshaw, Brian, DuBuc, Timothy Q., Febrimarsa, de Jong, Danielle, Nawrocki, Eric P., Larson, Alexandra, Klasfeld, Samantha, Gornik, Sebastian G., Moreland, R. Travis, Wolfsberg, Tyra G., Phillippy, Adam M., Mullikin, James C., Simakov, Oleg, Cartwright, Paulyn, Nicotra, Matthew, Frank, Uri, and Baxevanis, Andreas D.
- Abstract
Hydractiniais a colonial marine hydroid that shows remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractiniaspecies, Hydractinia symbiolongicarpusand Hydractinia echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpusand identified cell-type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia’s i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractiniahas a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia’s stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractiniapresented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from nonself.
- Published
- 2024
- Full Text
- View/download PDF
8. GNL3 is an evolutionarily conserved stem cell gene influencing cell proliferation, animal growth and regeneration in the hydrozoan Hydractinia
- Author
-
Quiroga-Artigas, Gonzalo, primary, de Jong, Danielle, additional, and Schnitzler, Christine E., additional
- Published
- 2022
- Full Text
- View/download PDF
9. Supplementary_Information_GNL3.pdf from GNL3 is an evolutionarily conserved stem cell gene influencing cell proliferation, animal growth and regeneration in the hydrozoan Hydractinia
- Author
-
Quiroga-Artigas, Gonzalo, de Jong, Danielle, and Schnitzler, Christine E.
- Abstract
Nucleostemin (NS) is a vertebrate gene preferentially expressed in stem and cancer cells, which acts to regulate cell cycle progression, genome stability and ribosome biogenesis. NS and its paralogous gene, GNL3-like (GNL3 L), arose in the vertebrate clade after a duplication event from their orthologous gene, G protein Nucleolar 3 (GNL3). Research on invertebrate GNL3, however, has been limited. To gain a greater understanding of the evolution and functions of the GNL3 gene, we have performed studies in the hydrozoan cnidarian Hydractinia symbiolongicarpus, a colonial hydroid that continuously generates pluripotent stem cells throughout its life cycle and presents impressive regenerative abilities. We show that Hydractinia GNL3 is expressed in stem and germline cells. The knockdown of GNL3 reduces the number of mitotic and S-phase cells in Hydractinia larvae of different ages. Genome editing of Hydractinia GNL3 via CRISPR/Cas9 resulted in colonies with reduced growth rates, polyps with impaired regeneration capabilities, gonadal morphological defects, and low sperm motility. Collectively, our study shows that GNL3 is an evolutionarily conserved stem cell and germline gene involved in cell proliferation, animal growth, regeneration and sexual reproduction in Hydractinia, and sheds new light into the evolution of GNL3 and of stem cell systems.
- Published
- 2022
- Full Text
- View/download PDF
10. Gene knockdown via electroporation of short hairpin RNAs in embryos of the marine hydroidHydractinia symbiolongicarpus
- Author
-
Quiroga-Artigas, Gonzalo, primary, Duscher, Alexandrea, additional, Lundquist, Katelyn, additional, Waletich, Justin, additional, and Schnitzler, Christine E., additional
- Published
- 2020
- Full Text
- View/download PDF
11. A G protein–coupled receptor mediates neuropeptide-induced oocyte maturation in the jellyfish Clytia
- Author
-
Quiroga Artigas, Gonzalo, primary, Lapébie, Pascal, additional, Leclère, Lucas, additional, Bauknecht, Philipp, additional, Uveira, Julie, additional, Chevalier, Sandra, additional, Jékely, Gáspár, additional, Momose, Tsuyoshi, additional, and Houliston, Evelyn, additional
- Published
- 2020
- Full Text
- View/download PDF
12. A G-protein-coupled receptor mediates neuropeptide-induced oocyte maturation in the jellyfish Clytia
- Author
-
Quiroga Artigas, Gonzalo, primary, Lapébie, Pascal, additional, Leclère, Lucas, additional, Bauknecht, Philip, additional, Uveira, Julie, additional, Chevalier, Sandra, additional, Jékely, Gáspár, additional, Momose, Tsuyoshi, additional, and Houliston, Evelyn, additional
- Published
- 2019
- Full Text
- View/download PDF
13. Light-induced oocyte maturation in the hydrozoan clytia hemisphaerica
- Author
-
Quiroga Artigas, Gonzalo, Laboratoire de Biologie du Développement de Villefranche sur mer (LBDV), Observatoire océanologique de Villefranche-sur-mer (OOVM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris VI, and Evelyn Houliston
- Subjects
Neuropeptide ,Opsin ,Gpcr ,Clytia ,Oocyte maturation ,Lumière ,Maturation ovocytaire ,[SDV.BDD]Life Sciences [q-bio]/Development Biology - Abstract
Tight control of oocyte maturation and of gamete release is essential for successful sexual reproduction in the animal kingdom. These processes are precisely coordinated by endocrine and/or environmental cues, depending on the species, but much remains to be learned about their regulation. Within the Cnidaria, many hydrozoan jellyfish are known to spawn mature gametes following dark/light transitions. To characterise the cellular and molecular machinery linking light reception and oocyte maturation initiation, I have studied the hydrozoan jellyfish Clytia hemisphaerica. My thesis work had three parts, each involving the identification of a key molecular component of this process.My initial study was part of a collaboration with N. Takeda (Asamushi) and R. Deguchi (Sendai), who identified the endogenous oocyte Maturation-Inducing Hormones (MIH) in Clytia as WPRPamide-related tetrapeptides, generated by cleavage of two neuropeptide precursors. I showed by in situ hybridization and immunofluorescence that Clytia MIH is produced by neurosecretory cells of the gonad ectoderm that co-express the two precursor genes, and that it is secreted upon light stimulation. This study paved the way for identification of regulators acting upstream and downstream of MIH release in the gonads, specifically the ones involved in photoreception in the gonad ectoderm, and in MIH reception by the oocytes. To identify the Clytia MIH receptor (CheMIHR) in the oocytes, I compiled a shortlist of 16 candidate G protein-coupled receptors (GPCRs) from gonad transcriptome data. I cloned all 16 cDNAs and, using a cell culture-based "GPCR deorphanization" assay (collaboration with P. Bauknecht and G. Jékély; MPI, Tübingen), identified one GPCR that was activated by synthetic MIH peptides. Its in vivo function as the essential MIH receptor was confirmed by CRISPR/Cas9 gene editing. Introduction of a frame-shift mutation in the CheMIHR gene impaired growth of Clytia polyp colonies and also the spawning behaviour of mature medusae. Confirming the function of CheMIHR, oocyte maturation in CheMIHR mutants could not be triggered by light or by synthetic MIH, but could be restored using cell-permeable analogues of cAMP, known to act downstream of MIH reception in hydrozoan oocytes. Phylogenetic analyses showed that Clytia MIHR is related to a subset of bilaterian neuropeptide hormone receptor families involved in diverse physiological processes, including regulation of reproduction. Accordingly, in situ hybridization showed the expression of Clytia MIH precursors and MIHR in non-gonadal neural cells, suggesting a wider role of Clytia MIH-MIHR besides oocyte maturation initiation.To address gonad photoreception, I showed that Clytia spawning is selectively induced by blue-cyan light, and then identified using gonad transcriptome data an opsin photopigment (Opsin9) highly expressed in the ectoderm. Strikingly, in situ hybridization showed that Opsin9 is expressed in the MIH-secreting cells. Introduction of a frame-shift mutation into the Opsin9 gene via CRISPR/Cas9 prevented oocyte maturation and spawning of mutant jellyfish in response to light. Anti-MIH immunofluorescence and rescue experiments with synthetic MIH showed that the essential function of Opsin9 is upstream of MIH release. Spawning in Clytia thus appears to be regulated by a dual function photosensory-neurosecretory cell type, perhaps retained from a distant metazoan ancestor...; Un contrôle précis de la maturation ovocytaire et de la ponte sont essentiels au succès de la reproduction sexuée au sein le règne animal. Ces processus sont coordonnés précisément par des signaux endocriniens et/ou environnementaux, selon les espèces, mais beaucoup reste à apprendre sur leurs régulations. Chez les cnidaires, de nombreuses méduses du groupe des hydrozoaires sont connues pour produire des gamètes en réponse à la transition nuit/jour. Pour caractériser les machineries cellulaires et moléculaires liant la réception de la lumière à l'initiation de la maturation ovocytaire, j'ai étudié la méduse hydrozoaire Clytia hemisphaerica. Mon travail de thèse s’est découpé en trois parties, chacune impliquant l'identification d'un composant moléculaire clé de ce processus.Mon étude initiale faisait partie d'une collaboration avec N. Takeda (Asamushi) et R. Deguchi (Sendai), chercheurs qui avaient, avant le début de ma thèse, identifié chez Clytia les Hormones d'Incitation de Maturation ovocytaire endogènes (MIH) comme étant des tétrapeptides de type WPRPamide, produit par clivage de deux précurseurs à neuropeptides. J'ai montré par hybridation in situ et immunofluorescence que les deux gènes précurseurs du MIH sont exprimés par un type de cellules neurosécrétrices localisées au niveau de l’ectoderme de la gonade, et que les peptides MIH sont sécrétés par ces mêmes cellules suite à une stimulation lumineuse. Cette étude a posé les bases permettant l'identification des régulateurs agissant en amont et en aval du MIH, et plus spécifiquement ceux impliqués dans la photoréception de l’ectoderme de la gonade et la réception du MIH par les ovocytes.Pour identifier le récepteur du MIH de Clytia (CheMIHR) dans les ovocytes, j'ai compilé à partir de données transcriptomiques issues de tissus de gonades, une liste de 16 protéines candidates de la famille des Récepteurs Couplés aux Protéines G (GPCR). J'ai cloné les 16 cDNAs et, utilisant une méthode de « deorphelinisation » de GPCR basée sur de la culture cellulaire (collaboration avec P. Bauknecht et G. Jékély; MPI, Tübingen), j’ai pu identifier un GPCR activée par des peptides MIH synthétiques. Sa fonction in vivo comme récepteur essentiel du MIH a été confirmée par la méthode d'édition génétique CRISPR/CAS9. La délétion ainsi produite, entraînant un déplacement du cadre de lecture au sein du gène CheMIHR, a détérioré la croissance des colonies de polypes et le comportement de ponte des méduses matures. Confirmant la fonction de CheMIHR, la maturation ovocytaire chez des mutants CheMIHR ne pouvait pas être déclenchée par la lumière ou par addition de MIH synthétiques, mais pouvait être rétablie en utilisant des analogues au cAMP, molécule connue pour agir en aval de la réception du MIH dans les ovocytes d’hydrozoaires. Des analyses phylogénétiques ont montré que Clytia MIHR est affilié à un sous-ensemble de familles de neuropeptides de bilaterians impliqués dans divers processus physiologiques, notamment la régulation de la reproduction. Des hybridations in situ sur les méduses Clytia, ont en outre montré l'expression des précurseurs de CheMIH et de CheMIHR dans des cellules neurales hors de la gonade, suggérant un rôle plus large du couple CheMIH-MIHR que la seule initiation de la maturation ovocytaire.Pour mieux comprendre la photoréception des gonades chez Clyita, j'ai montré que la ponte est sélectivement incitée par la lumière bleu-cyan, et mis en évidence, grâce à l’analyse de données de transcriptome de gonade, qu’un photopigment de la famille des Opsin (Opsin9) est hautement exprimé dans l'ectoderme. De façon saisissante, les hybridations in situ ont montré que le gène Opsin9 est exprimé dans les mêmes cellules sécrétant le MIH. L'introduction d'une mutation de changement de cadre de lecture dans le gène Opsin9 via la technologie CRISPR/Cas9 a empêché la maturation ovocytaire et la ponte des méduses mutantes en réponse à la lumière...
- Published
- 2017
14. Régulation de la maturation ovocytaire par la lumière chez l'hydrozoaire clytia hemisphaerica
- Author
-
Quiroga Artigas, Gonzalo, Laboratoire de Biologie du Développement de Villefranche sur mer (LBDV), Observatoire océanologique de Villefranche-sur-mer (OOVM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris VI, and Evelyn Houliston
- Subjects
Neuropeptide ,Opsin ,Gpcr ,Clytia ,Oocyte maturation ,Lumière ,Maturation ovocytaire ,[SDV.BDD]Life Sciences [q-bio]/Development Biology - Abstract
Tight control of oocyte maturation and of gamete release is essential for successful sexual reproduction in the animal kingdom. These processes are precisely coordinated by endocrine and/or environmental cues, depending on the species, but much remains to be learned about their regulation. Within the Cnidaria, many hydrozoan jellyfish are known to spawn mature gametes following dark/light transitions. To characterise the cellular and molecular machinery linking light reception and oocyte maturation initiation, I have studied the hydrozoan jellyfish Clytia hemisphaerica. My thesis work had three parts, each involving the identification of a key molecular component of this process.My initial study was part of a collaboration with N. Takeda (Asamushi) and R. Deguchi (Sendai), who identified the endogenous oocyte Maturation-Inducing Hormones (MIH) in Clytia as WPRPamide-related tetrapeptides, generated by cleavage of two neuropeptide precursors. I showed by in situ hybridization and immunofluorescence that Clytia MIH is produced by neurosecretory cells of the gonad ectoderm that co-express the two precursor genes, and that it is secreted upon light stimulation. This study paved the way for identification of regulators acting upstream and downstream of MIH release in the gonads, specifically the ones involved in photoreception in the gonad ectoderm, and in MIH reception by the oocytes. To identify the Clytia MIH receptor (CheMIHR) in the oocytes, I compiled a shortlist of 16 candidate G protein-coupled receptors (GPCRs) from gonad transcriptome data. I cloned all 16 cDNAs and, using a cell culture-based "GPCR deorphanization" assay (collaboration with P. Bauknecht and G. Jékély; MPI, Tübingen), identified one GPCR that was activated by synthetic MIH peptides. Its in vivo function as the essential MIH receptor was confirmed by CRISPR/Cas9 gene editing. Introduction of a frame-shift mutation in the CheMIHR gene impaired growth of Clytia polyp colonies and also the spawning behaviour of mature medusae. Confirming the function of CheMIHR, oocyte maturation in CheMIHR mutants could not be triggered by light or by synthetic MIH, but could be restored using cell-permeable analogues of cAMP, known to act downstream of MIH reception in hydrozoan oocytes. Phylogenetic analyses showed that Clytia MIHR is related to a subset of bilaterian neuropeptide hormone receptor families involved in diverse physiological processes, including regulation of reproduction. Accordingly, in situ hybridization showed the expression of Clytia MIH precursors and MIHR in non-gonadal neural cells, suggesting a wider role of Clytia MIH-MIHR besides oocyte maturation initiation.To address gonad photoreception, I showed that Clytia spawning is selectively induced by blue-cyan light, and then identified using gonad transcriptome data an opsin photopigment (Opsin9) highly expressed in the ectoderm. Strikingly, in situ hybridization showed that Opsin9 is expressed in the MIH-secreting cells. Introduction of a frame-shift mutation into the Opsin9 gene via CRISPR/Cas9 prevented oocyte maturation and spawning of mutant jellyfish in response to light. Anti-MIH immunofluorescence and rescue experiments with synthetic MIH showed that the essential function of Opsin9 is upstream of MIH release. Spawning in Clytia thus appears to be regulated by a dual function photosensory-neurosecretory cell type, perhaps retained from a distant metazoan ancestor...; Un contrôle précis de la maturation ovocytaire et de la ponte sont essentiels au succès de la reproduction sexuée au sein le règne animal. Ces processus sont coordonnés précisément par des signaux endocriniens et/ou environnementaux, selon les espèces, mais beaucoup reste à apprendre sur leurs régulations. Chez les cnidaires, de nombreuses méduses du groupe des hydrozoaires sont connues pour produire des gamètes en réponse à la transition nuit/jour. Pour caractériser les machineries cellulaires et moléculaires liant la réception de la lumière à l'initiation de la maturation ovocytaire, j'ai étudié la méduse hydrozoaire Clytia hemisphaerica. Mon travail de thèse s’est découpé en trois parties, chacune impliquant l'identification d'un composant moléculaire clé de ce processus.Mon étude initiale faisait partie d'une collaboration avec N. Takeda (Asamushi) et R. Deguchi (Sendai), chercheurs qui avaient, avant le début de ma thèse, identifié chez Clytia les Hormones d'Incitation de Maturation ovocytaire endogènes (MIH) comme étant des tétrapeptides de type WPRPamide, produit par clivage de deux précurseurs à neuropeptides. J'ai montré par hybridation in situ et immunofluorescence que les deux gènes précurseurs du MIH sont exprimés par un type de cellules neurosécrétrices localisées au niveau de l’ectoderme de la gonade, et que les peptides MIH sont sécrétés par ces mêmes cellules suite à une stimulation lumineuse. Cette étude a posé les bases permettant l'identification des régulateurs agissant en amont et en aval du MIH, et plus spécifiquement ceux impliqués dans la photoréception de l’ectoderme de la gonade et la réception du MIH par les ovocytes.Pour identifier le récepteur du MIH de Clytia (CheMIHR) dans les ovocytes, j'ai compilé à partir de données transcriptomiques issues de tissus de gonades, une liste de 16 protéines candidates de la famille des Récepteurs Couplés aux Protéines G (GPCR). J'ai cloné les 16 cDNAs et, utilisant une méthode de « deorphelinisation » de GPCR basée sur de la culture cellulaire (collaboration avec P. Bauknecht et G. Jékély; MPI, Tübingen), j’ai pu identifier un GPCR activée par des peptides MIH synthétiques. Sa fonction in vivo comme récepteur essentiel du MIH a été confirmée par la méthode d'édition génétique CRISPR/CAS9. La délétion ainsi produite, entraînant un déplacement du cadre de lecture au sein du gène CheMIHR, a détérioré la croissance des colonies de polypes et le comportement de ponte des méduses matures. Confirmant la fonction de CheMIHR, la maturation ovocytaire chez des mutants CheMIHR ne pouvait pas être déclenchée par la lumière ou par addition de MIH synthétiques, mais pouvait être rétablie en utilisant des analogues au cAMP, molécule connue pour agir en aval de la réception du MIH dans les ovocytes d’hydrozoaires. Des analyses phylogénétiques ont montré que Clytia MIHR est affilié à un sous-ensemble de familles de neuropeptides de bilaterians impliqués dans divers processus physiologiques, notamment la régulation de la reproduction. Des hybridations in situ sur les méduses Clytia, ont en outre montré l'expression des précurseurs de CheMIH et de CheMIHR dans des cellules neurales hors de la gonade, suggérant un rôle plus large du couple CheMIH-MIHR que la seule initiation de la maturation ovocytaire.Pour mieux comprendre la photoréception des gonades chez Clyita, j'ai montré que la ponte est sélectivement incitée par la lumière bleu-cyan, et mis en évidence, grâce à l’analyse de données de transcriptome de gonade, qu’un photopigment de la famille des Opsin (Opsin9) est hautement exprimé dans l'ectoderme. De façon saisissante, les hybridations in situ ont montré que le gène Opsin9 est exprimé dans les mêmes cellules sécrétant le MIH. L'introduction d'une mutation de changement de cadre de lecture dans le gène Opsin9 via la technologie CRISPR/Cas9 a empêché la maturation ovocytaire et la ponte des méduses mutantes en réponse à la lumière...
- Published
- 2017
15. A gonad-expressed opsin mediates light-induced spawning in the jellyfish Clytia
- Author
-
Quiroga Artigas, Gonzalo, primary, Lapébie, Pascal, additional, Leclère, Lucas, additional, Takeda, Noriyo, additional, Deguchi, Ryusaku, additional, Jékely, Gáspár, additional, Momose, Tsuyoshi, additional, and Houliston, Evelyn, additional
- Published
- 2018
- Full Text
- View/download PDF
16. Author response: A gonad-expressed opsin mediates light-induced spawning in the jellyfish Clytia
- Author
-
Quiroga Artigas, Gonzalo, primary, Lapébie, Pascal, additional, Leclère, Lucas, additional, Takeda, Noriyo, additional, Deguchi, Ryusaku, additional, Jékely, Gáspár, additional, Momose, Tsuyoshi, additional, and Houliston, Evelyn, additional
- Published
- 2017
- Full Text
- View/download PDF
17. Identification of jellyfish neuropeptides that act directly as oocyte maturation inducing hormones
- Author
-
Takeda, Noriyo, primary, Kon, Yota, additional, Quiroga Artigas, Gonzalo, additional, Lapébie, Pascal, additional, Barreau, Carine, additional, Koizumi, Osamu, additional, Kishimoto, Takeo, additional, Tachibana, Kazunori, additional, Houliston, Evelyn, additional, and Deguchi, Ryusaku, additional
- Published
- 2017
- Full Text
- View/download PDF
18. A gonad-expressed opsin mediates light-induced spawning in the jellyfish Clytia
- Author
-
Quiroga Artigas, Gonzalo, primary, Lapébie, Pascal, additional, Leclère, Lucas, additional, Takeda, Noriyo, additional, Deguchi, Ryusaku, additional, Jékely, Gáspár, additional, Momose, Tsuyoshi, additional, and Houliston, Evelyn, additional
- Published
- 2017
- Full Text
- View/download PDF
19. The genome of the colonial hydroid Hydractinia reveals that their stem cells use a toolkit of evolutionarily shared genes with all animals.
- Author
-
Schnitzler CE, Chang ES, Waletich J, Quiroga-Artigas G, Wong WY, Nguyen AD, Barreira SN, Doonan LB, Gonzalez P, Koren S, Gahan JM, Sanders SM, Bradshaw B, DuBuc TQ, Febrimarsa, de Jong D, Nawrocki EP, Larson A, Klasfeld S, Gornik SG, Moreland RT, Wolfsberg TG, Phillippy AM, Mullikin JC, Simakov O, Cartwright P, Nicotra M, Frank U, and Baxevanis AD
- Subjects
- Animals, Evolution, Molecular, Transcriptome, Stem Cells metabolism, Male, Phylogeny, Single-Cell Analysis methods, Hydrozoa genetics, Genome
- Abstract
Hydractinia is a colonial marine hydroid that shows remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, Hydractinia symbiolongicarpus and Hydractinia echinata , placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell-type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia 's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia 's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from nonself., (© 2024 Schnitzler et al.; Published by Cold Spring Harbor Laboratory Press.)
- Published
- 2024
- Full Text
- View/download PDF
20. The genome of the colonial hydroid Hydractinia reveals their stem cells utilize a toolkit of evolutionarily shared genes with all animals.
- Author
-
Schnitzler CE, Chang ES, Waletich J, Quiroga-Artigas G, Wong WY, Nguyen AD, Barreira SN, Doonan L, Gonzalez P, Koren S, Gahan JM, Sanders SM, Bradshaw B, DuBuc TQ, Febrimarsa, de Jong D, Nawrocki EP, Larson A, Klasfeld S, Gornik SG, Moreland RT, Wolfsberg TG, Phillippy AM, Mullikin JC, Simakov O, Cartwright P, Nicotra M, Frank U, and Baxevanis AD
- Abstract
Hydractinia is a colonial marine hydroid that exhibits remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, H. symbiolongicarpus and H. echinata , placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia 's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia 's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from non-self., Competing Interests: Competing interests: The authors declare no competing financial interests.
- Published
- 2023
- Full Text
- View/download PDF
21. Identification of jellyfish neuropeptides that act directly as oocyte maturation-inducing hormones.
- Author
-
Takeda N, Kon Y, Quiroga Artigas G, Lapébie P, Barreau C, Koizumi O, Kishimoto T, Tachibana K, Houliston E, and Deguchi R
- Subjects
- Amino Acid Sequence, Animals, Darkness, Female, Gene Expression Profiling, Gonadal Steroid Hormones genetics, Gonadal Steroid Hormones pharmacology, Gonadal Steroid Hormones physiology, Hydrozoa genetics, Light, Male, Neuropeptides genetics, Neuropeptides pharmacology, Neurosecretory Systems cytology, Oligopeptides genetics, Oligopeptides pharmacology, Oligopeptides physiology, Oocytes drug effects, Oogenesis drug effects, Oogenesis genetics, Species Specificity, Hydrozoa growth & development, Hydrozoa physiology, Neuropeptides physiology, Oocytes growth & development, Oogenesis physiology
- Abstract
Oocyte meiotic maturation is crucial for sexually reproducing animals, and its core cytoplasmic regulators are highly conserved between species. By contrast, the few known maturation-inducing hormones (MIHs) that act on oocytes to initiate this process are highly variable in their molecular nature. Using the hydrozoan jellyfish species Clytia and Cladonema , which undergo oocyte maturation in response to dark-light and light-dark transitions, respectively, we deduced amidated tetrapeptide sequences from gonad transcriptome data and found that synthetic peptides could induce maturation of isolated oocytes at nanomolar concentrations. Antibody preabsorption experiments conclusively demonstrated that these W/RPRPamide-related neuropeptides account for endogenous MIH activity produced by isolated gonads. We show that the MIH peptides are synthesised by neural-type cells in the gonad, are released following dark-light/light-dark transitions, and probably act on the oocyte surface. They are produced by male as well as female jellyfish and can trigger both sperm and egg release, suggesting a role in spawning coordination. We propose an evolutionary link between hydrozoan MIHs and the neuropeptide hormones that regulate reproduction upstream of MIHs in bilaterian species., Competing Interests: Competing interestsThe authors declare no competing or financial interests., (© 2018. Published by The Company of Biologists Ltd.)
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.