7 results on '"Quantum thermal bath"'
Search Results
2. Routine Molecular Dynamics Simulations Including Nuclear Quantum Effects: from Force Fields to Machine Learning Potentials
- Author
-
Thomas Plé, Nastasia Mauger, Olivier Adjoua, Théo Jaffrelot Inizan, Louis Lagardère, Simon Huppert, Jean-Philip Piquemal, Laboratoire de chimie théorique (LCT), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Parisien de Chimie Physique et Théorique (IP2CT), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut des Nanosciences de Paris (INSP), Oxydes en basses dimensions (INSP-E9), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU), Biomedical Engineering [Austin], University of Texas at Austin [Austin], and European Project: 810367,EMC2(2019)
- Subjects
Chemical Physics (physics.chem-ph) ,Molecular dynamics MD simulation ,Molecular dynamics MD ,RPMD ,FOS: Physical sciences ,Computational Physics (physics.comp-ph) ,Computer Science Applications ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,ring polymer molecular dynamics ,machine learning ,Physics - Chemical Physics ,Force field ,quantum thermal bath ,Physical and Theoretical Chemistry ,Physics - Computational Physics ,Quantum nuclear effects ,Neural network NN - Abstract
We report the implementation of a multi-CPU and multi-GPU massively parallel platform dedicated to the explicit inclusion of nuclear quantum effects (NQEs) in the Tinker-HP molecular dynamics (MD) package. The platform, denoted Quantum-HP, exploits two simulation strategies: the Ring-Polymer Molecular Dynamics (RPMD) that provides exact structural properties at the cost of a MD simulation in an extended space of multiple replicas, and the adaptive Quantum Thermal Bath (adQTB) that imposes the quantum distribution of energy on a classical system via a generalized Langevin thermostat and provides computationally affordable and accurate (though approximate) NQEs. We discuss some implementation details, efficient numerical schemes, parallelization strategies and quickly review the GPU acceleration of our code. Our implementation allows an efficient inclusion of NQEs in MD simulations for very large systems, as demonstrated by scaling tests on water boxes with more than 200,000 atoms (simulated using the AMOEBA polarizable force field). We test the compatibility of the approach with Tinker-HP's recently introduced Deep-HP machine learning potentials module by computing water properties using the DeePMD potential with adQTB thermostating. Finally, we show that the platform is also compatible with the alchemical free energy estimation capabilities of Tinker-HP and fast enough to perform simulations. Therefore, we study how the NQEs affect the hydration free energy of small molecules solvated with the recently developed Q-AMOEBA water force field. Overall, the Quantum-HP platform allows users to perform routine quantum MD simulations of large condensed-phase systems and will participate to shed a new light on the quantum nature of important interactions in biological matter.
- Published
- 2022
- Full Text
- View/download PDF
3. Nuclear Quantum Effects in liquid water at near classical computational cost using the adaptive Quantum Thermal Bath
- Author
-
Sara Bonella, Simon Huppert, Etienne Mangaud, Jean-Philip Piquemal, Louis Lagardère, Thomas Plé, Nastasia Mauger, Laboratoire de chimie théorique (LCT), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Parisien de Chimie Physique et Théorique (IP2CT), Ecole Polytechnique Fédérale de Lausanne (EPFL), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Oxydes en basses dimensions (INSP-E9), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and European Project: 810367,EMC2(2019)
- Subjects
water ,Degrees of freedom (physics and chemistry) ,FOS: Physical sciences ,01 natural sciences ,7. Clean energy ,Force field (chemistry) ,molecular simulation ,law.invention ,Molecular dynamics ,water simulation ,law ,Quantum mechanics ,Physics - Chemical Physics ,0103 physical sciences ,General Materials Science ,Physical and Theoretical Chemistry ,quantum thermal bath ,010306 general physics ,Quantum ,Physics ,path integrals ,Chemical Physics (physics.chem-ph) ,density ,statistical-mechanics ,010304 chemical physics ,accuracy ,force field ,Observable ,Statistical mechanics ,Computational Physics (physics.comp-ph) ,Thermostat ,time-correlation-functions ,quantum nuclear effects ,molecular dynamics ,proton-transfer ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,integral molecular-dynamics ,Path integral formulation ,network ,systems ,simulations ,Physics - Computational Physics ,energy - Abstract
International audience; We demonstrate the accuracy and efficiency of a recently introduced approach to account for nuclear quantum effects (NQE) in molecular simulations: the adaptive Quantum Thermal Bath (adQTB). In this method, zero point energy is introduced through a generalized Langevin thermostat designed to precisely enforce the quantum fluctuation-dissipation theorem. We propose a refined adQTB algorithm with improved accuracy and we report adQTB simulations of liquid water. Through extensive comparison with reference path integral calculations, we demonstrate that it provides excellent accuracy for a broad range of structural and thermodynamic observables as well as infrared vibrational spectra. The adQTB has a computational cost comparable to classical molecular dynamics, enabling simulations of up to millions of degrees of freedom.
- Published
- 2021
- Full Text
- View/download PDF
4. Toward a quantum generalization of equilibrium statistical thermodynamics: ħ-k Dynamics.
- Author
-
Sukhanov, A. D. and Golubeva, O. N.
- Subjects
- *
QUANTUM statistics , *STATISTICAL mechanics , *THERMODYNAMIC potentials , *STATISTICAL physics , *STATISTICAL thermodynamics , *THERMAL properties - Abstract
We show that the quantum statistical mechanics (QSM) describing the quantum and thermal properties of objects only has the sense of a particular semiclassical approximation. We propose a more general microdescription than in QSM of objects in a thermal bath with the vacuum explicitly taken into account; we call it ħ-k dynamics. We construct a qualitatively new model of the object environment, namely, a quantum thermal bath. We study its properties including the cases of a “cold” and a “thermal” vacuum. We introduce the stochastic action operator and show its fundamental role in the microdescription. We establish that the corresponding macroparameter, the effective action, plays just as significant a role in the macrodescription. The most important effective macroparameters of equilibrium quantum statistical thermodynamics—internal energy, temperature, and entropy—are expressed in terms of this macroparameter. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
5. Etude des effets quantiques nucléaires lors de la symétrisation de liaisons hydrogène par la méthode du bain thermique quantique
- Author
-
Bronstein, Yael, Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris VI, Philippe Depondt, and Fabio Finocchi
- Subjects
Nuclear quantum effects ,Bain thermique quantique ,[PHYS.PHYS]Physics [physics]/Physics [physics] ,Effets quantiques nucléaires ,Symétrisation ,Quantum thermal bath ,Liaisons hydrogène ,Glace ,Simulation ,Hydrogen bonds - Abstract
Increasing interest has risen for nuclear quantum effects (NQE) in the recent past. Indeed, NQE such as proton tunneling and zero point energy often play a crucial role in the properties of hydrogen-containing materials. The standard methods to simulate NQE are based on path integrals. An alternative to these methods is the Quantum Thermal Bath (QTB): it is based on a Langevin equation where the classical degrees of freedom are coupled to an ensemble of quantum harmonic oscillators. In the classical Langevin equation, the random force is a white noise and fulfills the classical fluctuation-dissipation theorem, while within the QTB formalism, it fulfills the quantum fluctuation-dissipation theorem. We investigate through simple models the reliability and the limits of the QTB and show that the QTB enables realistic simulations including NQE of condensed-phase systems, generating static and dynamic information such as pair correlation functions and vibrational spectra which can be confronted with experimental results. We show that the QTB is particularly successful in the study of the symmetrization of hydrogen bonds in several systems. Indeed, the difficulty lies in the identification of a precise transition pressure since this phase transition is often blurred by quantum or thermal fluctuations. In high-pressure ice, it depends on the oxygen-oxygen distance but it can be affected by ionic impurities and by the asymmetric environment of hydrogen bonds as in the delta phase of AlOOH. Moreover, by comparing results from QTB and standard ab initio simulations, we are able to disentangle the respective roles of NQE and thermal fluctuations in these phase transitions.; L’étude des effets quantiques nucléaires (NQE) suscite de plus en plus d’intérêt. En effet, les effets quantiques comme l’effet tunnel ou l’énergie de point zéro, peuvent profondément modifier les propriétés de matériaux constitués d'atomes légers comme l'hydrogène. Les méthodes standards de simulation des NQE sont basées sur les intégrales de chemin. Le bain thermique quantique (QTB) constitue une alternative à ces méthodes: le principe est que les degrés de liberté classiques du système obéissent à une équation de Langevin et sont couplés à des oscillateurs harmoniques quantiques. Dans l’équation de Langevin classique, la force aléatoire est un bruit blanc et le théorème de fluctuation-dissipation classique est vérifié; avec le QTB, le théorème de fluctuation-dissipation quantique est vérifié. Nous étudierons à travers des modèles simples la validité et les limites du QTB et montrerons qu'il permet de simuler des systèmes de la matière condensée en incluant les NQE en générant leurs propriétés structurales et dynamiques. Nous montrerons que le QTB est particulièrement adapté à l’étude de la symétrisation de liaisons hydrogènes et permet d'identifier précisément une pression de transition. Celle-ci dépend de la distance entre deux oxygènes voisins comme dans la glace sous haute pression, mais est modifiée par la présence d'impuretés ioniques ou par l'environnement atomique des liaisons hydrogènes comme dans la phase delta de AlOOH. De plus, en comparant des simulations classiques à des simulations QTB, nous pouvons identifier les rôles respectifs des effets quantiques et thermiques dans ces transitions de phase.
- Published
- 2016
6. Stochastic Master Equations in Thermal Environment
- Author
-
Stéphane Attal, Clément Pellegrini, Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Toulouse UMR5219 (IMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), School of Physics and National Institue for Theoretical Physics, University of KwaZulu-Natal (UKZN), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Institut Camille Jordan (ICJ), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), and Reymond, Aurélie
- Subjects
Statistics and Probability ,Differential equation ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,retrun to equilibrium ,01 natural sciences ,010104 statistics & probability ,Stochastic differential equation ,Simultaneous equations ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,0103 physical sciences ,Master equation ,[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph] ,0101 mathematics ,quantum thermal bath ,010306 general physics ,Quantum ,Mathematical Physics ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,Independent equation ,Mathematical analysis ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph] ,81Sxx (60Hxx) ,Stochastic partial differential equation ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Quantum stochastic calculus ,Quantum trajectories - Abstract
International audience; We derive the stochastic master equations which describe the evolution of open quantum systems in contact with a heat bath and undergoing indirect measurements. These equations are obtained as a limit of a quantum repeated measurement model where we consider a small system in contact with an infinite chain at positive temperature. At zero temperature it is well-known that one obtains stochastic differential equations of jump-diffusion type. At strictly positive temperature, we show that only pure diffusion type equations are relevant.
- Published
- 2010
- Full Text
- View/download PDF
7. Toward a quantum generalization of equilibrium statistical thermodynamics: A-k Dynamics
- Author
-
Sukhanov A.D., Golubeva O.N., Sukhanov A.D., and Golubeva O.N.
- Abstract
We show that the quantum statistical mechanics (QSM) describing the quantum and thermal properties of objects only has the sense of a particular semiclassical approximation. We propose a more general microdescription than in QSM of objects in a thermal bath with the vacuum explicitly taken into account; we call it A -k dynamics. We construct a qualitatively new model of the object environment, namely, a quantum thermal bath. We study its properties including the cases of a "cold" and a "thermal" vacuum. We introduce the stochastic action operator and show its fundamental role in the microdescription. We establish that the corresponding macroparameter, the effective action, plays just as significant a role in the macrodescription. The most important effective macroparameters of equilibrium quantum statistical thermodynamics-internal energy, temperature, and entropy-are expressed in terms of this macroparameter.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.