1. Utilization of Lead Nitrate to Enhance the Impact of Hydroxamic Acids on the Hydrophobic Aggregation and Flotation Behavior of Cassiterite
- Author
-
Saizhen Jin, Xiaobo Liu, Yun Feng, Yanfei Chen, Mengtao Wang, and Qingfei Xiao
- Subjects
lead nitrate ,hydrophobic aggregation ,cassiterite ,hydroxamic acids ,flotation ,Organic chemistry ,QD241-441 - Abstract
Lead nitrate (LN) is frequently employed as an activator in the flotation of cassiterite using hydroxamic acids as the collectors. This study investigated the effect of LN on the hydrophobic aggregation of cassiterite when benzohydroxamic acid (BHA), hexyl hydroxamate (HHA), and octyl hydroxamate (OHA) were used as the collectors through micro-flotation, focused beam reflectance measurement (FBRM) and a particle video microscope (PVM), zeta potential, and the extended DLVO theory. Micro-flotation tests confirmed that LN activated the flotation of cassiterite using the hydroxamic acids as collectors. Focused beam reflectance measurement (FBRM) and a particle video microscope (PVM) were used to capture in situ data on the changes in size distribution and morphology of cassiterite aggregates during stirring. The FBRM and PVM image results indicated that the addition of LN could promote the formation of hydrophobic aggregates of fine cassiterite, when BHA or HHA was used as the collector, and reduce the dosage of OHA needed to induce the formation of hydrophobic aggregates of cassiterite. The extended DLVO theory interaction energies indicated that the presence of LN could decrease the electrostatic interaction energies (Vedl) and increase the hydrophobic interaction energies (Vhy) between cassiterite particles, resulting in the disappearance of the high energy barriers that existed between the particles in the absence of LN. Thus, cassiterite particles could aggregate in the presence of LN when BHA, HHA, or a low concentration of OHA was used as the collector.
- Published
- 2024
- Full Text
- View/download PDF