133 results on '"Qie, L."'
Search Results
2. Consistent patterns of common species across tropical tree communities
- Author
-
Cooper, DLM, Lewis, SL, Sullivan, MJP, Prado, PI, ter Steege, H, Barbier, N, Slik, F, Sonké, B, Ewango, CEN, Adu-Bredu, S, Affum-Baffoe, K, de Aguiar, DPP, Reategui, MAA, Aiba, SI, Albuquerque, BW, Matos, FDD, Alonso, A, Amani, CA, do Amaral, DD, do Amaral, IL, Andrade, A, Miranda, IPD, Angoboy, IB, Araujo-Murakami, A, Arboleda, NC, Arroyo, L, Ashton, P, Aymard, CGA, Baider, C, Baker, TR, Balinga, MPB, Balslev, H, Banin, LF, Bánki, OS, Baraloto, C, Barbosa, EM, Barbosa, FR, Barlow, J, Bastin, JF, Beeckman, H, Begne, S, Bengone, NN, Berenguer, E, Berry, N, Bitariho, R, Boeckx, P, Bogaert, J, Bonyoma, B, Boundja, P, Bourland, N, Bosela, FB, Brambach, F, Brienen, R, Burslem, DFRP, Camargo, JL, Campelo, W, Cano, A, Cárdenas, S, López, DC, Carpanedo, RD, Márquez, YAC, Carvalho, FA, Casas, LF, Castellanos, H, Castilho, CV, Cerón, C, Chapman, CA, Chave, J, Chhang, P, Chutipong, W, Chuyong, GB, Cintra, BBL, Clark, CJ, de Souza, FC, Comiskey, JA, Coomes, DA, Valverde, FC, Correa, DF, Costa, FRC, Costa, JBP, Couteron, P, Culmsee, H, Cuni-Sanchez, A, Dallmeier, F, Damasco, G, Dauby, G, Dávila, N, Doza, HPD, De Alban, JDT, de Assis, RL, De Canniere, C, De Haulleville, T, Carim, MDV, Demarchi, LO, Dexter, KG, Di Fiore, A, Din, HHM, Disney, MI, Djiofack, BY, Djuikouo, MNK, Van Do, T, Doucet, JL, Draper, FC, Droissart, V, Duivenvoorden, JF, Engel, J, Estienne, V, Farfan-Rios, W, Fauset, S, Feeley, KJ, Feitosa, YO, Feldpausch, TR, Ferreira, C, Ferreira, J, Ferreira, LV, Fletcher, CD, Flores, BM, Fofanah, A, Foli, EG, Fonty, E, Fredriksson, GM, Fuentes, A, Galbraith, D, Gonzales, GPG, Garcia-Cabrera, K, García-Villacorta, R, Gomes, VHF, Gómez, RZ, Gonzales, T, Gribel, R, Guedes, MC, Guevara, JE, Hakeem, KR, Hall, JS, Hamer, KC, Harrison, RD, Harris, DJ, Hart, TB, Hector, A, Henkel, TW, Herbohn, J, Hockemba, MBN, Hoffman, B, Holmgren, M, Coronado, ENH, Huamantupa-Chuquimaco, I, Hubau, W, Imai, N, Irume, MV, Jansen, PA, Jeffery, KJ, Jimenez, EM, Jucker, T, Junqueira, AB, Kalamandeen, M, Kamdem, NG, Kartawinata, K, Yakusu, EK, Katembo, JM, Kearsley, E, Kenfack, D, Kessler, M, Khaing, TT, Killeen, TJ, Kitayama, K, Klitgaard, B, Labriere, N, Laumonier, Y, Laurance, SGW, Laurance, WF, Laurent, F, Le, TC, Leal, ME, Novo, EMLD, Levesley, A, Libalah, MB, Licona, JC, Lima, DD, Lindsell, JA, Lopes, A, Lopes, MA, Lovett, JC, Lowe, R, Lozada, JR, Lu, XH, Luambua, NK, Luize, BG, Maas, P, Magalhaes, JLL, Magnusson, WE, Mahayani, NPD, Makana, JR, Malhi, Y, Rincón, LM, Mansor, A, Manzatto, AG, Marimon, BS, Marimon, BH Jr, Marshall, AR, Martins, MP, Mbayu, FM, de Medeiros, MB, Mesones, I, Metali, F, Mihindou, V, Millet, J, Milliken, W, Mogollon, HF, Molino, JF, Said, MNM, Mendoza, AM, Montero, JC, Moore, S, Mostacedo, B, Pinto, LFM, Mukul, SA, Munishi, PKT, Nagamasu, H, Nascimento, HEM, Nascimento, MT, Neill, D, Nilus, R, Noronha, JC, Nsenga, L, Vargas, PN, Ojo, L, Oliveira, AA, de Oliveira, EA, Ondo, FE, Cuenca, WP, Pansini, S, Pansonato, MP, Paredes, MR, Paudel, E, Pauletto, D, Pearson, RG, Pena, JLM, Pennington, RT, Peres, CA, Permana, A, Petronelli, P, Mora, MCP, Phillips, JF, Phillips, OL, Pickavance, G, Piedade, MTF, Pitman, NCA, Ploton, P, Popelier, A, Poulsen, JR, Prieto, A, Primack, RB, Priyadi, H, Qie, L, Quaresma, AC, de Queiroz, HL, Ramirez-Angulo, H, Ramos, JF, Reis, NFC, Reitsma, J, Revilla, JDC, Riutta, T, Rivas-Torres, G, Robiansyah, I, Rocha, M, Rodrigues, DD, Rodriguez-Ronderos, ME, Rovero, F, Rozak, AH, Rudas, A, Rutishauser, E, Sabatier, D, Sagang, L, Sampaio, AF, Samsoedin, I, Satdichanh, M, Schietti, J, Schöngart, J, Scudeller, VV, Seuaturien, N, Sheil, D, Sierra, R, Silman, MR, Silva, TSF, Guimaraes, JRD, Simo-Droissart, M, Simon, MF, Sist, P, Sousa, TR, Farias, ED, Coelho, LD, Spracklen, DV, Stas, SM, Steinmetz, R, Stevenson, PR, Stropp, J, Sukri, RS, Sunderland, TCH, Suzuki, E, Swaine, MD, Tang, JW, Taplin, J, Taylor, DM, Tello, JS, Terborgh, J, Texier, N, Theilade, I, Thomas, DW, Thomas, R, Thomas, SC, Tirado, M, Toirambe, B, de Toledo, JJ, Tomlinson, KW, Torres-Lezama, A, Tran, HD, Mukendi, JT, Tumaneng, RD, Umaña, MN, Umunay, PM, Giraldo, LEU, Sandoval, EHV, Gamarra, LV, Van Andel, TR, van de Bult, M, van de Pol, J, van der Heijden, G, Vasquez, R, Vela, CIA, Venticinque, EM, Verbeeck, H, Veridiano, RKA, Vicentini, A, Vieira, ICG, Torre, EV, Villarroel, D, Zegarra, BEV, Vleminckx, J, von Hildebrand, P, Vos, VA, Vriesendorp, C, Webb, EL, White, LJT, Wich, S, Wittmann, F, Zagt, R, Zang, RG, Zartman, CE, Zemagho, L, Zent, EL, Zent, S, Cooper, DLM, Lewis, SL, Sullivan, MJP, Prado, PI, ter Steege, H, Barbier, N, Slik, F, Sonké, B, Ewango, CEN, Adu-Bredu, S, Affum-Baffoe, K, de Aguiar, DPP, Reategui, MAA, Aiba, SI, Albuquerque, BW, Matos, FDD, Alonso, A, Amani, CA, do Amaral, DD, do Amaral, IL, Andrade, A, Miranda, IPD, Angoboy, IB, Araujo-Murakami, A, Arboleda, NC, Arroyo, L, Ashton, P, Aymard, CGA, Baider, C, Baker, TR, Balinga, MPB, Balslev, H, Banin, LF, Bánki, OS, Baraloto, C, Barbosa, EM, Barbosa, FR, Barlow, J, Bastin, JF, Beeckman, H, Begne, S, Bengone, NN, Berenguer, E, Berry, N, Bitariho, R, Boeckx, P, Bogaert, J, Bonyoma, B, Boundja, P, Bourland, N, Bosela, FB, Brambach, F, Brienen, R, Burslem, DFRP, Camargo, JL, Campelo, W, Cano, A, Cárdenas, S, López, DC, Carpanedo, RD, Márquez, YAC, Carvalho, FA, Casas, LF, Castellanos, H, Castilho, CV, Cerón, C, Chapman, CA, Chave, J, Chhang, P, Chutipong, W, Chuyong, GB, Cintra, BBL, Clark, CJ, de Souza, FC, Comiskey, JA, Coomes, DA, Valverde, FC, Correa, DF, Costa, FRC, Costa, JBP, Couteron, P, Culmsee, H, Cuni-Sanchez, A, Dallmeier, F, Damasco, G, Dauby, G, Dávila, N, Doza, HPD, De Alban, JDT, de Assis, RL, De Canniere, C, De Haulleville, T, Carim, MDV, Demarchi, LO, Dexter, KG, Di Fiore, A, Din, HHM, Disney, MI, Djiofack, BY, Djuikouo, MNK, Van Do, T, Doucet, JL, Draper, FC, Droissart, V, Duivenvoorden, JF, Engel, J, Estienne, V, Farfan-Rios, W, Fauset, S, Feeley, KJ, Feitosa, YO, Feldpausch, TR, Ferreira, C, Ferreira, J, Ferreira, LV, Fletcher, CD, Flores, BM, Fofanah, A, Foli, EG, Fonty, E, Fredriksson, GM, Fuentes, A, Galbraith, D, Gonzales, GPG, Garcia-Cabrera, K, García-Villacorta, R, Gomes, VHF, Gómez, RZ, Gonzales, T, Gribel, R, Guedes, MC, Guevara, JE, Hakeem, KR, Hall, JS, Hamer, KC, Harrison, RD, Harris, DJ, Hart, TB, Hector, A, Henkel, TW, Herbohn, J, Hockemba, MBN, Hoffman, B, Holmgren, M, Coronado, ENH, Huamantupa-Chuquimaco, I, Hubau, W, Imai, N, Irume, MV, Jansen, PA, Jeffery, KJ, Jimenez, EM, Jucker, T, Junqueira, AB, Kalamandeen, M, Kamdem, NG, Kartawinata, K, Yakusu, EK, Katembo, JM, Kearsley, E, Kenfack, D, Kessler, M, Khaing, TT, Killeen, TJ, Kitayama, K, Klitgaard, B, Labriere, N, Laumonier, Y, Laurance, SGW, Laurance, WF, Laurent, F, Le, TC, Leal, ME, Novo, EMLD, Levesley, A, Libalah, MB, Licona, JC, Lima, DD, Lindsell, JA, Lopes, A, Lopes, MA, Lovett, JC, Lowe, R, Lozada, JR, Lu, XH, Luambua, NK, Luize, BG, Maas, P, Magalhaes, JLL, Magnusson, WE, Mahayani, NPD, Makana, JR, Malhi, Y, Rincón, LM, Mansor, A, Manzatto, AG, Marimon, BS, Marimon, BH Jr, Marshall, AR, Martins, MP, Mbayu, FM, de Medeiros, MB, Mesones, I, Metali, F, Mihindou, V, Millet, J, Milliken, W, Mogollon, HF, Molino, JF, Said, MNM, Mendoza, AM, Montero, JC, Moore, S, Mostacedo, B, Pinto, LFM, Mukul, SA, Munishi, PKT, Nagamasu, H, Nascimento, HEM, Nascimento, MT, Neill, D, Nilus, R, Noronha, JC, Nsenga, L, Vargas, PN, Ojo, L, Oliveira, AA, de Oliveira, EA, Ondo, FE, Cuenca, WP, Pansini, S, Pansonato, MP, Paredes, MR, Paudel, E, Pauletto, D, Pearson, RG, Pena, JLM, Pennington, RT, Peres, CA, Permana, A, Petronelli, P, Mora, MCP, Phillips, JF, Phillips, OL, Pickavance, G, Piedade, MTF, Pitman, NCA, Ploton, P, Popelier, A, Poulsen, JR, Prieto, A, Primack, RB, Priyadi, H, Qie, L, Quaresma, AC, de Queiroz, HL, Ramirez-Angulo, H, Ramos, JF, Reis, NFC, Reitsma, J, Revilla, JDC, Riutta, T, Rivas-Torres, G, Robiansyah, I, Rocha, M, Rodrigues, DD, Rodriguez-Ronderos, ME, Rovero, F, Rozak, AH, Rudas, A, Rutishauser, E, Sabatier, D, Sagang, L, Sampaio, AF, Samsoedin, I, Satdichanh, M, Schietti, J, Schöngart, J, Scudeller, VV, Seuaturien, N, Sheil, D, Sierra, R, Silman, MR, Silva, TSF, Guimaraes, JRD, Simo-Droissart, M, Simon, MF, Sist, P, Sousa, TR, Farias, ED, Coelho, LD, Spracklen, DV, Stas, SM, Steinmetz, R, Stevenson, PR, Stropp, J, Sukri, RS, Sunderland, TCH, Suzuki, E, Swaine, MD, Tang, JW, Taplin, J, Taylor, DM, Tello, JS, Terborgh, J, Texier, N, Theilade, I, Thomas, DW, Thomas, R, Thomas, SC, Tirado, M, Toirambe, B, de Toledo, JJ, Tomlinson, KW, Torres-Lezama, A, Tran, HD, Mukendi, JT, Tumaneng, RD, Umaña, MN, Umunay, PM, Giraldo, LEU, Sandoval, EHV, Gamarra, LV, Van Andel, TR, van de Bult, M, van de Pol, J, van der Heijden, G, Vasquez, R, Vela, CIA, Venticinque, EM, Verbeeck, H, Veridiano, RKA, Vicentini, A, Vieira, ICG, Torre, EV, Villarroel, D, Zegarra, BEV, Vleminckx, J, von Hildebrand, P, Vos, VA, Vriesendorp, C, Webb, EL, White, LJT, Wich, S, Wittmann, F, Zagt, R, Zang, RG, Zartman, CE, Zemagho, L, Zent, EL, and Zent, S
- Abstract
Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations 1–6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories 7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.
- Published
- 2024
3. Consistent patterns of common species across tropical tree communities
- Author
-
Sub Ecology and Biodiversity, Ecology and Biodiversity, Cooper, DLM, Lewis, SL, Sullivan, MJP, Prado, PI, ter Steege, H, Barbier, N, Slik, F, Sonké, B, Ewango, CEN, Adu-Bredu, S, Affum-Baffoe, K, de Aguiar, DPP, Reategui, MAA, Aiba, SI, Albuquerque, BW, Matos, FDD, Alonso, A, Amani, CA, do Amaral, DD, do Amaral, IL, Andrade, A, Miranda, IPD, Angoboy, IB, Araujo-Murakami, A, Arboleda, NC, Arroyo, L, Ashton, P, Aymard, CGA, Baider, C, Baker, TR, Balinga, MPB, Balslev, H, Banin, LF, Bánki, OS, Baraloto, C, Barbosa, EM, Barbosa, FR, Barlow, J, Bastin, JF, Beeckman, H, Begne, S, Bengone, NN, Berenguer, E, Berry, N, Bitariho, R, Boeckx, P, Bogaert, J, Bonyoma, B, Boundja, P, Bourland, N, Bosela, FB, Brambach, F, Brienen, R, Burslem, DFRP, Camargo, JL, Campelo, W, Cano, A, Cárdenas, S, López, DC, Carpanedo, RD, Márquez, YAC, Carvalho, FA, Casas, LF, Castellanos, H, Castilho, CV, Cerón, C, Chapman, CA, Chave, J, Chhang, P, Chutipong, W, Chuyong, GB, Cintra, BBL, Clark, CJ, de Souza, FC, Comiskey, JA, Coomes, DA, Valverde, FC, Correa, DF, Costa, FRC, Costa, JBP, Couteron, P, Culmsee, H, Cuni-Sanchez, A, Dallmeier, F, Damasco, G, Dauby, G, Dávila, N, Doza, HPD, De Alban, JDT, de Assis, RL, De Canniere, C, De Haulleville, T, Carim, MDV, Demarchi, LO, Dexter, KG, Di Fiore, A, Din, HHM, Disney, MI, Djiofack, BY, Djuikouo, MNK, Van Do, T, Doucet, JL, Draper, FC, Droissart, V, Duivenvoorden, JF, Engel, J, Estienne, V, Farfan-Rios, W, Fauset, S, Feeley, KJ, Feitosa, YO, Feldpausch, TR, Ferreira, C, Ferreira, J, Ferreira, LV, Fletcher, CD, Flores, BM, Fofanah, A, Foli, EG, Fonty, E, Fredriksson, GM, Fuentes, A, Galbraith, D, Gonzales, GPG, Garcia-Cabrera, K, García-Villacorta, R, Gomes, VHF, Gómez, RZ, Gonzales, T, Gribel, R, Guedes, MC, Guevara, JE, Hakeem, KR, Hall, JS, Hamer, KC, Harrison, RD, Harris, DJ, Hart, TB, Hector, A, Henkel, TW, Herbohn, J, Hockemba, MBN, Hoffman, B, Holmgren, M, Coronado, ENH, Huamantupa-Chuquimaco, I, Hubau, W, Imai, N, Irume, MV, Jansen, PA, Jeffery, KJ, Jimenez, EM, Jucker, T, Junqueira, AB, Kalamandeen, M, Kamdem, NG, Kartawinata, K, Yakusu, EK, Katembo, JM, Kearsley, E, Kenfack, D, Kessler, M, Khaing, TT, Killeen, TJ, Kitayama, K, Klitgaard, B, Labriere, N, Laumonier, Y, Laurance, SGW, Laurance, WF, Laurent, F, Le, TC, Leal, ME, Novo, EMLD, Levesley, A, Libalah, MB, Licona, JC, Lima, DD, Lindsell, JA, Lopes, A, Lopes, MA, Lovett, JC, Lowe, R, Lozada, JR, Lu, XH, Luambua, NK, Luize, BG, Maas, P, Magalhaes, JLL, Magnusson, WE, Mahayani, NPD, Makana, JR, Malhi, Y, Rincón, LM, Mansor, A, Manzatto, AG, Marimon, BS, Marimon, BH Jr, Marshall, AR, Martins, MP, Mbayu, FM, de Medeiros, MB, Mesones, I, Metali, F, Mihindou, V, Millet, J, Milliken, W, Mogollon, HF, Molino, JF, Said, MNM, Mendoza, AM, Montero, JC, Moore, S, Mostacedo, B, Pinto, LFM, Mukul, SA, Munishi, PKT, Nagamasu, H, Nascimento, HEM, Nascimento, MT, Neill, D, Nilus, R, Noronha, JC, Nsenga, L, Vargas, PN, Ojo, L, Oliveira, AA, de Oliveira, EA, Ondo, FE, Cuenca, WP, Pansini, S, Pansonato, MP, Paredes, MR, Paudel, E, Pauletto, D, Pearson, RG, Pena, JLM, Pennington, RT, Peres, CA, Permana, A, Petronelli, P, Mora, MCP, Phillips, JF, Phillips, OL, Pickavance, G, Piedade, MTF, Pitman, NCA, Ploton, P, Popelier, A, Poulsen, JR, Prieto, A, Primack, RB, Priyadi, H, Qie, L, Quaresma, AC, de Queiroz, HL, Ramirez-Angulo, H, Ramos, JF, Reis, NFC, Reitsma, J, Revilla, JDC, Riutta, T, Rivas-Torres, G, Robiansyah, I, Rocha, M, Rodrigues, DD, Rodriguez-Ronderos, ME, Rovero, F, Rozak, AH, Rudas, A, Rutishauser, E, Sabatier, D, Sagang, L, Sampaio, AF, Samsoedin, I, Satdichanh, M, Schietti, J, Schöngart, J, Scudeller, VV, Seuaturien, N, Sheil, D, Sierra, R, Silman, MR, Silva, TSF, Guimaraes, JRD, Simo-Droissart, M, Simon, MF, Sist, P, Sousa, TR, Farias, ED, Coelho, LD, Spracklen, DV, Stas, SM, Steinmetz, R, Stevenson, PR, Stropp, J, Sukri, RS, Sunderland, TCH, Suzuki, E, Swaine, MD, Tang, JW, Taplin, J, Taylor, DM, Tello, JS, Terborgh, J, Texier, N, Theilade, I, Thomas, DW, Thomas, R, Thomas, SC, Tirado, M, Toirambe, B, de Toledo, JJ, Tomlinson, KW, Torres-Lezama, A, Tran, HD, Mukendi, JT, Tumaneng, RD, Umaña, MN, Umunay, PM, Giraldo, LEU, Sandoval, EHV, Gamarra, LV, Van Andel, TR, van de Bult, M, van de Pol, J, van der Heijden, G, Vasquez, R, Vela, CIA, Venticinque, EM, Verbeeck, H, Veridiano, RKA, Vicentini, A, Vieira, ICG, Torre, EV, Villarroel, D, Zegarra, BEV, Vleminckx, J, von Hildebrand, P, Vos, VA, Vriesendorp, C, Webb, EL, White, LJT, Wich, S, Wittmann, F, Zagt, R, Zang, RG, Zartman, CE, Zemagho, L, Zent, EL, Zent, S, Sub Ecology and Biodiversity, Ecology and Biodiversity, Cooper, DLM, Lewis, SL, Sullivan, MJP, Prado, PI, ter Steege, H, Barbier, N, Slik, F, Sonké, B, Ewango, CEN, Adu-Bredu, S, Affum-Baffoe, K, de Aguiar, DPP, Reategui, MAA, Aiba, SI, Albuquerque, BW, Matos, FDD, Alonso, A, Amani, CA, do Amaral, DD, do Amaral, IL, Andrade, A, Miranda, IPD, Angoboy, IB, Araujo-Murakami, A, Arboleda, NC, Arroyo, L, Ashton, P, Aymard, CGA, Baider, C, Baker, TR, Balinga, MPB, Balslev, H, Banin, LF, Bánki, OS, Baraloto, C, Barbosa, EM, Barbosa, FR, Barlow, J, Bastin, JF, Beeckman, H, Begne, S, Bengone, NN, Berenguer, E, Berry, N, Bitariho, R, Boeckx, P, Bogaert, J, Bonyoma, B, Boundja, P, Bourland, N, Bosela, FB, Brambach, F, Brienen, R, Burslem, DFRP, Camargo, JL, Campelo, W, Cano, A, Cárdenas, S, López, DC, Carpanedo, RD, Márquez, YAC, Carvalho, FA, Casas, LF, Castellanos, H, Castilho, CV, Cerón, C, Chapman, CA, Chave, J, Chhang, P, Chutipong, W, Chuyong, GB, Cintra, BBL, Clark, CJ, de Souza, FC, Comiskey, JA, Coomes, DA, Valverde, FC, Correa, DF, Costa, FRC, Costa, JBP, Couteron, P, Culmsee, H, Cuni-Sanchez, A, Dallmeier, F, Damasco, G, Dauby, G, Dávila, N, Doza, HPD, De Alban, JDT, de Assis, RL, De Canniere, C, De Haulleville, T, Carim, MDV, Demarchi, LO, Dexter, KG, Di Fiore, A, Din, HHM, Disney, MI, Djiofack, BY, Djuikouo, MNK, Van Do, T, Doucet, JL, Draper, FC, Droissart, V, Duivenvoorden, JF, Engel, J, Estienne, V, Farfan-Rios, W, Fauset, S, Feeley, KJ, Feitosa, YO, Feldpausch, TR, Ferreira, C, Ferreira, J, Ferreira, LV, Fletcher, CD, Flores, BM, Fofanah, A, Foli, EG, Fonty, E, Fredriksson, GM, Fuentes, A, Galbraith, D, Gonzales, GPG, Garcia-Cabrera, K, García-Villacorta, R, Gomes, VHF, Gómez, RZ, Gonzales, T, Gribel, R, Guedes, MC, Guevara, JE, Hakeem, KR, Hall, JS, Hamer, KC, Harrison, RD, Harris, DJ, Hart, TB, Hector, A, Henkel, TW, Herbohn, J, Hockemba, MBN, Hoffman, B, Holmgren, M, Coronado, ENH, Huamantupa-Chuquimaco, I, Hubau, W, Imai, N, Irume, MV, Jansen, PA, Jeffery, KJ, Jimenez, EM, Jucker, T, Junqueira, AB, Kalamandeen, M, Kamdem, NG, Kartawinata, K, Yakusu, EK, Katembo, JM, Kearsley, E, Kenfack, D, Kessler, M, Khaing, TT, Killeen, TJ, Kitayama, K, Klitgaard, B, Labriere, N, Laumonier, Y, Laurance, SGW, Laurance, WF, Laurent, F, Le, TC, Leal, ME, Novo, EMLD, Levesley, A, Libalah, MB, Licona, JC, Lima, DD, Lindsell, JA, Lopes, A, Lopes, MA, Lovett, JC, Lowe, R, Lozada, JR, Lu, XH, Luambua, NK, Luize, BG, Maas, P, Magalhaes, JLL, Magnusson, WE, Mahayani, NPD, Makana, JR, Malhi, Y, Rincón, LM, Mansor, A, Manzatto, AG, Marimon, BS, Marimon, BH Jr, Marshall, AR, Martins, MP, Mbayu, FM, de Medeiros, MB, Mesones, I, Metali, F, Mihindou, V, Millet, J, Milliken, W, Mogollon, HF, Molino, JF, Said, MNM, Mendoza, AM, Montero, JC, Moore, S, Mostacedo, B, Pinto, LFM, Mukul, SA, Munishi, PKT, Nagamasu, H, Nascimento, HEM, Nascimento, MT, Neill, D, Nilus, R, Noronha, JC, Nsenga, L, Vargas, PN, Ojo, L, Oliveira, AA, de Oliveira, EA, Ondo, FE, Cuenca, WP, Pansini, S, Pansonato, MP, Paredes, MR, Paudel, E, Pauletto, D, Pearson, RG, Pena, JLM, Pennington, RT, Peres, CA, Permana, A, Petronelli, P, Mora, MCP, Phillips, JF, Phillips, OL, Pickavance, G, Piedade, MTF, Pitman, NCA, Ploton, P, Popelier, A, Poulsen, JR, Prieto, A, Primack, RB, Priyadi, H, Qie, L, Quaresma, AC, de Queiroz, HL, Ramirez-Angulo, H, Ramos, JF, Reis, NFC, Reitsma, J, Revilla, JDC, Riutta, T, Rivas-Torres, G, Robiansyah, I, Rocha, M, Rodrigues, DD, Rodriguez-Ronderos, ME, Rovero, F, Rozak, AH, Rudas, A, Rutishauser, E, Sabatier, D, Sagang, L, Sampaio, AF, Samsoedin, I, Satdichanh, M, Schietti, J, Schöngart, J, Scudeller, VV, Seuaturien, N, Sheil, D, Sierra, R, Silman, MR, Silva, TSF, Guimaraes, JRD, Simo-Droissart, M, Simon, MF, Sist, P, Sousa, TR, Farias, ED, Coelho, LD, Spracklen, DV, Stas, SM, Steinmetz, R, Stevenson, PR, Stropp, J, Sukri, RS, Sunderland, TCH, Suzuki, E, Swaine, MD, Tang, JW, Taplin, J, Taylor, DM, Tello, JS, Terborgh, J, Texier, N, Theilade, I, Thomas, DW, Thomas, R, Thomas, SC, Tirado, M, Toirambe, B, de Toledo, JJ, Tomlinson, KW, Torres-Lezama, A, Tran, HD, Mukendi, JT, Tumaneng, RD, Umaña, MN, Umunay, PM, Giraldo, LEU, Sandoval, EHV, Gamarra, LV, Van Andel, TR, van de Bult, M, van de Pol, J, van der Heijden, G, Vasquez, R, Vela, CIA, Venticinque, EM, Verbeeck, H, Veridiano, RKA, Vicentini, A, Vieira, ICG, Torre, EV, Villarroel, D, Zegarra, BEV, Vleminckx, J, von Hildebrand, P, Vos, VA, Vriesendorp, C, Webb, EL, White, LJT, Wich, S, Wittmann, F, Zagt, R, Zang, RG, Zartman, CE, Zemagho, L, Zent, EL, and Zent, S
- Published
- 2024
4. Design, synthesis and modelling of photoreactive chemical probes for investigating target engagement of plasmepsin IX and X in Plasmodium falciparum
- Author
-
Lisauskaitė, Monika, primary, Nixon, Gemma L., additional, Woodley, Christopher M., additional, Berry, Neil G., additional, Coninckx, Andy, additional, Qie, L. Charlie, additional, Leung, Suet C., additional, Taramelli, Donatella, additional, Basilico, Nicoletta, additional, Parapini, Silvia, additional, Ward, Stephen A., additional, Vadas, Oscar, additional, Soldati-Favre, Dominique, additional, Hong, W. David, additional, and O'Neill, Paul M., additional
- Published
- 2023
- Full Text
- View/download PDF
5. High aboveground carbon stock of African tropical montane forest
- Author
-
Cuni-Sanchez, A, Sullivan, MJP, Platts, PJ, Lewis, SL, Marchant, R, Imani, G, Hubau, W, Abiem, I, Adhikari, H, Albrecht, T, Altman, J, Amani, C, Aneseyee, AB, Avitabile, V, Banin, L, Batumike, R, Bauters, M, Beeckman, H, Begne, S, Bennett, AC, Bitariho, R, Boeckx, P, Bogaert, J, Bräuning, A, Bulonvu, F, Burgess, F, Calders, K, Chapman, C, Chapman, H, Comiskey, J, de Haulleville, T, Decuyper, M, DeVries, B, Dolezal, J, Droissart, V, Ewango, C, Feyera, S, Gebrekirstos, A, Gereau, R, Gilpin, M, Hakizimana, D, Hall, J, Hamilton, A, Hardy, O, Hart, T, Heiskanen, J, Hemp, A, Herold, M, Hiltner, U, Horak, D, Kamdem, M, Kayijamahe, C, Kenfack, D, Kinyanjui, MJ, Klein, J, Lisingo, J, Lovett, J, Lung, M, Makana, J-R, Malhi, Y, Marshall, A, Martin, EH, Mitchard, ETA, Morel, A, Mukendi, JT, Muller, T, Nchu, F, Nyirambangutse, B, Okello, J, Peh, KS-H, Pellikka, P, Phillips, OL, Plumptre, A, Qie, L, Rovero, F, Sainge, MN, Schmitt, CB, Sedlacek, O, Ngute, ASK, Sheil, D, Sheleme, D, Simegn, TY, Simo-Droissart, M, Sonké, B, Soromessa, T, Sunderland, T, Svoboda, M, Taedoumg, H, Taplin, J, Taylor, D, Thomas, SC, Timberlake, J, Tuagben, D, Umunay, P, Uzabaho, E, Verbeeck, H, Vleminckx, J, Wallin, G, Wheeler, C, Willcock, S, Woods, JT, and Zibera, E
- Abstract
Tropical forests store 40–50 per cent of terrestrial vegetation carbon 1. However, spatial variations in aboveground live tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane forests 2. Owing to climatic and soil changes with increasing elevation 3, AGC stocks are lower in tropical montane forests compared with lowland forests 2. Here we assemble and analyse a dataset of structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. We find that montane sites in the AfriMont plot network have a mean AGC stock of 149.4 megagrams of carbon per hectare (95% confidence interval 137.1–164.2), which is comparable to lowland forests in the African Tropical Rainforest Observation Network 4 and about 70 per cent and 32 per cent higher than averages from plot networks in montane 2,5,6 and lowland 7 forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the Intergovernmental Panel on Climate Change default values for these forests in Africa 8. We find that the low stem density and high abundance of large trees of African lowland forests4 is mirrored in the montane forests sampled. This carbon store is endangered: we estimate that 0.8 million hectares of old-growth African montane forest have been lost since 2000. We provide country-specific montane forest AGC stock estimates modelled from our plot network to help to guide forest conservation and reforestation interventions. Our findings highlight the need for conserving these biodiverse 9,10 and carbon-rich ecosystems.
- Published
- 2021
6. Cardiovascular risk profiles in relation to newly diagnosed Type 2 diabetes diagnosed by either glucose or HbA1c criteria in Chinese adults in Qingdao, China
- Author
-
Qie, L. Y., Sun, J. P., Ning, F., Pang, Z. C., Gao, W. G., Ren, J., Nan, H. R., Zhang, L., and Qiao, Q.
- Published
- 2014
- Full Text
- View/download PDF
7. The 2021 battery technology roadmap
- Author
-
Ma, J, Li, Y, Grundish, NS, Goodenough, JB, Chen, Y, Guo, L, Peng, Z, Qi, X, Yang, F, Qie, L, Wang, C-A, Huang, B, Huang, Z, Chen, L, Su, D, Wang, G, Peng, X, Chen, Z, Yang, J, He, S, Zhang, X, Yu, H, Fu, C, Jiang, M, Deng, W, Sun, C-F, Pan, Q, Tang, Y, Li, X, Ji, X, Wan, F, Niu, Z, Lian, F, Wang, C, Wallace, GG, Fan, M, Meng, Q, Xin, S, Guo, Y-G, and Wan, L-J
- Subjects
Hardware_GENERAL ,02 Physical Sciences, 09 Engineering ,Applied Physics - Abstract
Sun, wind and tides have huge potential in providing us electricity in an environmental-friendly way. However, its intermittency and non-dispatchability are major reasons preventing full-scale adoption of renewable energy generation. Energy storage will enable this adoption by enabling a constant and high-quality electricity supply from these systems. But which storage technology should be considered is one of important issues. Nowadays, great effort has been focused on various kinds of batteries to store energy, lithium-related batteries, sodium-related batteries, zinc-related batteries, aluminum-related batteries and so on. Some cathodes can be used for these batteries, such as sulfur, oxygen, layered compounds. In addition, the construction of these batteries can be changed into flexible, flow or solid-state types. There are many challenges in electrode materials, electrolytes and construction of these batteries and research related to the battery systems for energy storage is extremely active. With the myriad of technologies and their associated technological challenges, we were motivated to assemble this 2020 battery technology roadmap.
- Published
- 2021
8. High aboveground carbon stock of African tropical montane forests
- Author
-
Cuni-Sanchez, Aida, Sullivan, Martin J P, Platts, P.J., Lewis, Simon L., Marchant, Rob, Imani, G., Hubau, Wannes, Abiem, I., Adhikari, H., Albrecht, T., Altman, J., Amani, Christian, Aneseyee, A.B., Avitabile, Valerio, Banin, L., Batumike, R., Bauters, M, Beeckman, Hans, Kouob Bégné, Serge, Bennett, Amy C., Bitariho, R., Boeckx, Pascal, Bogaert, Jan, Bräuning, A., Bulonvu, F., Burgess, Neil N.D., Calders, K., Chapman, C., Chapman, H., Comiskey, James, De Haulleville, Thales, Decuyper, Mathieu, DeVries, B., Dolezal, J., Droissart, Vincent, Ewango, Corneille, Feyera, S., Gebrekirstos, A., Gereau, Roy R.E., Gilpin, M., Hakizimana, D., Hall, Jefferson S., Hamilton, A., Hardy, Olivier J., Hart, Terese, Heiskanen, J., Hemp, A., Herold, Martin, Hiltner, U., Horak, D., Kamdem, Marie Noël Djuikouo, Kayijamahe, C., Kenfack, David, Kinyanjui, M.J., Klein, J., Lisingo Wa Lisingo, Janvier, Lovett, J., Lung, M., Makana, Jean Rémy, Malhi, Yadvinder, Marshall, Andrew A.R., Martin, E.H., Mitchard, E.T.A., Morel, A., Mukendi, J.T., Muller, T., Nchu, F., Nyirambangutse, B., Okello, Judith Auma, Peh, Kelvin S H, Pellikka, P., Phillips, Oliver L., Plumptre, Andrew A.J., Qie, L., ROVERO, Francesco, Sainge, M.N., Schmitt, Christine C.B., Sedlacek, O., Ngute, A.S.K., Sheil, Douglas, Sheleme, D., Simegn, T.Y., Simo-Droissart, Murielle, Sonke, Bonaventure, Soromessa, T., Sunderland, Terry C., Svoboda, Miroslav, Taedoumg, Hermann, Taplin, J., Taylor, David, Thomas, S.C., Timberlake, Jonathan J.R., Tuagben, Darlington, Umunay, Peter M., Uzabaho, E., Verbeeck, Hans, Vleminckx, Jason, Wallin, G., Wheeler, C., Willcock, S., Woods, John T., Zibera, E., Cuni-Sanchez, Aida, Sullivan, Martin J P, Platts, P.J., Lewis, Simon L., Marchant, Rob, Imani, G., Hubau, Wannes, Abiem, I., Adhikari, H., Albrecht, T., Altman, J., Amani, Christian, Aneseyee, A.B., Avitabile, Valerio, Banin, L., Batumike, R., Bauters, M, Beeckman, Hans, Kouob Bégné, Serge, Bennett, Amy C., Bitariho, R., Boeckx, Pascal, Bogaert, Jan, Bräuning, A., Bulonvu, F., Burgess, Neil N.D., Calders, K., Chapman, C., Chapman, H., Comiskey, James, De Haulleville, Thales, Decuyper, Mathieu, DeVries, B., Dolezal, J., Droissart, Vincent, Ewango, Corneille, Feyera, S., Gebrekirstos, A., Gereau, Roy R.E., Gilpin, M., Hakizimana, D., Hall, Jefferson S., Hamilton, A., Hardy, Olivier J., Hart, Terese, Heiskanen, J., Hemp, A., Herold, Martin, Hiltner, U., Horak, D., Kamdem, Marie Noël Djuikouo, Kayijamahe, C., Kenfack, David, Kinyanjui, M.J., Klein, J., Lisingo Wa Lisingo, Janvier, Lovett, J., Lung, M., Makana, Jean Rémy, Malhi, Yadvinder, Marshall, Andrew A.R., Martin, E.H., Mitchard, E.T.A., Morel, A., Mukendi, J.T., Muller, T., Nchu, F., Nyirambangutse, B., Okello, Judith Auma, Peh, Kelvin S H, Pellikka, P., Phillips, Oliver L., Plumptre, Andrew A.J., Qie, L., ROVERO, Francesco, Sainge, M.N., Schmitt, Christine C.B., Sedlacek, O., Ngute, A.S.K., Sheil, Douglas, Sheleme, D., Simegn, T.Y., Simo-Droissart, Murielle, Sonke, Bonaventure, Soromessa, T., Sunderland, Terry C., Svoboda, Miroslav, Taedoumg, Hermann, Taplin, J., Taylor, David, Thomas, S.C., Timberlake, Jonathan J.R., Tuagben, Darlington, Umunay, Peter M., Uzabaho, E., Verbeeck, Hans, Vleminckx, Jason, Wallin, G., Wheeler, C., Willcock, S., Woods, John T., and Zibera, E.
- Abstract
Tropical forests store 40–50 per cent of terrestrial vegetation carbon1. However, spatial variations in aboveground live tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane forests2. Owing to climatic and soil changes with increasing elevation3, AGC stocks are lower in tropical montane forests compared with lowland forests2. Here we assemble and analyse a dataset of structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. We find that montane sites in the AfriMont plot network have a mean AGC stock of 149.4 megagrams of carbon per hectare (95% confidence interval 137.1–164.2), which is comparable to lowland forests in the African Tropical Rainforest Observation Network4 and about 70 per cent and 32 per cent higher than averages from plot networks in montane2,5,6 and lowland7 forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the Intergovernmental Panel on Climate Change default values for these forests in Africa8. We find that the low stem density and high abundance of large trees of African lowland forests4 is mirrored in the montane forests sampled. This carbon store is endangered: we estimate that 0.8 million hectares of old-growth African montane forest have been lost since 2000. We provide country-specific montane forest AGC stock estimates modelled from our plot network to help to guide forest conservation and reforestation interventions. Our findings highlight the need for conserving these biodiverse9,10 and carbon-rich ecosystems. © 2021, The Author(s), under exclusive licence to Springer Nature Limited., SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2021
9. DISCUSSION ON CALCULATION OF WAVE FORCES ON SUBMERGED QUARTER CIRCULAR BREAKWATER UNDER IRREGULAR WAVES
- Author
-
JIANG, X. L., primary, LI, Y. B., additional, and QIE, L. W., additional
- Published
- 2011
- Full Text
- View/download PDF
10. RELIABILITY ANALYSIS OF QUARTER-CIRCULAR CAISSON BREAKWATER
- Author
-
QIE, L. W., primary, QIN, Y. N., additional, DING, H. Q., additional, ZHANG, X., additional, and JIANG, X. L., additional
- Published
- 2011
- Full Text
- View/download PDF
11. The global abundance of tree palms
- Author
-
Muscarella, R., Emilio, T., Phillips, O.L., Lewis, S.L., Slik, F., Baker, W.J., Couvreur, T.L.P., Eiserhardt, W.L., Svenning, J.-C., Affum-Baffoe, K., Aiba, S.-I., de Almeida, E.C., de Almeida, S.S., de Oliveira, E.A., Álvarez-Dávila, E., Alves, L.F., Alvez-Valles, C.M., Carvalho, F.A., Guarin, F.A., Andrade, A., Aragão, L.E.O.C., Murakami, A.A., Arroyo, L., Ashton, P.S., Corredor, G.A.A., Baker, T.R., de Camargo, P.B., Barlow, J., Bastin, J.-F., Bengone, N.N., Berenguer, E., Berry, N., Blanc, L., Böhning-Gaese, K., Bonal, D., Bongers, F., Bradford, M., Brambach, F., Brearley, F.Q., Brewer, S.W., Camargo, J.L.C., Campbell, D.G., Castilho, C.V., Castro, W., Catchpole, D., Cerón Martínez, C.E., Chen, S., Chhang, P., Cho, P., Chutipong, W., Clark, C., Collins, M., Comiskey, J.A., Medina, M.N.C., Costa, F.R.C., Culmsee, H., David-Higuita, H., Davidar, P., del Aguila-Pasquel, J., Derroire, G., Di Fiore, A., Van Do, T., Doucet, J.-L., Dourdain, A., Drake, D.R., Ensslin, A., Erwin, T., Ewango, C.E.N., Ewers, R.M., Fauset, S., Feldpausch, T.R., Ferreira, J., Ferreira, L.V., Fischer, M., Franklin, J., Fredriksson, G.M., Gillespie, T.W., Gilpin, M., Gonmadje, C., Gunatilleke, A.U.N., Hakeem, K.R., Hall, J.S., Hamer, K.C., Harris, D.J., Harrison, R.D., Hector, A., Hemp, A., Herault, B., Pizango, C.G.H., Coronado, E.N.H., Hubau, W., Hussain, M.S., Ibrahim, F.-H., Imai, N., Joly, C.A., Joseph, S., Anitha, K., Kartawinata, K., Kassi, J., Killeen, T.J., Kitayama, K., Klitgård, B.B., Kooyman, R., Labrière, N., Larney, E., Laumonier, Y., Laurance, S.G., Laurance, W.F., Lawes, M.J., Levesley, A., Lisingo, J., Lovejoy, T., Lovett, J.C., Lu, X., Lykke, A.M., Magnusson, W.E., Mahayani, N.P.D., Malhi, Y., Mansor, A., Peña, J.L.M., Marimon-Junior, B.H., Marshall, A.R., Melgaco, K., Bautista, C.M., Mihindou, V., Millet, J., Milliken, W., Mohandass, D., Mendoza, A.L.M., Mugerwa, B., Nagamasu, H., Nagy, L., Seuaturien, N., Nascimento, M.T., Neill, D.A., Neto, L.M., Nilus, R., Vargas, M.P.N., Nurtjahya, E., de Araújo, R.N.O., Onrizal, O., Palacios, W.A., Palacios-Ramos, S., Parren, M., Paudel, E., Morandi, P.S., Pennington, R.T., Pickavance, G., Pipoly J.J., III, Pitman, N.C.A., Poedjirahajoe, E., Poorter, L., Poulsen, J.R., Rama Chandra Prasad, P., Prieto, A., Puyravaud, J.-P., Qie, L., Quesada, C.A., Ramírez-Angulo, H., Razafimahaimodison, J.C., Reitsma, J.M., Requena-Rojas, E.J., Correa, Z.R., Rodriguez, C.R., Roopsind, A., Rovero, F., Rozak, A., Lleras, A.R., Rutishauser, E., Rutten, G., Punchi-Manage, R., Salomão, R.P., Van Sam, H., Sarker, S.K., Satdichanh, M., Schietti, J., Schmitt, C.B., Marimon, B.S., Senbeta, F., Nath Sharma, L., Sheil, D., Sierra, R., Silva-Espejo, J.E., Silveira, M., Sonké, B., Steininger, M.K., Steinmetz, R., Stévart, T., Sukumar, R., Sultana, A., Sunderland, T.C.H., Suresh, H.S., Tang, J., Tanner, E., ter Steege, H., Terborgh, J.W., Theilade, I., Timberlake, J., Torres-Lezama, A., Umunay, P., Uriarte, M., Gamarra, L.V., van de Bult, M., van der Hout, P., Martinez, R.V., Vieira, I.C.G., Vieira, S.A., Vilanova, E., Cayo, J.V., Wang, O., Webb, C.O., Webb, E.L., White, L., Whitfeld, T.J.S., Wich, S., Willcock, S., Wiser, S.K., Young, K.R., Zakaria, R., Zang, R., Zartman, C.E., Zo-Bi, I.C., Balslev, H., Muscarella, R., Emilio, T., Phillips, O.L., Lewis, S.L., Slik, F., Baker, W.J., Couvreur, T.L.P., Eiserhardt, W.L., Svenning, J.-C., Affum-Baffoe, K., Aiba, S.-I., de Almeida, E.C., de Almeida, S.S., de Oliveira, E.A., Álvarez-Dávila, E., Alves, L.F., Alvez-Valles, C.M., Carvalho, F.A., Guarin, F.A., Andrade, A., Aragão, L.E.O.C., Murakami, A.A., Arroyo, L., Ashton, P.S., Corredor, G.A.A., Baker, T.R., de Camargo, P.B., Barlow, J., Bastin, J.-F., Bengone, N.N., Berenguer, E., Berry, N., Blanc, L., Böhning-Gaese, K., Bonal, D., Bongers, F., Bradford, M., Brambach, F., Brearley, F.Q., Brewer, S.W., Camargo, J.L.C., Campbell, D.G., Castilho, C.V., Castro, W., Catchpole, D., Cerón Martínez, C.E., Chen, S., Chhang, P., Cho, P., Chutipong, W., Clark, C., Collins, M., Comiskey, J.A., Medina, M.N.C., Costa, F.R.C., Culmsee, H., David-Higuita, H., Davidar, P., del Aguila-Pasquel, J., Derroire, G., Di Fiore, A., Van Do, T., Doucet, J.-L., Dourdain, A., Drake, D.R., Ensslin, A., Erwin, T., Ewango, C.E.N., Ewers, R.M., Fauset, S., Feldpausch, T.R., Ferreira, J., Ferreira, L.V., Fischer, M., Franklin, J., Fredriksson, G.M., Gillespie, T.W., Gilpin, M., Gonmadje, C., Gunatilleke, A.U.N., Hakeem, K.R., Hall, J.S., Hamer, K.C., Harris, D.J., Harrison, R.D., Hector, A., Hemp, A., Herault, B., Pizango, C.G.H., Coronado, E.N.H., Hubau, W., Hussain, M.S., Ibrahim, F.-H., Imai, N., Joly, C.A., Joseph, S., Anitha, K., Kartawinata, K., Kassi, J., Killeen, T.J., Kitayama, K., Klitgård, B.B., Kooyman, R., Labrière, N., Larney, E., Laumonier, Y., Laurance, S.G., Laurance, W.F., Lawes, M.J., Levesley, A., Lisingo, J., Lovejoy, T., Lovett, J.C., Lu, X., Lykke, A.M., Magnusson, W.E., Mahayani, N.P.D., Malhi, Y., Mansor, A., Peña, J.L.M., Marimon-Junior, B.H., Marshall, A.R., Melgaco, K., Bautista, C.M., Mihindou, V., Millet, J., Milliken, W., Mohandass, D., Mendoza, A.L.M., Mugerwa, B., Nagamasu, H., Nagy, L., Seuaturien, N., Nascimento, M.T., Neill, D.A., Neto, L.M., Nilus, R., Vargas, M.P.N., Nurtjahya, E., de Araújo, R.N.O., Onrizal, O., Palacios, W.A., Palacios-Ramos, S., Parren, M., Paudel, E., Morandi, P.S., Pennington, R.T., Pickavance, G., Pipoly J.J., III, Pitman, N.C.A., Poedjirahajoe, E., Poorter, L., Poulsen, J.R., Rama Chandra Prasad, P., Prieto, A., Puyravaud, J.-P., Qie, L., Quesada, C.A., Ramírez-Angulo, H., Razafimahaimodison, J.C., Reitsma, J.M., Requena-Rojas, E.J., Correa, Z.R., Rodriguez, C.R., Roopsind, A., Rovero, F., Rozak, A., Lleras, A.R., Rutishauser, E., Rutten, G., Punchi-Manage, R., Salomão, R.P., Van Sam, H., Sarker, S.K., Satdichanh, M., Schietti, J., Schmitt, C.B., Marimon, B.S., Senbeta, F., Nath Sharma, L., Sheil, D., Sierra, R., Silva-Espejo, J.E., Silveira, M., Sonké, B., Steininger, M.K., Steinmetz, R., Stévart, T., Sukumar, R., Sultana, A., Sunderland, T.C.H., Suresh, H.S., Tang, J., Tanner, E., ter Steege, H., Terborgh, J.W., Theilade, I., Timberlake, J., Torres-Lezama, A., Umunay, P., Uriarte, M., Gamarra, L.V., van de Bult, M., van der Hout, P., Martinez, R.V., Vieira, I.C.G., Vieira, S.A., Vilanova, E., Cayo, J.V., Wang, O., Webb, C.O., Webb, E.L., White, L., Whitfeld, T.J.S., Wich, S., Willcock, S., Wiser, S.K., Young, K.R., Zakaria, R., Zang, R., Zartman, C.E., Zo-Bi, I.C., and Balslev, H.
- Abstract
Aim: Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location: Tropical and subtropical moist forests. Time period: Current. Major taxa studied: Palms (Arecaceae). Methods: We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co-occurring non-palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results: On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long-term climate stability. Life-form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non-tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above-ground biomass, but the magnitude and direction of the effect require additional work. Conclusions: Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neot
- Published
- 2020
12. Long-term thermal sensitivity of Earth's tropical forests
- Author
-
Sullivan, M.J.P., Lewis, S.L., Affum-Baffoe, K., Castilho, C., Costa, F., Sanchez, A.C., Ewango, C.E.N., Hubau, W., Marimon, B., Monteagudo-Mendoza, A., Qie, L., Sonké, B., Martinez, R.V., Baker, T.R., Brienen, R.J.W., Feldpausch, T.R., Galbraith, D., Gloor, M., Malhi, Y., Aiba, S.-I., Alexiades, M.N., Almeida, E.C., de Oliveira, E.A., Dávila, E.Á., Loayza, P.A., Andrade, A., Vieira, S.A., Aragão, L.E.O.C., Araujo-Murakami, A., Arets, E.J.M.M., Arroyo, L., Ashton, P., Aymard C, G., Baccaro, F.B., Banin, L.F., Baraloto, C., Camargo, P.B., Barlow, J., Barroso, J., Bastin, J.-F., Batterman, S.A., Beeckman, H., Begne, S.K., Bennett, A.C., Berenguer, E., Berry, N., Blanc, L., Boeckx, P., Bogaert, J., Bonal, D., Bongers, F., Bradford, M., Brearley, F.Q., Brncic, T., Brown, F., Burban, B., Camargo, J.L., Castro, W., Céron, C., Ribeiro, S.C., Moscoso, V.C., Chave, J., Chezeaux, E., Clark, C.J., de Souza, F.C., Collins, M., Comiskey, J.A., Valverde, F.C., Medina, M.C., da Costa, L., Dančák, M., Dargie, G.C., Davies, S., Cardozo, N.D., de Haulleville, T., de Medeiros, M.B., Del Aguila Pasquel, J., Derroire, G., Di Fiore, A., Doucet, J.-L., Dourdain, A., Droissant, V., Duque, L.F., Ekoungoulou, R., Elias, F., Erwin, T., Esquivel-Muelbert, A., Fauset, S., Ferreira, J., Llampazo, G.F., Foli, E., Ford, A., Gilpin, M., Hall, J.S., Hamer, K.C., Hamilton, A.C., Harris, D.J., Hart, T.B., Hédl, R., Herault, B., Herrera, R., Higuchi, N., Hladik, A., Coronado, E.H., Huamantupa-Chuquimaco, I., Huasco, W.H., Jeffery, K.J., Jimenez-Rojas, E., Kalamandeen, M., Djuikouo, M.N.K., Kearsley, E., Umetsu, R.K., Kho, L.K., Killeen, T., Kitayama, K., Klitgaard, B., Koch, A., Labrière, N., Laurance, W., Laurance, S., Leal, M.E., Levesley, A., Lima, A.J.N., Lisingo, J., Lopes, A.P., Lopez-Gonzalez, G., Lovejoy, T., Lovett, J.C., Lowe, R., Magnusson, W.E., Malumbres-Olarte, J., Manzatto, ÂG., Marimon B.H., Jr, Marshall, A.R., Marthews, T., de Almeida Reis, S.M., Maycock, C., Melgaço, K., Mendoza, C., Metali, F., Mihindou, V., Milliken, W., Mitchard, E.T.A., Morandi, P.S., Mossman, H.L., Nagy, L., Nascimento, H., Neill, D., Nilus, R., Vargas, P.N., Palacios, W., Camacho, N.P., Peacock, J., Pendry, C., Peñuela Mora, M.C., Pickavance, G.C., Pipoly, J., Pitman, N., Playfair, M., Poorter, L., Poulsen, J.R., Poulsen, A.D., Preziosi, R., Prieto, A., Primack, R.B., Ramírez-Angulo, H., Reitsma, J., Réjou-Méchain, M., Correa, Z.R., de Sousa, T.R., Bayona, L.R., Roopsind, A., Rudas, A., Rutishauser, E., Abu Salim, K., Salomão, R.P., Schietti, J., Sheil, D., Silva, R.C., Espejo, J.S., Valeria, C.S., Silveira, M., Simo-Droissart, M., Simon, M.F., Singh, J., Soto Shareva, Y.C., Stahl, C., Stropp, J., Sukri, R., Sunderland, T., Svátek, M., Swaine, M.D., Swamy, V., Taedoumg, H., Talbot, J., Taplin, J., Taylor, D., Ter Steege, H., Terborgh, J., Thomas, R., Thomas, S.C., Torres-Lezama, A., Umunay, P., Gamarra, L.V., van der Heijden, G., van der Hout, P., van der Meer, P., van Nieuwstadt, M., Verbeeck, H., Vernimmen, R., Vicentini, A., Vieira, I.C.G., Torre, E.V., Vleminckx, J., Vos, V., Wang, O., White, L.J.T., Willcock, S., Woods, J.T., Wortel, V., Young, K., Zagt, R., Zemagho, L., Zuidema, P.A., Zwerts, J.A., Phillips, O.L., Sullivan, M.J.P., Lewis, S.L., Affum-Baffoe, K., Castilho, C., Costa, F., Sanchez, A.C., Ewango, C.E.N., Hubau, W., Marimon, B., Monteagudo-Mendoza, A., Qie, L., Sonké, B., Martinez, R.V., Baker, T.R., Brienen, R.J.W., Feldpausch, T.R., Galbraith, D., Gloor, M., Malhi, Y., Aiba, S.-I., Alexiades, M.N., Almeida, E.C., de Oliveira, E.A., Dávila, E.Á., Loayza, P.A., Andrade, A., Vieira, S.A., Aragão, L.E.O.C., Araujo-Murakami, A., Arets, E.J.M.M., Arroyo, L., Ashton, P., Aymard C, G., Baccaro, F.B., Banin, L.F., Baraloto, C., Camargo, P.B., Barlow, J., Barroso, J., Bastin, J.-F., Batterman, S.A., Beeckman, H., Begne, S.K., Bennett, A.C., Berenguer, E., Berry, N., Blanc, L., Boeckx, P., Bogaert, J., Bonal, D., Bongers, F., Bradford, M., Brearley, F.Q., Brncic, T., Brown, F., Burban, B., Camargo, J.L., Castro, W., Céron, C., Ribeiro, S.C., Moscoso, V.C., Chave, J., Chezeaux, E., Clark, C.J., de Souza, F.C., Collins, M., Comiskey, J.A., Valverde, F.C., Medina, M.C., da Costa, L., Dančák, M., Dargie, G.C., Davies, S., Cardozo, N.D., de Haulleville, T., de Medeiros, M.B., Del Aguila Pasquel, J., Derroire, G., Di Fiore, A., Doucet, J.-L., Dourdain, A., Droissant, V., Duque, L.F., Ekoungoulou, R., Elias, F., Erwin, T., Esquivel-Muelbert, A., Fauset, S., Ferreira, J., Llampazo, G.F., Foli, E., Ford, A., Gilpin, M., Hall, J.S., Hamer, K.C., Hamilton, A.C., Harris, D.J., Hart, T.B., Hédl, R., Herault, B., Herrera, R., Higuchi, N., Hladik, A., Coronado, E.H., Huamantupa-Chuquimaco, I., Huasco, W.H., Jeffery, K.J., Jimenez-Rojas, E., Kalamandeen, M., Djuikouo, M.N.K., Kearsley, E., Umetsu, R.K., Kho, L.K., Killeen, T., Kitayama, K., Klitgaard, B., Koch, A., Labrière, N., Laurance, W., Laurance, S., Leal, M.E., Levesley, A., Lima, A.J.N., Lisingo, J., Lopes, A.P., Lopez-Gonzalez, G., Lovejoy, T., Lovett, J.C., Lowe, R., Magnusson, W.E., Malumbres-Olarte, J., Manzatto, ÂG., Marimon B.H., Jr, Marshall, A.R., Marthews, T., de Almeida Reis, S.M., Maycock, C., Melgaço, K., Mendoza, C., Metali, F., Mihindou, V., Milliken, W., Mitchard, E.T.A., Morandi, P.S., Mossman, H.L., Nagy, L., Nascimento, H., Neill, D., Nilus, R., Vargas, P.N., Palacios, W., Camacho, N.P., Peacock, J., Pendry, C., Peñuela Mora, M.C., Pickavance, G.C., Pipoly, J., Pitman, N., Playfair, M., Poorter, L., Poulsen, J.R., Poulsen, A.D., Preziosi, R., Prieto, A., Primack, R.B., Ramírez-Angulo, H., Reitsma, J., Réjou-Méchain, M., Correa, Z.R., de Sousa, T.R., Bayona, L.R., Roopsind, A., Rudas, A., Rutishauser, E., Abu Salim, K., Salomão, R.P., Schietti, J., Sheil, D., Silva, R.C., Espejo, J.S., Valeria, C.S., Silveira, M., Simo-Droissart, M., Simon, M.F., Singh, J., Soto Shareva, Y.C., Stahl, C., Stropp, J., Sukri, R., Sunderland, T., Svátek, M., Swaine, M.D., Swamy, V., Taedoumg, H., Talbot, J., Taplin, J., Taylor, D., Ter Steege, H., Terborgh, J., Thomas, R., Thomas, S.C., Torres-Lezama, A., Umunay, P., Gamarra, L.V., van der Heijden, G., van der Hout, P., van der Meer, P., van Nieuwstadt, M., Verbeeck, H., Vernimmen, R., Vicentini, A., Vieira, I.C.G., Torre, E.V., Vleminckx, J., Vos, V., Wang, O., White, L.J.T., Willcock, S., Woods, J.T., Wortel, V., Young, K., Zagt, R., Zemagho, L., Zuidema, P.A., Zwerts, J.A., and Phillips, O.L.
- Abstract
The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (-9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth's climate.
- Published
- 2020
13. PRELIMINARY SENSITIVITY STUDY OF AEROSOL LAYER HEIGHT FROM SYNTHETIC MULTIANGLE POLARIMETRIC REMOTE SENSING MEASUREMENTS
- Author
-
Hou, W. Z., primary, Wang, H. F., additional, Li, Z. Q., additional, Qie, L. L., additional, Ge, B. Y., additional, Fan, C., additional, and Li, S., additional
- Published
- 2019
- Full Text
- View/download PDF
14. Estimating aboveground net biomass change for tropical and subtropical forests: Refinement of IPCC default rates using forest plot data
- Author
-
Requena Suarez, D, Rozendaal, DMA, De Sy, V, Phillips, OL, Alvarez-Dávila, E, Anderson-Teixeira, K, Araujo-Murakami, A, Arroyo, L, Baker, TR, Bongers, F, Brienen, RJW, Carter, S, Cook-Patton, SC, Feldpausch, TR, Griscom, BW, Harris, N, Hérault, B, Honorio Coronado, EN, Leavitt, SM, Lewis, SL, Marimon, BS, Monteagudo Mendoza, A, Kassi N'dja, J, N'Guessan, AE, Poorter, L, Qie, L, Rutishauser, E, Sist, P, Sonké, B, Sullivan, MJP, Vilanova, E, Wang, MMH, Martius, C, Herold, M, Requena Suarez, D, Rozendaal, DMA, De Sy, V, Phillips, OL, Alvarez-Dávila, E, Anderson-Teixeira, K, Araujo-Murakami, A, Arroyo, L, Baker, TR, Bongers, F, Brienen, RJW, Carter, S, Cook-Patton, SC, Feldpausch, TR, Griscom, BW, Harris, N, Hérault, B, Honorio Coronado, EN, Leavitt, SM, Lewis, SL, Marimon, BS, Monteagudo Mendoza, A, Kassi N'dja, J, N'Guessan, AE, Poorter, L, Qie, L, Rutishauser, E, Sist, P, Sonké, B, Sullivan, MJP, Vilanova, E, Wang, MMH, Martius, C, and Herold, M
- Abstract
© 2019 The Authors. Global Change Biology Published by John Wiley & Sons Ltd As countries advance in greenhouse gas (GHG) accounting for climate change mitigation, consistent estimates of aboveground net biomass change (∆AGB) are needed. Countries with limited forest monitoring capabilities in the tropics and subtropics rely on IPCC 2006 default ∆AGB rates, which are values per ecological zone, per continent. Similarly, research into forest biomass change at a large scale also makes use of these rates. IPCC 2006 default rates come from a handful of studies, provide no uncertainty indications and do not distinguish between older secondary forests and old-growth forests. As part of the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, we incorporate ∆AGB data available from 2006 onwards, comprising 176 chronosequences in secondary forests and 536 permanent plots in old-growth and managed/logged forests located in 42 countries in Africa, North and South America and Asia. We generated ∆AGB rate estimates for younger secondary forests (≤20 years), older secondary forests (>20 years and up to 100 years) and old-growth forests, and accounted for uncertainties in our estimates. In tropical rainforests, for which data availability was the highest, our ∆AGB rate estimates ranged from 3.4 (Asia) to 7.6 (Africa) Mg ha−1 year−1 in younger secondary forests, from 2.3 (North and South America) to 3.5 (Africa) Mg ha−1 year−1 in older secondary forests, and 0.7 (Asia) to 1.3 (Africa) Mg ha−1 year−1 in old-growth forests. We provide a rigorous and traceable refinement of the IPCC 2006 default rates in tropical and subtropical ecological zones, and identify which areas require more research on ∆AGB. In this respect, this study should be considered as an important step towards quantifying the role of tropical and subtropical forests as carbon sinks with higher accuracy; our new rates can be used for large-scale GHG accounting by governmental bodies, n
- Published
- 2019
15. Opportunities and challenges for an Indonesian forest monitoring network
- Author
-
Brearley, FQ, Adinugroho, WC, Cámara-Leret, R, Krisnawati, H, Ledo, A, Qie, L, Smith, TEL, Aini, F, Garnier, F, Lestari, NS, Mansur, M, Murdjoko, A, Oktarita, S, Soraya, E, Tata, HL, Tiryana, T, Trethowan, LA, Wheeler, CE, Abdullah, M, Aswandi, Buckley, BJW, Cantarello, E, Dunggio, I, Gunawan, H, Heatubun, CD, Arini, DID, Istomo, Komar, TE, Kuswandi, R, Mutaqien, Z, Pangala, SR, Ramadhanil, Prayoto, Puspanti, A, Qirom, MA, Rozak, AH, Sadili, A, Samsoedin, I, Sulistyawati, E, Sundari, S, Sutomo, Tampubolon, AP, Webb, CO, Brearley, FQ, Adinugroho, WC, Cámara-Leret, R, Krisnawati, H, Ledo, A, Qie, L, Smith, TEL, Aini, F, Garnier, F, Lestari, NS, Mansur, M, Murdjoko, A, Oktarita, S, Soraya, E, Tata, HL, Tiryana, T, Trethowan, LA, Wheeler, CE, Abdullah, M, Aswandi, Buckley, BJW, Cantarello, E, Dunggio, I, Gunawan, H, Heatubun, CD, Arini, DID, Istomo, Komar, TE, Kuswandi, R, Mutaqien, Z, Pangala, SR, Ramadhanil, Prayoto, Puspanti, A, Qirom, MA, Rozak, AH, Sadili, A, Samsoedin, I, Sulistyawati, E, Sundari, S, Sutomo, Tampubolon, AP, and Webb, CO
- Abstract
© 2019, INRA and Springer-Verlag France SAS, part of Springer Nature. Key message: Permanent sampling plots (PSPs) are a powerful and reliable methodology to help our understanding of the diversity and dynamics of tropical forests. Based on the current inventory of PSPs in Indonesia, there is high potential to establish a long-term collaborative forest monitoring network. Whilst there are challenges to initiating such a network, there are also innumerable benefits to help us understand and better conserve these exceptionally diverse ecosystems.
- Published
- 2019
16. Compositional response of Amazon forests to climate change
- Author
-
Esquivel-Muelbert, A, Baker, TR, Dexter, KG, Lewis, SL, Brienen, RJW, Feldpausch, TR, Lloyd, J, Monteagudo-Mendoza, A, Arroyo, L, Álvarez-Dávila, E, Higuchi, N, Marimon, BS, Marimon-Junior, BH, Silveira, M, Vilanova, E, Gloor, E, Malhi, Y, Chave, J, Barlow, J, Bonal, D, Davila Cardozo, N, Erwin, T, Fauset, S, Hérault, B, Laurance, S, Poorter, L, Qie, L, Stahl, C, Sullivan, MJP, ter Steege, H, Vos, VA, Zuidema, PA, Almeida, E, Almeida de Oliveira, E, Andrade, A, Vieira, SA, Aragão, L, Araujo-Murakami, A, Arets, E, Aymard C, GA, Baraloto, C, Camargo, PB, Barroso, JG, Bongers, F, Boot, R, Camargo, JL, Castro, W, Chama Moscoso, V, Comiskey, J, Cornejo Valverde, F, Lola da Costa, AC, del Aguila Pasquel, J, Di Fiore, A, Fernanda Duque, L, Elias, F, Engel, J, Flores Llampazo, G, Galbraith, D, Herrera Fernández, R, Honorio Coronado, E, Hubau, W, Jimenez-Rojas, E, Lima, AJN, Umetsu, RK, Laurance, W, Lopez-Gonzalez, G, Lovejoy, T, Aurelio Melo Cruz, O, Morandi, PS, Neill, D, Núñez Vargas, P, Pallqui Camacho, NC, Parada Gutierrez, A, Pardo, G, Peacock, J, Peña-Claros, M, Peñuela-Mora, MC, Petronelli, P, Pickavance, GC, Pitman, N, Prieto, A, Quesada, C, Ramírez-Angulo, H, Réjou-Méchain, M, Restrepo Correa, Z, Roopsind, A, Rudas, A, Salomão, R, Silva, N, Silva Espejo, J, Singh, J, Stropp, J, Terborgh, J, Thomas, R, Toledo, M, Torres-Lezama, A, Valenzuela Gamarra, L, van de Meer, PJ, van der Heijden, G, van der Hout, P, Esquivel-Muelbert, A, Baker, TR, Dexter, KG, Lewis, SL, Brienen, RJW, Feldpausch, TR, Lloyd, J, Monteagudo-Mendoza, A, Arroyo, L, Álvarez-Dávila, E, Higuchi, N, Marimon, BS, Marimon-Junior, BH, Silveira, M, Vilanova, E, Gloor, E, Malhi, Y, Chave, J, Barlow, J, Bonal, D, Davila Cardozo, N, Erwin, T, Fauset, S, Hérault, B, Laurance, S, Poorter, L, Qie, L, Stahl, C, Sullivan, MJP, ter Steege, H, Vos, VA, Zuidema, PA, Almeida, E, Almeida de Oliveira, E, Andrade, A, Vieira, SA, Aragão, L, Araujo-Murakami, A, Arets, E, Aymard C, GA, Baraloto, C, Camargo, PB, Barroso, JG, Bongers, F, Boot, R, Camargo, JL, Castro, W, Chama Moscoso, V, Comiskey, J, Cornejo Valverde, F, Lola da Costa, AC, del Aguila Pasquel, J, Di Fiore, A, Fernanda Duque, L, Elias, F, Engel, J, Flores Llampazo, G, Galbraith, D, Herrera Fernández, R, Honorio Coronado, E, Hubau, W, Jimenez-Rojas, E, Lima, AJN, Umetsu, RK, Laurance, W, Lopez-Gonzalez, G, Lovejoy, T, Aurelio Melo Cruz, O, Morandi, PS, Neill, D, Núñez Vargas, P, Pallqui Camacho, NC, Parada Gutierrez, A, Pardo, G, Peacock, J, Peña-Claros, M, Peñuela-Mora, MC, Petronelli, P, Pickavance, GC, Pitman, N, Prieto, A, Quesada, C, Ramírez-Angulo, H, Réjou-Méchain, M, Restrepo Correa, Z, Roopsind, A, Rudas, A, Salomão, R, Silva, N, Silva Espejo, J, Singh, J, Stropp, J, Terborgh, J, Thomas, R, Toledo, M, Torres-Lezama, A, Valenzuela Gamarra, L, van de Meer, PJ, van der Heijden, G, and van der Hout, P
- Abstract
© 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. Most of the planet's diversity is concentrated in the tropics, which includes many regions undergoing rapid climate change. Yet, while climate-induced biodiversity changes are widely documented elsewhere, few studies have addressed this issue for lowland tropical ecosystems. Here we investigate whether the floristic and functional composition of intact lowland Amazonian forests have been changing by evaluating records from 106 long-term inventory plots spanning 30 years. We analyse three traits that have been hypothesized to respond to different environmental drivers (increase in moisture stress and atmospheric CO 2 concentrations): maximum tree size, biogeographic water-deficit affiliation and wood density. Tree communities have become increasingly dominated by large-statured taxa, but to date there has been no detectable change in mean wood density or water deficit affiliation at the community level, despite most forest plots having experienced an intensification of the dry season. However, among newly recruited trees, dry-affiliated genera have become more abundant, while the mortality of wet-affiliated genera has increased in those plots where the dry season has intensified most. Thus, a slow shift to a more dry-affiliated Amazonia is underway, with changes in compositional dynamics (recruits and mortality) consistent with climate-change drivers, but yet to significantly impact whole-community composition. The Amazon observational record suggests that the increase in atmospheric CO 2 is driving a shift within tree communities to large-statured species and that climate changes to date will impact forest composition, but long generation times of tropical trees mean that biodiversity change is lagging behind climate change.
- Published
- 2019
17. Compositional response of Amazon forests to climate change
- Author
-
Esquivel-Muelbert, A., Baker, T.R., Dexter, K.G., Lewis, S.L., Brienen, R.J.W., Feldpausch, T.R., Lloyd, J., Monteagudo-Mendoza, A., Arroyo, L., Álvarez-Dávila, E., Higuchi, N., Marimon, B.S., Marimon-Junior, B.H., Silveira, M., Vilanova, E., Gloor, E., Malhi, Y., Chave, J., Barlow, J., Bonal, D., Davila Cardozo, N., Erwin, T., Fauset, S., Hérault, B., Laurance, S., Poorter, L., Qie, L., Stahl, C., Sullivan, M.J.P., ter Steege, H., Vos, V.A., Zuidema, P.A., Almeida, E., Almeida de Oliveira, E., Andrade, A., Vieira, S.A., Aragão, L., Araujo-Murakami, A., Arets, E., Aymard C, G.A., Baraloto, C., Camargo, P.B., Barroso, J.G., Bongers, F., Boot, R., Camargo, J.L., Castro, W., Chama Moscoso, V., Comiskey, J., Cornejo Valverde, F., Lola da Costa, A.C., del Aguila Pasquel, J., Di Fiore, A., Fernanda Duque, L., Elias, F., Engel, J., Flores Llampazo, G., Galbraith, D., Herrera Fernández, R., Honorio Coronado, E., Hubau, W., Jimenez-Rojas, E., Lima, A.J.N., Umetsu, R.K., Laurance, W., Lopez-Gonzalez, G., Lovejoy, T., Aurelio Melo Cruz, O., Morandi, P.S., Neill, D., Núñez Vargas, P., Pallqui Camacho, N.C., Parada Gutierrez, A., Pardo, G., Peacock, J., Peña-Claros, M., Peñuela-Mora, M.C., Petronelli, P., Pickavance, G.C., Pitman, N., Prieto, A., Quesada, C., Ramírez-Angulo, H., Réjou-Méchain, M., Restrepo Correa, Z., Roopsind, A., Rudas, A., Salomão, R., Silva, N., Silva Espejo, J., Singh, J., Stropp, J., Terborgh, J., Thomas, R., Toledo, M., Torres-Lezama, A., Valenzuela Gamarra, L., van de Meer, P.J., van der Heijden, G., van der Hout, P., Vasquez Martinez, R., Vela, C., Vieira, I.C.G., Phillips, O.L., Esquivel-Muelbert, A., Baker, T.R., Dexter, K.G., Lewis, S.L., Brienen, R.J.W., Feldpausch, T.R., Lloyd, J., Monteagudo-Mendoza, A., Arroyo, L., Álvarez-Dávila, E., Higuchi, N., Marimon, B.S., Marimon-Junior, B.H., Silveira, M., Vilanova, E., Gloor, E., Malhi, Y., Chave, J., Barlow, J., Bonal, D., Davila Cardozo, N., Erwin, T., Fauset, S., Hérault, B., Laurance, S., Poorter, L., Qie, L., Stahl, C., Sullivan, M.J.P., ter Steege, H., Vos, V.A., Zuidema, P.A., Almeida, E., Almeida de Oliveira, E., Andrade, A., Vieira, S.A., Aragão, L., Araujo-Murakami, A., Arets, E., Aymard C, G.A., Baraloto, C., Camargo, P.B., Barroso, J.G., Bongers, F., Boot, R., Camargo, J.L., Castro, W., Chama Moscoso, V., Comiskey, J., Cornejo Valverde, F., Lola da Costa, A.C., del Aguila Pasquel, J., Di Fiore, A., Fernanda Duque, L., Elias, F., Engel, J., Flores Llampazo, G., Galbraith, D., Herrera Fernández, R., Honorio Coronado, E., Hubau, W., Jimenez-Rojas, E., Lima, A.J.N., Umetsu, R.K., Laurance, W., Lopez-Gonzalez, G., Lovejoy, T., Aurelio Melo Cruz, O., Morandi, P.S., Neill, D., Núñez Vargas, P., Pallqui Camacho, N.C., Parada Gutierrez, A., Pardo, G., Peacock, J., Peña-Claros, M., Peñuela-Mora, M.C., Petronelli, P., Pickavance, G.C., Pitman, N., Prieto, A., Quesada, C., Ramírez-Angulo, H., Réjou-Méchain, M., Restrepo Correa, Z., Roopsind, A., Rudas, A., Salomão, R., Silva, N., Silva Espejo, J., Singh, J., Stropp, J., Terborgh, J., Thomas, R., Toledo, M., Torres-Lezama, A., Valenzuela Gamarra, L., van de Meer, P.J., van der Heijden, G., van der Hout, P., Vasquez Martinez, R., Vela, C., Vieira, I.C.G., and Phillips, O.L.
- Abstract
Most of the planet's diversity is concentrated in the tropics, which includes many regions undergoing rapid climate change. Yet, while climate-induced biodiversity changes are widely documented elsewhere, few studies have addressed this issue for lowland tropical ecosystems. Here we investigate whether the floristic and functional composition of intact lowland Amazonian forests have been changing by evaluating records from 106 long-term inventory plots spanning 30 years. We analyse three traits that have been hypothesized to respond to different environmental drivers (increase in moisture stress and atmospheric CO 2 concentrations): maximum tree size, biogeographic water-deficit affiliation and wood density. Tree communities have become increasingly dominated by large-statured taxa, but to date there has been no detectable change in mean wood density or water deficit affiliation at the community level, despite most forest plots having experienced an intensification of the dry season. However, among newly recruited trees, dry-affiliated genera have become more abundant, while the mortality of wet-affiliated genera has increased in those plots where the dry season has intensified most. Thus, a slow shift to a more dry-affiliated Amazonia is underway, with changes in compositional dynamics (recruits and mortality) consistent with climate-change drivers, but yet to significantly impact whole-community composition. The Amazon observational record suggests that the increase in atmospheric CO 2 is driving a shift within tree communities to large-statured species and that climate changes to date will impact forest composition, but long generation times of tropical trees mean that biodiversity change is lagging behind climate change.
- Published
- 2019
18. Field methods for sampling tree height for tropical forest biomass estimation
- Author
-
Sullivan, MJP, Lewis, SL, Hubau, W, Qie, L, Baker, TR, Banin, LF, Chave, J, Sanchez, AC, Feldpausch, T, Lopez Gonzalez, G, Arets, E, Ashton, P, Bastin, JF, Berry, NJ, Bogaert, J, Boot, R, Brearley, FQ, Brienen, R, Burslem, DFRP, de Canniere, C, Chudomelová, M, Dančák, M, Ewango, C, Hédl, R, Lloyd, J, Makana, J-R, Malhi, Y, Marimon, BS, Marimon Junior, BH, Metali, F, Moore, S, Nagy, L, Vargas, PN, Pendry, C, Ramírez-Angulo, H, Reitsma, J, Rutishauser, E, Salim, KA, Sonké, B, Sukri, RS, Sunderland, T, Svátek, M, Umunay, PM, Vasquez Martinez, R, Vernimmen, RRE, Vilanova Torre, E, Vleminckx, J, Vos, V, and Phillips, OL
- Subjects
Allometry ,Sample size ,ALLOMETRIC MODELS ,DIAMETER ,Above-ground biomass estimation ,Ecology and Environment ,Carbon stocks ,Forest structure ,Earth and Environmental Sciences ,MAP ,Vegetatie, Bos- en Landschapsecologie ,Vegetation, Forest and Landscape Ecology ,EQUATIONS ,ABOVEGROUND BIOMASS ,Forest inventory - Abstract
© 2018 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society. Quantifying the relationship between tree diameter and height is a key component of efforts to estimate biomass and carbon stocks in tropical forests. Although substantial site-to-site variation in height–diameter allometries has been documented, the time consuming nature of measuring all tree heights in an inventory plot means that most studies do not include height, or else use generic pan-tropical or regional allometric equations to estimate height. Using a pan-tropical dataset of 73 plots where at least 150 trees had in-field ground-based height measurements, we examined how the number of trees sampled affects the performance of locally derived height–diameter allometries, and evaluated the performance of different methods for sampling trees for height measurement. Using cross-validation, we found that allometries constructed with just 20 locally measured values could often predict tree height with lower error than regional or climate-based allometries (mean reduction in prediction error = 0.46 m). The predictive performance of locally derived allometries improved with sample size, but with diminishing returns in performance gains when more than 40 trees were sampled. Estimates of stand-level biomass produced using local allometries to estimate tree height show no over- or under-estimation bias when compared with biomass estimates using field measured heights. We evaluated five strategies to sample trees for height measurement, and found that sampling strategies that included measuring the heights of the ten largest diameter trees in a plot outperformed (in terms of resulting in local height–diameter models with low height prediction error) entirely random or diameter size-class stratified approaches. Our results indicate that even limited sampling of heights can be used to refine height–diameter allometries. We recommend aiming for a conservative threshold of sampling 50 trees per location for height measurement, and including the ten trees with the largest diameter in this sample.
- Published
- 2018
19. RETRIEVAL OF AEROSOL MICROPHYSICAL PROPERTIES BASED ON THE OPTIMAL ESTIMATION METHOD: INFORMATION CONTENT ANALYSIS FOR SATELLITE POLARIMETRIC REMOTE SENSING MEASUREMENTS
- Author
-
Hou, W. Z., primary, Li, Z. Q., additional, Zheng, F. X., additional, and Qie, L. L., additional
- Published
- 2018
- Full Text
- View/download PDF
20. RETRIEVAL OF AEROSOL OPTICAL PROPERTIES FROM GROUND-BASED REMOTE SENSING MEASUREMENTS: AEROSOL ASYMMETRY FACTOR AND SINGLE SCATTERING ALBEDO
- Author
-
Qie, L., primary, Li, Z., additional, Li, L., additional, Li, K., additional, Li, D., additional, and Xu, H., additional
- Published
- 2018
- Full Text
- View/download PDF
21. RETRIEVAL OF AEROSOL PHASE FUNCTION AND POLARIZED PHASE FUNCTION FROM POLARIZATION OF SKYLIGHT FOR DIFFERENT OBSERVATION GEOMETRIES
- Author
-
Li, L., primary, Qie, L. L., additional, Xu, H., additional, and Li, Z. Q., additional
- Published
- 2018
- Full Text
- View/download PDF
22. Author Correction: Long-term carbon sink in Borneo's forests halted by drought and vulnerable to edges
- Author
-
Qie, L, Lewis, SL, Sullivan, MJP, Lopez-Gonzalez, G, Pickavance, GC, Sunderland, T, Ashton, P, Hubau, W, Abu Salim, K, Aiba, SI, Banin, LF, Berry, N, Brearley, FQ, Burslem, DFRP, Dančák, M, Davies, SJ, Fredriksson, G, Hamer, KC, Hédl, R, Kho, LK, Kitayama, K, Krisnawati, H, Lhota, S, Malhi, Y, Maycock, C, Metali, F, Mirmanto, E, Nagy, L, Nilus, R, Ong, R, Pendry, CA, Poulsen, AD, Primack, RB, Rutishauser, E, Samsoedin, I, Saragih, B, Sist, P, Ferry Slik, JW, Sukri, RS, Svátek, M, Tan, S, Tjoa, A, van Nieuwstadt, M, Vernimmen, RRE, Yassir, I, Kidd, PS, Fitriadi, M, Ideris, NKH, Serudin, RM, Abdullah Lim, LS, Saparudin, MS, Phillips, OL, Qie, L, Lewis, SL, Sullivan, MJP, Lopez-Gonzalez, G, Pickavance, GC, Sunderland, T, Ashton, P, Hubau, W, Abu Salim, K, Aiba, SI, Banin, LF, Berry, N, Brearley, FQ, Burslem, DFRP, Dančák, M, Davies, SJ, Fredriksson, G, Hamer, KC, Hédl, R, Kho, LK, Kitayama, K, Krisnawati, H, Lhota, S, Malhi, Y, Maycock, C, Metali, F, Mirmanto, E, Nagy, L, Nilus, R, Ong, R, Pendry, CA, Poulsen, AD, Primack, RB, Rutishauser, E, Samsoedin, I, Saragih, B, Sist, P, Ferry Slik, JW, Sukri, RS, Svátek, M, Tan, S, Tjoa, A, van Nieuwstadt, M, Vernimmen, RRE, Yassir, I, Kidd, PS, Fitriadi, M, Ideris, NKH, Serudin, RM, Abdullah Lim, LS, Saparudin, MS, and Phillips, OL
- Abstract
The original version of this Article contained an error in the third sentence of the abstract and incorrectly read "Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha-1 year-1 (95% CI 0.14-0.72, mean period 1988-2010) above-ground live biomass", rather than the correct "Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha-1 year-1 (95% CI 0.14-0.72, mean period 1988-2010) in above-ground live biomass carbon". This has now been corrected in both the PDF and HTML versions of the Article.
- Published
- 2018
23. Long-term carbon sink in Borneo's forests halted by drought and vulnerable to edge effects
- Author
-
Qie, L, Lewis, SL, Sullivan, MJP, Lopez-Gonzalez, G, Pickavance, GC, Sunderland, T, Ashton, P, Hubau, W, Abu Salim, K, Aiba, S-I, Banin, LF, Berry, N, Brearley, FQ, Burslem, DFRP, Dančák, M, Davies, SJ, Fredriksson, G, Hamer, KC, Hédl, R, Kho, LK, Kitayama, K, Krisnawati, H, Lhota, S, Malhi, Y, Maycock, C, Metali, F, Mirmanto, E, Nagy, L, Nilus, R, Ong, R, Pendry, CA, Poulsen, AD, Primack, RB, Rutishauser, E, Samsoedin, I, Saragih, B, Sist, P, Slik, JWF, Sukri, RS, Svátek, M, Tan, S, Tjoa, A, van Nieuwstadt, M, Vernimmen, RRE, Yassir, I, Kidd, PS, Fitriadi, M, Ideris, NKH, Serudin, RM, Abdullah Lim, LS, Saparudin, MS, and Phillips, OL
- Subjects
Science & Technology ,TREE MORTALITY ,IMPACT ,BIOMASS DYNAMICS ,TROPICAL FORESTS ,RAIN-FOREST ,Multidisciplinary Sciences ,TROPICAL RAIN-FORESTS ,RICHNESS ,Earth and Environmental Sciences ,BALANCE ,DRIVERS ,MD Multidisciplinary ,Science & Technology - Other Topics ,SPECIES COMPOSITION ,CO2 ,ATMOSPHERIC CO2 ,FRAGMENTATION ,SENSITIVITY ,Author Correction ,EL-NINO DROUGHT ,FRAGMENTS - Abstract
© 2017 The Author(s). Less than half of anthropogenic carbon dioxide emissions remain in the atmosphere. While carbon balance models imply large carbon uptake in tropical forests, direct on-the-ground observations are still lacking in Southeast Asia. Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha -1 per year (95% CI 0.14-0.72, mean period 1988-2010) above-ground live biomass. These results closely match those from African and Amazonian plot networks, suggesting that the world's remaining intact tropical forests are now en masse out-of-equilibrium. Although both pan-tropical and long-term, the sink in remaining intact forests appears vulnerable to climate and land use changes. Across Borneo the 1997-1998 El Niño drought temporarily halted the carbon sink by increasing tree mortality, while fragmentation persistently offset the sink and turned many edge-affected forests into a carbon source to the atmosphere.
- Published
- 2017
24. Diversity and carbon storage across the tropical forest biome
- Author
-
Sullivan, MJP, Talbot, J, Lewis, SL, Phillips, OL, Qie, L, Begne, SK, Chave, J, Cuni-Sanchez, A, Hubau, W, Lopez-Gonzalez, G, Miles, L, Monteagudo-Mendoza, A, Sonké, B, Sunderland, T, Ter Steege, H, White, LJT, Affum-Baffoe, K, Aiba, SI, De Almeida, EC, De Oliveira, EA, Alvarez-Loayza, P, Dávila, EÁ, Andrade, A, Aragão, LEOC, Ashton, P, Aymard, GA, Baker, TR, Balinga, M, Banin, LF, Baraloto, C, Bastin, JF, Berry, N, Bogaert, J, Bonal, D, Bongers, F, Brienen, R, Camargo, JLC, Cerón, C, Moscoso, VC, Chezeaux, E, Clark, CJ, Pacheco, ÁC, Comiskey, JA, Valverde, FC, Coronado, ENH, Dargie, G, Davies, SJ, De Canniere, C, Djuikouo, MN, Doucet, JL, Erwin, TL, Espejo, JS, Ewango, CEN, Fauset, S, Feldpausch, TR, Herrera, R, Gilpin, M, Gloor, E, Hall, JS, Harris, DJ, Hart, TB, Kartawinata, K, Kho, LK, Kitayama, K, Laurance, SGW, Laurance, WF, Leal, ME, Lovejoy, T, Lovett, JC, Lukasu, FM, Makana, JR, Malhi, Y, Maracahipes, L, Marimon, BS, Junior, BHM, Marshall, AR, Morandi, PS, Mukendi, JT, Mukinzi, J, Nilus, R, Vargas, PN, Camacho, NCP, Pardo, G, Peña-Claros, M, Pétronelli, P, Pickavance, GC, Poulsen, AD, Poulsen, JR, Primack, RB, Priyadi, H, Quesada, CA, Reitsma, J, Réjou-Méchain, M, Restrepo, Z, Rutishauser, E, Salim, KA, Salomão, RP, Samsoedin, I, Sheil, D, Sierra, R, Sullivan, MJP, Talbot, J, Lewis, SL, Phillips, OL, Qie, L, Begne, SK, Chave, J, Cuni-Sanchez, A, Hubau, W, Lopez-Gonzalez, G, Miles, L, Monteagudo-Mendoza, A, Sonké, B, Sunderland, T, Ter Steege, H, White, LJT, Affum-Baffoe, K, Aiba, SI, De Almeida, EC, De Oliveira, EA, Alvarez-Loayza, P, Dávila, EÁ, Andrade, A, Aragão, LEOC, Ashton, P, Aymard, GA, Baker, TR, Balinga, M, Banin, LF, Baraloto, C, Bastin, JF, Berry, N, Bogaert, J, Bonal, D, Bongers, F, Brienen, R, Camargo, JLC, Cerón, C, Moscoso, VC, Chezeaux, E, Clark, CJ, Pacheco, ÁC, Comiskey, JA, Valverde, FC, Coronado, ENH, Dargie, G, Davies, SJ, De Canniere, C, Djuikouo, MN, Doucet, JL, Erwin, TL, Espejo, JS, Ewango, CEN, Fauset, S, Feldpausch, TR, Herrera, R, Gilpin, M, Gloor, E, Hall, JS, Harris, DJ, Hart, TB, Kartawinata, K, Kho, LK, Kitayama, K, Laurance, SGW, Laurance, WF, Leal, ME, Lovejoy, T, Lovett, JC, Lukasu, FM, Makana, JR, Malhi, Y, Maracahipes, L, Marimon, BS, Junior, BHM, Marshall, AR, Morandi, PS, Mukendi, JT, Mukinzi, J, Nilus, R, Vargas, PN, Camacho, NCP, Pardo, G, Peña-Claros, M, Pétronelli, P, Pickavance, GC, Poulsen, AD, Poulsen, JR, Primack, RB, Priyadi, H, Quesada, CA, Reitsma, J, Réjou-Méchain, M, Restrepo, Z, Rutishauser, E, Salim, KA, Salomão, RP, Samsoedin, I, Sheil, D, and Sierra, R
- Abstract
© The Author(s) 2017. Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-Tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable within 1 ha plots, indicating that diversity effects in tropical forests may be scale dependent. The absence of clear diversity-carbon relationships at scales relevant to conservation planning means that carbon-centred conservation strategies will inevitably miss many high diversity ecosystems. As tropical forests can have any combination of tree diversity and carbon stocks both require explicit consideration when optimising policies to manage tropical carbon and biodiversity.
- Published
- 2017
25. An integrated pan-tropical biomass map using multiple reference datasets
- Author
-
Avitabile, V, Herold, M, Heuvelink, GBM, Lewis, SL, Phillips, OL, Asner, GP, Armston, J, Ashton, PS, Banin, L, Bayol, N, Berry, NJ, Boeckx, P, de Jong, BHJ, Devries, B, Girardin, CAJ, Kearsley, E, Lindsell, JA, Lopez-Gonzalez, G, Lucas, R, Malhi, Y, Morel, A, Mitchard, ETA, Nagy, L, Qie, L, Quinones, MJ, Ryan, CM, Ferry, SJW, Sunderland, T, Laurin, GV, Gatti, RC, Valentini, R, Verbeeck, H, Wijaya, A, Willcock, S, Avitabile, V, Herold, M, Heuvelink, GBM, Lewis, SL, Phillips, OL, Asner, GP, Armston, J, Ashton, PS, Banin, L, Bayol, N, Berry, NJ, Boeckx, P, de Jong, BHJ, Devries, B, Girardin, CAJ, Kearsley, E, Lindsell, JA, Lopez-Gonzalez, G, Lucas, R, Malhi, Y, Morel, A, Mitchard, ETA, Nagy, L, Qie, L, Quinones, MJ, Ryan, CM, Ferry, SJW, Sunderland, T, Laurin, GV, Gatti, RC, Valentini, R, Verbeeck, H, Wijaya, A, and Willcock, S
- Abstract
We combined two existing datasets of vegetation aboveground biomass (AGB) (Proceedings of the National Academy of Sciences of the United States of America, 108, 2011, 9899; Nature Climate Change, 2, 2012, 182) into a pan-tropical AGB map at 1-km resolution using an independent reference dataset of field observations and locally calibrated high-resolution biomass maps, harmonized and upscaled to 14 477 1-km AGB estimates. Our data fusion approach uses bias removal and weighted linear averaging that incorporates and spatializes the biomass patterns indicated by the reference data. The method was applied independently in areas (strata) with homogeneous error patterns of the input (Saatchi and Baccini) maps, which were estimated from the reference data and additional covariates. Based on the fused map, we estimated AGB stock for the tropics (23.4 N-23.4 S) of 375 Pg dry mass, 9-18% lower than the Saatchi and Baccini estimates. The fused map also showed differing spatial patterns of AGB over large areas, with higher AGB density in the dense forest areas in the Congo basin, Eastern Amazon and South-East Asia, and lower values in Central America and in most dry vegetation areas of Africa than either of the input maps. The validation exercise, based on 2118 estimates from the reference dataset not used in the fusion process, showed that the fused map had a RMSE 15-21% lower than that of the input maps and, most importantly, nearly unbiased estimates (mean bias 5 Mg dry mass ha-1 vs. 21 and 28 Mg ha-1 for the input maps). The fusion method can be applied at any scale including the policy-relevant national level, where it can provide improved biomass estimates by integrating existing regional biomass maps as input maps and additional, country-specific reference datasets.
- Published
- 2016
26. Role of GSPE in improving early cerebral vascular damage by inhibition of Profilin-1 expression in a ouabain-induced hypertension model.
- Author
-
HAO, J. P., SHI, H., ZHANG, J., ZHANG, C. M., FENG, Y. M., QIE, L. Y., DONG, M., and JI, X.
- Abstract
OBJECTIVE: Grape seed proanthocyanidin extract (GSPE), as one of the most popular natural drug extracted from the grape, has been reported to improve endothelial function and arteriosclerosis. However, little is known about the influence of GSPE on hypertension and vascular remodeling. Profilin-1, an Actin-binding protein, is closely involved in the remodeling of large vessels in ouabain-induced hypertension. To date, there is no effective prevention or treatment in place for the high incidence of ischemic stroke associated with hypertension. In this study, we aimed to determine the role of GSPE via inhibition Profilin-1 in ischemic cerebral cortices of ouabain-hypertension rats and potentially provide a new target to prevent stroke associated with hypertension. MATERIALS AND METHODS: The blood pressure of male Sprague-Dawley (SD) rats was measured during a period of ouabain-induced hypertension. The expression of Profilin-1, vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) in the cerebral cortex were determined by quantitative Real Time-PCR (qRT-PCR) and Western blot. Histopathological and behavioral tests were also conducted. RESULTS: Blood pressure elevation started at week 5 and reached clinical standards for hypertension at week 8. GSPE was proved to suppress Profilin-1 and VEGF levels through inhibition of Profilin-1-protein kinase B (AKT)-hypoxia inducible factor-1α (HIF-1α) signal pathway and promote eNOS expression. Moreover, the histopathological and ethiological improvement was observed in GSPE over-expression and Profilin- 1 inhibition groups. CONCLUSIONS: We detected that GSPE could improve cerebral vascular damage through inhibiting Profilin-1 in an ouabain-induced hypertension model. [ABSTRACT FROM AUTHOR]
- Published
- 2018
27. An Investigation of the Elemental Composition, Surface Properties, and Soluble Fraction of Kaiyang Bituminous Coal Chars
- Author
-
Lv, J., primary, Zong, Z.-M., additional, Peng, Y.-L., additional, Li, L., additional, Qie, L.-M., additional, Qi, X.-Z., additional, Robert, M., additional, Lu, H.-Y., additional, Wei, X.-Y., additional, Wu, S.-Y., additional, and Gao, J.-S., additional
- Published
- 2014
- Full Text
- View/download PDF
28. Vascular Compliance is Reduced in Geriatric People with Angiographic Coronary Atherosclerosis
- Author
-
You, B-A, primary, Gao, H-Q, additional, Li, G-S, additional, Huo, X-Y, additional, and Qie, L-Y, additional
- Published
- 2009
- Full Text
- View/download PDF
29. Cardiovascular risk profiles in relation to newly diagnosed Type 2 diabetes diagnosed by either glucose or HbA1c criteria in Chinese adults in Qingdao, China.
- Author
-
Qie, L. Y., Sun, J. P., Ning, F., Pang, Z. C., Gao, W. G., Ren, J., Nan, H. R., Zhang, L., and Qiao, Q.
- Subjects
- *
TYPE 2 diabetes diagnosis , *AGE distribution , *AGING , *ANALYSIS of variance , *BLOOD sugar , *CARDIOVASCULAR diseases risk factors , *CHI-squared test , *CHINESE people , *EPIDEMIOLOGY , *FASTING , *GLYCOSYLATED hemoglobin , *HIGH density lipoproteins , *LOW density lipoproteins , *TYPE 2 diabetes , *CROSS-sectional method - Abstract
Aims To study the cardiovascular disease risk profiles in newly diagnosed diabetes diagnosed by either glucose or/and HbA1c criteria in Chinese adults. Methods Two population-based cross-sectional studies were conducted in 2006 and 2009, respectively. Data from 1987 men and 2815 women aged 35-74 years were analysed. Newly diagnosed diabetes was defined according to either glucose (fasting and/or 2-h glucose), HbA1c or both criteria . Results Ageing, positive family history of diabetes, elevated levels of waist circumference, systolic blood pressure, total cholesterol, triglycerides and γ-glutamyl transferase were independently associated with newly diagnosed diabetes defined by glucose criterion alone, but not for diabetes defined by HbA1c criterion alone. Only waist circumference, total cholesterol and smoking were significantly associated with the presence of diabetes defined by HbA1c criterion alone. Conclusions Cardiovascular disease risk profiles were different in patients with newly diagnosed diabetes defined by the two diagnostic criteria for diabetes. This may have certain clinical implications on diabetes management and research. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
30. Identification of a Saccharomyces gene, LCB3, necessary for incorporation of exogenous long chain bases into sphingolipids.
- Author
-
Qie, L, Nagiec, M M, Baltisberger, J A, Lester, R L, and Dickson, R C
- Abstract
To identify genes necessary for sphingolipid synthesis in Saccharomyces cerevisiae we developed a procedure to enrich for mutants unable to incorporate exogenous long chain base into sphingolipids. We show here that a mutant strain, AG84-3, isolated by using the enrichment procedure, makes sphingolipids from endogenously synthesized but not from exogenously supplied long chain base. A gene termed LCB3 (YJL134W, GenBank designation X87371x21), which complements the long chain base utilization defect of strain AG84-3, was isolated from a genomic DNA library. The gene is predicted to encode a protein with multiple membrane-spanning domains and a COOH-terminal glycosylphosphatidylinositiol cleavage/attachment site. Deletion of the lcb3 gene in a wild type genetic background reduces the rate of exogenous long chain base incorporation into sphingolipids and makes the host strain more resistant to growth inhibition by long chain bases. Only one protein in current data bases, the S. cerevisiae open-reading frame YKR053C, whose function is unknown, shows homology to the Lcb3 protein. The two proteins are not, however, functional homologs because deletion of the YKR053C open reading frame does not impair long chain base utilization or enhance resistance of cells to growth inhibition by long chain bases. Based upon these data we hypothesize that the Lcb3 protein is a plasma membrane transporter capable of transporting sphingoid long chain bases into cells. It is the first candidate for such a transporter and the first member of what appears to be a new class of membrane-bound proteins.
- Published
- 1997
31. Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers
- Author
-
Mills, J. P., Qie, L., Dao, M., Chwee Teck Lim, and Suresh, S.
32. Continuous force-displacement relationships for the human red blood cell at different erythrocytic developmental stages of Plasmodium falciparum malaria parasite
- Author
-
Mills, J. P., Qie, L., Dao, M., Tan, K. S. W., Chwee Teck Lim, and Suresh, S.
33. Aboveground forest biomass varies across continents, ecological zones and successional stages: refined IPCC default values for tropical and subtropical forests
- Author
-
Danaë M A Rozendaal, Daniela Requena Suarez, Veronique De Sy, Valerio Avitabile, Sarah Carter, C Y Adou Yao, Esteban Alvarez-Davila, Kristina Anderson-Teixeira, Alejandro Araujo-Murakami, Luzmila Arroyo, Benjamin Barca, Timothy R Baker, Luca Birigazzi, Frans Bongers, Anne Branthomme, Roel J W Brienen, João M B Carreiras, Roberto Cazzolla Gatti, Susan C Cook-Patton, Mathieu Decuyper, Ben DeVries, Andres B Espejo, Ted R Feldpausch, Julian Fox, Javier G P Gamarra, Bronson W Griscom, Nancy Harris, Bruno Hérault, Eurídice N Honorio Coronado, Inge Jonckheere, Eric Konan, Sara M Leavitt, Simon L Lewis, Jeremy A Lindsell, Justin Kassi N’Dja, Anny Estelle N’Guessan, Beatriz Marimon, Edward T A Mitchard, Abel Monteagudo, Alexandra Morel, Anssi Pekkarinen, Oliver L Phillips, Lourens Poorter, Lan Qie, Ervan Rutishauser, Casey M Ryan, Maurizio Santoro, Dos Santos Silayo, Plinio Sist, J W Ferry Slik, Bonaventure Sonké, Martin J P Sullivan, Gaia Vaglio Laurin, Emilio Vilanova, Maria M H Wang, Eliakimu Zahabu, Martin Herold, Rozendaal D.M.A., Requena Suarez D., De Sy V., Avitabile V., Carter S., Adou Yao C.Y., Alvarez-Davila E., Anderson-Teixeira K., Araujo-Murakami A., Arroyo L., Barca B., Baker T.R., Birigazzi L., Bongers F., Branthomme A., Brienen R.J.W., Carreiras J.M.B., Cazzolla Gatti R., Cook-Patton S.C., Decuyper M., Devries B., Espejo A.B., Feldpausch T.R., Fox J., G P Gamarra J., Griscom B.W., Harris N., Herault B., Honorio Coronado E.N., Jonckheere I., Konan E., Leavitt S.M., Lewis S.L., Lindsell J.A., N'Dja J.K., N'Guessan A.E., Marimon B., Mitchard E.T.A., Monteagudo A., Morel A., Pekkarinen A., Phillips O.L., Poorter L., Qie L., Rutishauser E., Ryan C.M., Santoro M., Silayo D.S., Sist P., Slik J.W.F., Sonke B., Sullivan M.J.P., Vaglio Laurin G., Vilanova E., Wang M.M.H., Zahabu E., Herold M., and University of St Andrews. School of Geography & Sustainable Development
- Subjects
0106 biological sciences ,010504 meteorology & atmospheric sciences ,Suivi et d’évaluation ,forest plot ,forêt tropicale ,E-DAS ,Tropical and subtropical forests ,7. Clean energy ,01 natural sciences ,biomasse aérienne des arbres ,Laboratory of Geo-information Science and Remote Sensing ,Environmental Science(all) ,надземная биомасса ,SDG 13 - Climate Action ,старовозрастные леса ,General Environmental Science ,GE ,Enquête ,IPCC ,tropical and subtropical forests ,Aboveground biomass ,PE&RC ,Forest plots ,secondary and old-growth forest ,Plant Production Systems ,aboveground bioma ,Collecte de données ,P01 - Conservation de la nature et ressources foncières ,Crop and Weed Ecology ,aboveground biomass ,GE Environmental Sciences ,Monitoring ,тропические леса ,Secondary and old-growth forests ,010603 evolutionary biology ,Objectif 13 Mesures relatives à la lutte contre les changements climatique ,лесные участки ,forest plots ,SDG 3 - Good Health and Well-being ,вторичные леса ,forêt primaire ,Bosecologie en Bosbeheer ,Laboratorium voor Geo-informatiekunde en Remote Sensing ,SDG 7 - Affordable and Clean Energy ,0105 earth and related environmental sciences ,MCC ,Renewable Energy, Sustainability and the Environment ,Public Health, Environmental and Occupational Health ,субтропические леса ,15. Life on land ,Forest Ecology and Forest Management ,K10 - Production forestière ,secondary and old-growth forests ,monitoring ,13. Climate action ,Plantaardige Productiesystemen ,forêt secondaire - Abstract
Funding: We acknowledge funding from the following organizations: Norwegian Agency for Development Cooperation (Norad); Norwegian International Climate and Forest Initiative (NICFI); International Climate Initiative (IKI) of the German; Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB); CGIAR Research Program on Forests, Trees and Agroforestry (CRP‐FTA) with financial support from the CGIAR Fund Donors; EU Horizon 2020 project VERIFY (776810); European Space Agency GlobBiomass project (ESRIN Contract No. 4000113100/14/I-NB); European Research Council (ERC) Advanced Grants T-FORCES (291585) and PANTROP (834775); JAXA (RA-6, EO-RA2); UK Natural Environment Research Council (NERC; including NE/F005806/, NE/D005590/1, NE/T01279X/1, NE/P008755/1 and NE/N012542/1); agreement PR140015 between NERC and the National Centre for Earth Observation; Gordon and Betty Moore Foundation; CNPq (National Council of Science and Technology, Brazil), Grants #401279/2014‐4 (PVE) and #441244/2016‐5 (PELD); Doris Duke Charitable Foundation; the Children's Investment 309 Fund Foundation; COmON Foundation and Good Energies Foundation. For monitoring and reporting forest carbon stocks and fluxes, many countries in the tropics and subtropics rely on default values of forest aboveground biomass (AGB) from the Intergovernmental Panel on Climate Change (IPCC) guidelines for National Greenhouse Gas (GHG) Inventories. Default IPCC forest AGB values originated from 2006, and are relatively crude estimates of average values per continent and ecological zone. The 2006 default values were based on limited plot data available at the time, methods for their derivation were not fully clear, and no distinction between successional stages was made. As part of the 2019 Refinement to the 2006 IPCC Guidelines for GHG Inventories, we updated the default AGB values for tropical and subtropical forests based on AGB data from >25 000 plots in natural forests and a global AGB map where no plot data were available. We calculated refined AGB default values per continent, ecological zone, and successional stage, and provided a measure of uncertainty. AGB in tropical and subtropical forests varies by an order of magnitude across continents, ecological zones, and successional stage. Our refined default values generally reflect the climatic gradients in the tropics, with more AGB in wetter areas. AGB is generally higher in old-growth than in secondary forests, and higher in older secondary (regrowth >20 years old and degraded/logged forests) than in young secondary forests (20 years old). While refined default values for tropical old-growth forest are largely similar to the previous 2006 default values, the new default values are 4.0-7.7-fold lower for young secondary forests. Thus, the refined values will strongly alter estimated carbon stocks and fluxes, and emphasize the critical importance of old-growth forest conservation. We provide a reproducible approach to facilitate future refinements and encourage targeted efforts to establish permanent plots in areas with data gaps. Publisher PDF
- Published
- 2022
- Full Text
- View/download PDF
34. An integrated pan-tropical biomass map using multiple reference datasets
- Author
-
Hans Verbeeck, Slik J.W. Ferry, Terry Sunderland, Cécile A. J. Girardin, Pascal Boeckx, John Armston, Lindsay F. Banin, Lan Qie, Marcela J. Quinones, Bernardus H. J. de Jong, Gabriela Lopez-Gonzalez, Richard Lucas, Edward T. A. Mitchard, Riccardo Valentini, Martin Herold, Valerio Avitabile, Laszlo Nagy, Jeremy A. Lindsell, Elizabeth Kearsley, Simon L. Lewis, Arief Wijaya, Nicolas Bayol, Nicholas J. Berry, Casey M. Ryan, Gaia Vaglio Laurin, Ben DeVries, Roberto Cazzolla Gatti, Yadvinder Malhi, Gerard B. M. Heuvelink, Oliver L. Phillips, Alexandra C. Morel, Peter S. Ashton, Gregory P. Asner, Simon Willcock, Avitabile V., Herold M., Heuvelink G.B.M., Lewis S.L., Phillips O.L., Asner G.P., Armston J., Ashton P.S., Banin L., Bayol N., Berry N.J., Boeckx P., de Jong B.H.J., Devries B., Girardin C.A.J., Kearsley E., Lindsell J.A., Lopez-Gonzalez G., Lucas R., Malhi Y., Morel A., Mitchard E.T.A., Nagy L., Qie L., Quinones M.J., Ryan C.M., Ferry S.J.W., Sunderland T., Laurin G.V., Cazzolla Gatti R., Valentini R., Verbeeck H., Wijaya A., and Willcock S.
- Subjects
0106 biological sciences ,010504 meteorology & atmospheric sciences ,Mean squared error ,Forest plot ,Climate change ,Datasets as Topic ,Structural basin ,010603 evolutionary biology ,01 natural sciences ,Ecology and Environment ,Trees ,Laboratory of Geo-information Science and Remote Sensing ,Tropical forest ,Environmental Chemistry ,Satellite imagery ,Laboratorium voor Geo-informatiekunde en Remote Sensing ,Biomass ,Aboveground bioma ,0105 earth and related environmental sciences ,General Environmental Science ,Remote sensing ,Global and Planetary Change ,Tropical Climate ,Forest inventory ,Ecology ,Tropics ,Aboveground biomass ,Carbon cycle ,15. Life on land ,Models, Theoretical ,Sensor fusion ,PE&RC ,Forest plots ,Satellite mapping ,13. Climate action ,Spatial ecology ,Environmental science ,Physical geography ,REDD+ ,ISRIC - World Soil Information ,Maps as Topic - Abstract
We combined two existing datasets of vegetation aboveground biomass (AGB) (Proceedings of the National Academy of Sciences of the United States of America, 108, 2011, 9899; Nature Climate Change, 2, 2012, 182) into a pan-tropical AGB map at 1-km resolution using an independent reference dataset of field observations and locally calibrated high-resolution biomass maps, harmonized and upscaled to 14477 1-km AGB estimates. Our data fusion approach uses bias removal and weighted linear averaging that incorporates and spatializes the biomass patterns indicated by the reference data. The method was applied independently in areas (strata) with homogeneous error patterns of the input (Saatchi and Baccini) maps, which were estimated from the reference data and additional covariates. Based on the fused map, we estimated AGB stock for the tropics (23.4 N-23.4 S) of 375 Pg dry mass, 9-18% lower than the Saatchi and Baccini estimates. The fused map also showed differing spatial patterns of AGB over large areas, with higher AGB density in the dense forest areas in the Congo basin, Eastern Amazon and South-East Asia, and lower values in Central America and in most dry vegetation areas of Africa than either of the input maps. The validation exercise, based on 2118 estimates from the reference dataset not used in the fusion process, showed that the fused map had a RMSE 15-21% lower than that of the input maps and, most importantly, nearly unbiased estimates (mean bias 5Mg dry massha-1 vs. 21 and 28Mgha-1 for the input maps). The fusion method can be applied at any scale including the policy-relevant national level, where it can provide improved biomass estimates by integrating existing regional biomass maps as input maps and additional, country-specific reference datasets.
- Published
- 2016
- Full Text
- View/download PDF
35. Taming the Ion-Dipole Interaction via Rational Diluent Selection for Low-Temperature Li-Metal Batteries.
- Author
-
Zhu Z, Li Y, Ji J, Qi X, Pan J, Ma J, Qie L, and Huang Y
- Abstract
Developing advanced electrolytes with high Li affinity is crucial for achieving long-cycling lithium metal batteries (LMBs). However, the strong Li+-solvent interactions in conventional electrolytes often induce difficult Li+ desolvation especially under low-temperature conditions, resulting in the formation of fragile electrode interfaces involving solvents, and thus dissatisfactory cycling stability of LMBs. Herein, by introducing various diluents into the lithium hexafluorophosphate in 1, 2-dimethoxyethane electrolyte, we reveal that Li+ desolvation is influenced by not only the diluent-solvent interaction but also the diluent-anion interaction. Based on these findings, a diluent selection parameter (DSP), which is calculated based on the product of interaction energies of diluent-solvent/diluent-Li+ and diluent-anion/diluent-Li+, is proposed for diluent selection. A diluent with a larger DSP is more favorable for promoting Li+ desolvation and improving the low-temperature performance of LMBs. With the rationally selected 1, 2-dichloroethane diluent (DSP=3.95), Li||Cu cell enables high Li reversibility (98.5% after 300 cycles). Li||LiFePO4 cell barely loses capacity at -20 °C for 300 cycles. The Li||LiNi0.8Co0.1Mn0.1O2 cell with the anode-to-cathode capacity ratio of 2.7 retains 87% capacity retention after 100 cycles. This work not only provides new insights into taming strong Li-solvent interactions but also offers a new paradigm for advanced electrolyte design., (© 2025 Wiley‐VCH GmbH.)
- Published
- 2025
- Full Text
- View/download PDF
36. Thin Zinc Electrodes Stabilized with Organobromine-Partnered H 2 O-Zn-MeOH Cluster Ions for Practical Zinc-Metal Pouch Cells.
- Author
-
Ji J, Du H, Zhu Z, Qi X, Zhou F, Li R, Jiang R, Qie L, and Huang Y
- Abstract
The utilization of thin zinc (Zn) anodes with a high depth of discharge is an effective strategy to increase the energy density of aqueous Zn metal batteries (ZMBs), but challenged by the poor reversibility of Zn electrode due to the serious Zn-consuming side reactions at the Zn||electrolyte interface. Here, we introduce 2-bromomethyl-1,3-dioxolane (BDOL) and methanol (MeOH) as electrolyte additive into aqueous ZnSO
4 electrolyte. In the as-formulated electrolyte, BDOL with a strong electron-withdrawing group (-CH2 Br) tends to pair with the H2 O-Zn-MeOH complex, leading to the formation of organobromine-partnered H2 O-Zn-MeOH cluster ions. During the Zn electrodeposition process, the formed ZnO-dominated by-products induce the polymerization of BDOL monomers, which are previously adsorbed on the electrode. As a result, a uniform dual-layer SEI with ZnO-dominated outer layer and polyether-dominated inner layer is built on the surface of Zn electrode. With such an in situ formed dual-layer SEI, the Zn||Mg0.9 Mn3 O7 ⋅ 2.7H2 O pouch cell using a 10-um Zn anode (corresponding to a low negative to positive areal capacity ratio of 3.56) successfully operated for 300 cycles with a high capacity retention of 86 %, promising a high practical energy density of >120 Wh/kg (based on the total mass of Zn and Mg0.9 Mn3 O7 ⋅ 2.7H2 O)., (© 2024 Wiley-VCH GmbH.)- Published
- 2025
- Full Text
- View/download PDF
37. Stabilizing SPAN in Non-Flammable Acetonitrile Electrolytes for Long-Life Graphite||SPAN Batteries.
- Author
-
Li Y, Qi X, Zhou H, Yang F, Jin X, Jiang R, Zhu Z, Liang C, Li Z, Yuan L, Qie L, and Huang Y
- Abstract
Sulfurized polyacrylonitrile (SPAN) presents an opportunity to replace elemental sulfur as a "shuttle-free" cathode for secondary Li-S batteries, which can be an ideal choice for stationary energy storage due to its abundance, low cost, and sustainability. The electrolyte options for the state-of-the-art SPAN batteries have been limited to the flammable carbonate and ether ones, which raises safety concerns. Here, we explored the use of a non-flammable acetonitrile (AN) electrolyte for SPAN battery for the first time and identified the irreversible cleavage of C-S bonds of SPAN as the main reason for the failure of SPAN in AN electrolyte. Fortunately, by introducing 10 wt % fluoroethylene carbonate into the AN electrolyte, the bond cleavage in SPAN is suppressed and a stable cathode electrolyte interface is formed, both contributing to stabilizing the structure of SPAN during electrochemical process. Consequently, we achieved a stable cycling for 900 cycles in Li||SPAN cells. Moreover, by pairing with a pre-lithiated graphite (pGr) anode, the newly formulated electrolyte enables extended cycle life for 1500 cycles with a capacity retention of 91 % and superb safety in pGr||SPAN full cell. The present exploitation broadens the electrolyte choices of SPAN-based batteries and paves the way for future applications for these batteries., (© 2024 Wiley-VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF
38. N, S-Rich SEI Derived From Continuously-Releasing Additive for Anode-Free Lithium-Metal Batteries in Commercial Carbonate Electrolyte.
- Author
-
Jiang R, Zhu Z, Qi X, Yang F, Du H, Ji J, Zhang R, Liu Z, and Qie L
- Abstract
Featured with the highest possible energy density, anode-free lithium-metal batteries (AFBs) are still challenged by the fast capacity decay, especially for the ones operated in commercial carbonate electrolytes, which can be ascribed to the poor stability and continual broken/formation of the solid-electrolyte interface (SEI) formed on the anode side. Here, sacrificial additives, which have low solubility in carbonate electrolytes and can be continuously released, are proposed for AFBs. The sacrificial and continuously-releasing feature gifts the additives the capability to form and heal the SEI during the long-term cycling process, thus minimizing the loss of active Li and enabling the AFLMBs with high loading LiNi
0.8 Co0.1 Mn0.1 O2 (21.7 mg cm-2 ) cathode a high capacity-retention of 68.9% after 50 cycles in commercial carbonate electrolyte, in contrast to the control cell failed after 30 cycles. This work presents a simple and potential strategy for the practical applications of AFLMBs., (© 2024 Wiley‐VCH GmbH.)- Published
- 2024
- Full Text
- View/download PDF
39. A diazirine's central carbon is sp 2 -hybridized, facilitating conjugation to dye molecules.
- Author
-
Michelini L, Slaney T, Virk S, Rafic E, Qie LC, Corejova K, Lepage ML, Musolino SF, Oliver AG, Etchenique R, Hong WD, DiLabio GA, and Wulff JE
- Abstract
Diazirines are versatile carbene precursors that are extensively used in biological target identification experiments. However, their photo-activation wavelength ( ca. 365 nm) precludes their use in living organisms. Here we show that a reconceptualization of the diazirine hybridization state leads to conjugation of the diazirine motif to longer-wavelength chromophores. In a model diazirine-fluorene conjugate, we are able to achieve direct activation (and subsequent C-H insertion) with >450 nm light for the first time. Two-photon activation using near-IR light is also achieved, suggesting the possibility to prepare new diazirine probes for conducting target identification experiments in deep tissue., Competing Interests: There are no conflicts to declare., (This journal is © The Royal Society of Chemistry.)
- Published
- 2024
- Full Text
- View/download PDF
40. A Room-Temperature Lithium-Restocking Strategy for the Direct Reuse of Degraded LiFePO 4 Electrodes.
- Author
-
Yang D, Fang Z, Ji Y, Yang Y, Hou J, Zhang Z, Du W, Qi X, Zhu Z, Zhang R, Hu P, Qie L, and Huang Y
- Abstract
The sustainable development of lithium iron phosphate (LFP) batteries calls for efficient recycling technologies for spent LFP (SLFP). Even for the advanced direct material regeneration (DMR) method, multiple steps including separation, regeneration, and electrode refabrication processes are still needed. To circumvent these intricacies, new regeneration methods that allow direct electrode reuse (DER) by rejuvenating SLFP electrodes without damaging its structure are desired. Here, a 0.1 M lithium triethyl borohydride/tetrahydrofuran solution, which has the proper reductive capability to reduce Fe
3+ in SLFP to Fe2+ without alloying with the aluminum current collector, is selected as the lithiation/regeneration reagent to restock the Li loss and regenerate SLFP electrodes. By soaking the SLFP electrodes in the lithiation solution, we successfully rejuvenated the crystal structure and electrochemical activity of SLFP electrodes with structural integrity within only 6 minutes at room temperature. When being directly reused, the regenerated LFP electrodes deliver a high specific capacity of 162.6 mAh g-1 even after being exposed to air for 3 months. The DER strategy presents significant economic and environmental benefits compared with the DMR method. This research provides a timely and innovative solution for recycling spent blade batteries using large-sized LFP electrodes, boosting the closed-loop development of LFP batteries., (© 2024 Wiley-VCH GmbH.)- Published
- 2024
- Full Text
- View/download PDF
41. New perspective, more rational decoupling: A case study of China.
- Author
-
Yuan Y, Lu Y, Yang J, Gao R, Chuai X, Qie L, Huang S, and Pu L
- Abstract
Scholars usually unconsciously employ the Tapio decoupling model with a static perspective and results-oriented philosophy, which often leads to errors. Therefore, we propose an improved Tapio decoupling model that adopts a dynamic perspective and process-oriented philosophy. Taking China, the world's largest carbon emitter, as a case study, we investigate the decoupling of its provincial industrial carbon emissions (ICE) from industrial value-added (IVA) during 2005-2020 using both the conventional and improved decoupling model, followed by a comparative analysis of their results. Our findings are as follows: (1) Both China's ICE and IVA exhibited a general upward trend during the study period, with non-linear annual ICE and IVA variations observed across all provinces. (2) Overall, China's provincial IVA increasingly decoupled from ICE, with some provinces achieving a strong decoupling state during 2015-2020; however, from the long-term perspective spanning the entire study period, most provinces remained in a weak decoupling state. (3) The conventional decoupling model tends to yield overly optimistic results in empirical study of China, with the decoupling indices during the periods of 2005-2010 and 2005-2020 determined by the conventional model even had significant statistical difference between those determined by the improved model. (4) To ensure equity, differentiated carbon reduction policies should be tailored to each province, considering factors such as absolute carbon emissions, short-term decoupling states, and long-term decoupling states. The improved Tapio decoupling model is proposed as a valuable framework for researchers engaged in related studies., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
42. In situ p-block protective layer plating in carbonate-based electrolytes enables stable cell cycling in anode-free lithium batteries.
- Author
-
Shi J, Koketsu T, Zhu Z, Yang M, Sui L, Liu J, Tang M, Deng Z, Liao M, Xiang J, Shen Y, Qie L, Huang Y, Strasser P, and Ma J
- Abstract
'Anode-free' Li metal batteries offer the highest possible energy density but face low Li coulombic efficiency when operated in carbonate electrolytes. Here we report a performance improvement of anode-free Li metal batteries using p-block tin octoate additive in the carbonate electrolyte. We show that the preferential adsorption of the octoate moiety on the Cu substrate induces the construction of a carbonate-less protective layer, which inhibits the side reactions and contributes to the uniform Li plating. In the mean time, the reduction of Sn
2+ at the initial charging process builds a stable lithophilic layer of Cu6 Sn5 alloy and Sn, improving the affinity between the Li and the Cu substrate. Notably, anode-free Li metal pouch cells with tin octoate additive demonstrate good cycling stability with a high coulombic efficiency of ~99.1%. Furthermore, this in situ p-block layer plating strategy is also demonstrated with other types of p-block metal octoate, as well as a Na metal battery system, demonstrating the high level of universality., Competing Interests: Competing interests: The authors declare no competing interests., (© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)- Published
- 2024
- Full Text
- View/download PDF
43. Photo-electrochemical sensor based on BiOI/ZnIn 2 S 4 heterojunction for detecting hydrogen peroxide and dopamine.
- Author
-
Qie L, Li Y, Li W, Ding Y, Li C, Sun Y, and Wu H
- Abstract
Photoelectrochemical (PEC) detection as a potential development strategy for hydrogen peroxide and dopamine sensors has received extensive attentions. Herein, BiOI/ZnIn
2 S4 -X (X = n (BiOI)/n(ZnIn2 S4 )) heterojunction was synthesized using various molar ratios via a two-step method. A series of characterization techniques were employed to analyze the composition, surface structure, valence state, and optical properties of BiOI/ZnIn2 S4 -X. The results show that BiOI/ZnIn2 S4 -X perform significantly better than both BiOI and ZnIn2 S4 . Furthermore, BiOI/ZnIn2 S4 -9% exhibits superior visible light absorption capacity and photocurrent response among all of the BiOI/ZnIn2 S4 -X tested. Therefore, a PEC sensor was developed using BiOI/ZnIn2 S4 -9% for the detection of hydrogen peroxide and dopamine. The linear detection range for hydrogen peroxide spans from to 1 ~ 40,000 µM, with the LOD of 0.036 µM (S/N = 3). For dopamine, the corresponding values are 2 ~ 250 µM for the linear detection range, and 0.017 μM for the LOD, respectively. The sensor exhibits demonstrates excellent stability, reproducibility and resistance to interference, enabling the detection of real samples and thus holds promising application potential., (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)- Published
- 2024
- Full Text
- View/download PDF
44. Thresholds for adding degraded tropical forest to the conservation estate.
- Author
-
Ewers RM, Orme CDL, Pearse WD, Zulkifli N, Yvon-Durocher G, Yusah KM, Yoh N, Yeo DCJ, Wong A, Williamson J, Wilkinson CL, Wiederkehr F, Webber BL, Wearn OR, Wai L, Vollans M, Twining JP, Turner EC, Tobias JA, Thorley J, Telford EM, Teh YA, Tan HH, Swinfield T, Svátek M, Struebig M, Stork N, Sleutel J, Slade EM, Sharp A, Shabrani A, Sethi SS, Seaman DJI, Sawang A, Roxby GB, Rowcliffe JM, Rossiter SJ, Riutta T, Rahman H, Qie L, Psomas E, Prairie A, Poznansky F, Pillay R, Picinali L, Pianzin A, Pfeifer M, Parrett JM, Noble CD, Nilus R, Mustaffa N, Mullin KE, Mitchell S, Mckinlay AR, Maunsell S, Matula R, Massam M, Martin S, Malhi Y, Majalap N, Maclean CS, Mackintosh E, Luke SH, Lewis OT, Layfield HJ, Lane-Shaw I, Kueh BH, Kratina P, Konopik O, Kitching R, Kinneen L, Kemp VA, Jotan P, Jones N, Jebrail EW, Hroneš M, Heon SP, Hemprich-Bennett DR, Haysom JK, Harianja MF, Hardwick J, Gregory N, Gray R, Gray REJ, Granville N, Gill R, Fraser A, Foster WA, Folkard-Tapp H, Fletcher RJ, Fikri AH, Fayle TM, Faruk A, Eggleton P, Edwards DP, Drinkwater R, Dow RA, Döbert TF, Didham RK, Dickinson KJM, Deere NJ, de Lorm T, Dawood MM, Davison CW, Davies ZG, Davies RG, Dančák M, Cusack J, Clare EL, Chung A, Chey VK, Chapman PM, Cator L, Carpenter D, Carbone C, Calloway K, Bush ER, Burslem DFRP, Brown KD, Brooks SJ, Brasington E, Brant H, Boyle MJW, Both S, Blackman J, Bishop TR, Bicknell JE, Bernard H, Basrur S, Barclay MVL, Barclay H, Atton G, Ancrenaz M, Aldridge DC, Daniel OZ, Reynolds G, and Banks-Leite C
- Subjects
- Biodiversity, Biomass, Malaysia, Animals, Conservation of Natural Resources methods, Conservation of Natural Resources statistics & numerical data, Forestry statistics & numerical data, Forests, Trees classification, Trees growth & development, Tropical Climate
- Abstract
Logged and disturbed forests are often viewed as degraded and depauperate environments compared with primary forest. However, they are dynamic ecosystems
1 that provide refugia for large amounts of biodiversity2,3 , so we cannot afford to underestimate their conservation value4 . Here we present empirically defined thresholds for categorizing the conservation value of logged forests, using one of the most comprehensive assessments of taxon responses to habitat degradation in any tropical forest environment. We analysed the impact of logging intensity on the individual occurrence patterns of 1,681 taxa belonging to 86 taxonomic orders and 126 functional groups in Sabah, Malaysia. Our results demonstrate the existence of two conservation-relevant thresholds. First, lightly logged forests (<29% biomass removal) retain high conservation value and a largely intact functional composition, and are therefore likely to recover their pre-logging values if allowed to undergo natural regeneration. Second, the most extreme impacts occur in heavily degraded forests with more than two-thirds (>68%) of their biomass removed, and these are likely to require more expensive measures to recover their biodiversity value. Overall, our data confirm that primary forests are irreplaceable5 , but they also reinforce the message that logged forests retain considerable conservation value that should not be overlooked., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
45. Regenerated Graphite Electrodes with Reconstructed Solid Electrolyte Interface and Enclosed Active Lithium Toward >100% Initial Coulombic Efficiency.
- Author
-
Ji Y, Zhang H, Yang D, Pan Y, Zhu Z, Qi X, Pi X, Du W, Cheng Z, Yao Y, Qie L, and Huang Y
- Abstract
Solid electrolyte interface (SEI) is arguably the most important concern in graphite anodes, which determines their achievable Coulombic efficiency (CE) and cycling stability. In spent graphite anodes, there are already-formed (yet loose and/or broken) SEIs and some residual active lithium, which, if can be inherited in the regenerated electrodes, are highly desired to compensate for the lithium loss due to SEI formation. However, current graphite regenerated approaches easily destroy the thin SEIs and residue active lithium, making their reuse impossible. Herein, this work reports a fast-heating strategy (e.g., 1900 K for ≈150 ms) to upcycle degraded graphite via instantly converting the loose original SEI layer (≈100 nm thick) to a compact and mostly inorganic one (≈10-30 nm thick with a 26X higher Young's Modulus) and still retaining the activity of residual lithium. Thanks to the robust SEI and enclosed active lithium, the regenerated graphite exhibited 104.7% initial CE for half-cell and gifted the full cells with LiFePO
4 significantly improved initial CE (98.8% versus 83.2%) and energy density (309.4 versus 281.4 Wh kg-1 ), as compared with commercial graphite. The as-proposed upcycling strategy turns the "waste" graphite into high-value prelithiated ones, along with significant economic and environmental benefits., (© 2024 Wiley‐VCH GmbH.)- Published
- 2024
- Full Text
- View/download PDF
46. Air-Stable Li 2 S Cathodes Enabled by an In Situ-Formed Li + Conductor for Graphite-Li 2 S Pouch Cells.
- Author
-
Qi X, Jin X, Xu H, Pan Y, Yang F, Zhu Z, Ji J, Jiang R, Du H, Ji Y, Yang D, Qie L, and Huang Y
- Abstract
Using Li
2 S cathodes instead of S cathodes presents an opportunity to pair them with Li-free anodes (e.g., graphite), thereby circumventing anode-related issues, such as poor reversibility and safety, encountered in Li-S batteries. However, the moisture-sensitive nature of Li2 S causes the release of hazardous H2 S and the formation of insulative by-products, increasing the manufacturing difficulty and adversely affecting cathode performance. Here, Li4 SnS4 , a Li+ conductor that is air-stable according to the hard-soft acid-base principle, is formed in situ and uniformly on Li2 S particles because Li2 S itself participates in Li4 SnS4 formation. When exposed to air (20% relative humidity), the protective Li4 SnS4 layer maintains its components and structure, thus contributing to the enhanced stability of the Li2 S@Li4 SnS4 composite. In addition, the Li4 SnS4 layer can accelerate the sluggish conversion of Li2 S because of its favorable interfacial charge transfer, and continuously confine lithium polysulfides owing to its integrity during electrochemical processes. A graphite-Li2 S pouch cell containing a Li2 S@Li4 SnS4 cathode is constructed, which shows stable cyclability with 97% capacity retention after 100 cycles. Hence, combining a desirable air-stable Li2 S cathode and a highly reversible Li-free configuration offers potential practical applications of graphite-Li2 S full cells., (© 2024 Wiley‐VCH GmbH.)- Published
- 2024
- Full Text
- View/download PDF
47. Electrolyte Regulation in Stabilizing the Interface of a Cobalt-Free Layered Cathode for 4.8 V High-Voltage Lithium-Ion Batteries.
- Author
-
Ma M, Zhu Z, Yang D, Qie L, Huang Z, and Huang Y
- Abstract
The cobalt-free layered oxide cathode of LiNi
0.65 Mn0.35 O2 is promising for high-energy-density lithium-ion batteries (LIBs). However, under high-voltage conditions, severe side reactions between the Co-free cathode and electrolyte, as well as grain boundary cracks and pulverization of particles, hinder its practical applications. Herein, an electrolyte regulation strategy is proposed by adding fluoroethylene carbonate (FEC) and LiPO2 F2 as electrolyte additives in carbonate-based electrolytes to address the above issues. As a result, a homogeneous and dense organic-inorganic hybrid cathode electrolyte interface (CEI) film is formed on the cathode surface. The CEI film consists of C-F, LiF, Li2 CO3 , and Lix POy Fz species, which is proven to be highly conductive and effective in suppressing structure damage and alleviating the interfacial reactions between the cathode and electrolyte. With such a CEI film, the interfacial stability of the Co-free cathode and the high-voltage cycling performance of Li||LiNi0.65 Mn0.35 O2 are greatly improved. A reversible capacity of 155.1 mAh g-1 and a capacity retention of 81.3% over 150 cycles are attained at a 4.8 V charge cutoff voltage with the tamed electrolyte, whereas the cell without the additives only retains 76.1% capacity retention. Therefore, our work demonstrates the synergistic effect of FEC and LiPO2 F2 in stabilizing the interface of Co-free cathode materials and provides an alternative strategy for the electrolyte design of high-voltage LIBs.- Published
- 2024
- Full Text
- View/download PDF
48. Consistent patterns of common species across tropical tree communities.
- Author
-
Cooper DLM, Lewis SL, Sullivan MJP, Prado PI, Ter Steege H, Barbier N, Slik F, Sonké B, Ewango CEN, Adu-Bredu S, Affum-Baffoe K, de Aguiar DPP, Ahuite Reategui MA, Aiba SI, Albuquerque BW, de Almeida Matos FD, Alonso A, Amani CA, do Amaral DD, do Amaral IL, Andrade A, de Andrade Miranda IP, Angoboy IB, Araujo-Murakami A, Arboleda NC, Arroyo L, Ashton P, Aymard C GA, Baider C, Baker TR, Balinga MPB, Balslev H, Banin LF, Bánki OS, Baraloto C, Barbosa EM, Barbosa FR, Barlow J, Bastin JF, Beeckman H, Begne S, Bengone NN, Berenguer E, Berry N, Bitariho R, Boeckx P, Bogaert J, Bonyoma B, Boundja P, Bourland N, Boyemba Bosela F, Brambach F, Brienen R, Burslem DFRP, Camargo JL, Campelo W, Cano A, Cárdenas S, Cárdenas López D, de Sá Carpanedo R, Carrero Márquez YA, Carvalho FA, Casas LF, Castellanos H, Castilho CV, Cerón C, Chapman CA, Chave J, Chhang P, Chutipong W, Chuyong GB, Cintra BBL, Clark CJ, Coelho de Souza F, Comiskey JA, Coomes DA, Cornejo Valverde F, Correa DF, Costa FRC, Costa JBP, Couteron P, Culmsee H, Cuni-Sanchez A, Dallmeier F, Damasco G, Dauby G, Dávila N, Dávila Doza HP, De Alban JDT, de Assis RL, De Canniere C, De Haulleville T, de Jesus Veiga Carim M, Demarchi LO, Dexter KG, Di Fiore A, Din HHM, Disney MI, Djiofack BY, Djuikouo MK, Do TV, Doucet JL, Draper FC, Droissart V, Duivenvoorden JF, Engel J, Estienne V, Farfan-Rios W, Fauset S, Feeley KJ, Feitosa YO, Feldpausch TR, Ferreira C, Ferreira J, Ferreira LV, Fletcher CD, Flores BM, Fofanah A, Foli EG, Fonty É, Fredriksson GM, Fuentes A, Galbraith D, Gallardo Gonzales GP, Garcia-Cabrera K, García-Villacorta R, Gomes VHF, Gómez RZ, Gonzales T, Gribel R, Guedes MC, Guevara JE, Hakeem KR, Hall JS, Hamer KC, Hamilton AC, Harris DJ, Harrison RD, Hart TB, Hector A, Henkel TW, Herbohn J, Hockemba MBN, Hoffman B, Holmgren M, Honorio Coronado EN, Huamantupa-Chuquimaco I, Hubau W, Imai N, Irume MV, Jansen PA, Jeffery KJ, Jimenez EM, Jucker T, Junqueira AB, Kalamandeen M, Kamdem NG, Kartawinata K, Kasongo Yakusu E, Katembo JM, Kearsley E, Kenfack D, Kessler M, Khaing TT, Killeen TJ, Kitayama K, Klitgaard B, Labrière N, Laumonier Y, Laurance SGW, Laurance WF, Laurent F, Le TC, Le TT, Leal ME, Leão de Moraes Novo EM, Levesley A, Libalah MB, Licona JC, Lima Filho DA, Lindsell JA, Lopes A, Lopes MA, Lovett JC, Lowe R, Lozada JR, Lu X, Luambua NK, Luize BG, Maas P, Magalhães JLL, Magnusson WE, Mahayani NPD, Makana JR, Malhi Y, Maniguaje Rincón L, Mansor A, Manzatto AG, Marimon BS, Marimon-Junior BH, Marshall AR, Martins MP, Mbayu FM, de Medeiros MB, Mesones I, Metali F, Mihindou V, Millet J, Milliken W, Mogollón HF, Molino JF, Mohd Said MN, Monteagudo Mendoza A, Montero JC, Moore S, Mostacedo B, Mozombite Pinto LF, Mukul SA, Munishi PKT, Nagamasu H, Nascimento HEM, Nascimento MT, Neill D, Nilus R, Noronha JC, Nsenga L, Núñez Vargas P, Ojo L, Oliveira AA, de Oliveira EA, Ondo FE, Palacios Cuenca W, Pansini S, Pansonato MP, Paredes MR, Paudel E, Pauletto D, Pearson RG, Pena JLM, Pennington RT, Peres CA, Permana A, Petronelli P, Peñuela Mora MC, Phillips JF, Phillips OL, Pickavance G, Piedade MTF, Pitman NCA, Ploton P, Popelier A, Poulsen JR, Prieto A, Primack RB, Priyadi H, Qie L, Quaresma AC, de Queiroz HL, Ramirez-Angulo H, Ramos JF, Reis NFC, Reitsma J, Revilla JDC, Riutta T, Rivas-Torres G, Robiansyah I, Rocha M, Rodrigues DJ, Rodriguez-Ronderos ME, Rovero F, Rozak AH, Rudas A, Rutishauser E, Sabatier D, Sagang LB, Sampaio AF, Samsoedin I, Satdichanh M, Schietti J, Schöngart J, Scudeller VV, Seuaturien N, Sheil D, Sierra R, Silman MR, Silva TSF, da Silva Guimarães JR, Simo-Droissart M, Simon MF, Sist P, Sousa TR, de Sousa Farias E, de Souza Coelho L, Spracklen DV, Stas SM, Steinmetz R, Stevenson PR, Stropp J, Sukri RS, Sunderland TCH, Suzuki E, Swaine MD, Tang J, Taplin J, Taylor DM, Tello JS, Terborgh J, Texier N, Theilade I, Thomas DW, Thomas R, Thomas SC, Tirado M, Toirambe B, de Toledo JJ, Tomlinson KW, Torres-Lezama A, Tran HD, Tshibamba Mukendi J, Tumaneng RD, Umaña MN, Umunay PM, Urrego Giraldo LE, Valderrama Sandoval EH, Valenzuela Gamarra L, Van Andel TR, van de Bult M, van de Pol J, van der Heijden G, Vasquez R, Vela CIA, Venticinque EM, Verbeeck H, Veridiano RKA, Vicentini A, Vieira ICG, Vilanova Torre E, Villarroel D, Villa Zegarra BE, Vleminckx J, von Hildebrand P, Vos VA, Vriesendorp C, Webb EL, White LJT, Wich S, Wittmann F, Zagt R, Zang R, Zartman CE, Zemagho L, Zent EL, and Zent S
- Subjects
- Biodiversity, Africa, Asia, Southeastern, Forests, Trees anatomy & histology, Trees classification, Trees growth & development, Tropical Climate
- Abstract
Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations
1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7 , we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
49. Demystifying the Salt-Induced Li Loss: A Universal Procedure for the Electrolyte Design of Lithium-Metal Batteries.
- Author
-
Zhu Z, Li X, Qi X, Ji J, Ji Y, Jiang R, Liang C, Yang D, Yang Z, Qie L, and Huang Y
- Abstract
Lithium (Li) metal electrodes show significantly different reversibility in the electrolytes with different salts. However, the understanding on how the salts impact on the Li loss remains unclear. Herein, using the electrolytes with different salts (e.g., lithium hexafluorophosphate (LiPF
6 ), lithium difluoro(oxalato)borate (LiDFOB), and lithium bis(fluorosulfonyl)amide (LiFSI)) as examples, we decouple the irreversible Li loss (SEI Li+ and "dead" Li) during cycling. It is found that the accumulation of both SEI Li+ and "dead" Li may be responsible to the irreversible Li loss for the Li metal in the electrolyte with LiPF6 salt. While for the electrolytes with LiDFOB and LiFSI salts, the accumulation of "dead" Li predominates the Li loss. We also demonstrate that lithium nitrate and fluoroethylene carbonate additives could, respectively, function as the "dead" Li and SEI Li+ inhibitors. Inspired by the above understandings, we propose a universal procedure for the electrolyte design of Li metal batteries (LMBs): (i) decouple and find the main reason for the irreversible Li loss; (ii) add the corresponding electrolyte additive. With such a Li-loss-targeted strategy, the Li reversibility was significantly enhanced in the electrolytes with 1,2-dimethoxyethane, triethyl phosphate, and tetrahydrofuran solvents. Our strategy may broaden the scope of electrolyte design toward practical LMBs., (© 2023. Shanghai Jiao Tong University.)- Published
- 2023
- Full Text
- View/download PDF
50. Machine learning-based rail corrugation recognition: a metro vehicle response and noise perspective.
- Author
-
Cai X, Tang X, Chang W, Wang T, Lau A, Chen Z, and Qie L
- Abstract
Rail corrugation is a common problem in metro lines, and its efficient recognition is always an issue worth studying. To recognize the wavelength and amplitude of rail corrugation, a particle probabilistic neural network (PPNN) algorithm is developed. The PPNN is incorporated with the particle swarm optimization algorithm and the probabilistic neural network. On the basis of the above, the in-vehicle noise characteristics measured in the field are used to recognize normal rail wavelengths of 30 and 50 mm. A stepwise moving window search algorithm suitable for selecting features with a fixed order was developed to select in-vehicle noise features. Sound pressure levels at 400, 500, 630 and 800 Hz of in-vehicle noise are fed into the PPNN, and the average accuracy can reach 96.43%. The bogie acceleration characteristics calculated by the multi-body dynamics simulation model are used to recognize normal rail amplitudes of 0.1 and 0.2 mm. The bogie acceleration is decomposed by the complete ensemble empirical mode decomposition with adaptive noise, and a reconstructional signal is obtained. The energy entropy of the reconstructional signal is fed into the PPNN, and the average accuracy can reach 95.40%. This article is part of the theme issue 'Artificial intelligence in failure analysis of transportation infrastructure and materials'.
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.