19 results on '"Qi-Chao Wu"'
Search Results
2. The release and catabolism of ferulic acid in plant cell wall by rumen microbes: A review
- Author
-
Yan-Lu Wang, Wei-Kang Wang, Qi-Chao Wu, and Hong-Jian Yang
- Subjects
Rumen microbes ,Ferulic acid ,Fiber digestion ,Animal culture ,SF1-1100 - Abstract
Ferulic acid (FA) is one of the most abundant hydroxycinnamic acids in the plant world, especially in the cell wall of grain bran, in comparison with forage and crop residues. Previous studies noted that FA was mainly linked with arabinoxylans and lignin in plant cell walls in ester and ether covalent forms. After forages were ingested by ruminant animals or encountered rumen microbial fermentation in vitro, these cross-linkages form physical and chemical barriers to protect cell-wall carbohydrates from microbial attack and enzymatic hydrolysis. Additionally, increasing studies noted that FA presented some toxic effect on microbial growth in the rumen. In recent decades, many studies have addressed the relationships of ester and/or ether-linked FA with rumen nutrient digestibility, and there is still some controversy whether these linkages could be used as a predicator of forage digestibility in ruminants. The authors in this review summarized the possible relationships between ester and/or ether-linked FA and fiber digestion in ruminants. Rumen microbes, especially bacteria and fungi, were found capable of breaking down the ester linkages within plant cell walls by secreting feruloyl and p-coumaroyl esterase, resulting in the release of free FA and improvement of cell wall digestibility. The increasing evidence noted that these esterases secreted by rumen microbes presented synergistic effects with xylanase and cellulase to effectively hydrolyze forage cell walls. Some released FA were absorbed through the rumen wall directly and entered into blood circulation and presented antioxidant effects on host animals. The others were partially catabolized into volatile fatty acids by rumen microbes, and the possible catabolic pathways discussed. To better understand plant cell wall degradation in the rumen, the metabolic fate of FA along with lignin decomposition mechanisms are needed to be explored via future microbial isolation and incubation studies with aims to maximize dietary fiber intake and enhance fiber digestion in ruminant animals.
- Published
- 2022
- Full Text
- View/download PDF
3. Guanidine acetic acid exhibited greater growth performance in younger (13–30 kg) than in older (30–50 kg) lambs under high-concentrate feedlotting pattern
- Author
-
Wen-Juan Li, Qi-Chao Wu, Zhao-Yang Cui, Yao-Wen Jiang, Ailiyasi Aisikaer, Fan Zhang, He-Wei Chen, Wei-Kang Wang, Yan-Lu Wang, Liang-Kang Lv, Feng-Liang Xiong, Ying-Yi Liu, Sheng-Li Li, and Hong-Jian Yang
- Subjects
UGAA ,CGAA ,forage type ,nutrient digestion ,antioxidant index ,Veterinary medicine ,SF600-1100 - Abstract
Guanidine acetic acid (GAA) is increasingly considered as a nutritional growth promoter in monogastric animals. Whether or not such response would exist in rapid-growing lambs is unclear yet. The objective of this study was to investigate whether dietary supplementation with uncoated GAA (UGAA) and coated GAA (CGAA) could alter growth performance, nutrient digestion, serum metabolites, and antioxidant capacity in lambs. Seventy-two small-tailed Han lambs initially weighed 12 ± 1.6 kg were randomly allocated into six groups in a 2 × 3 factorial experimental design including two forage-type rations [Oaten hay (OH) vs. its combination with wheat silage (OHWS)] and three GAA treatment per ration: no GAA, 1 g UGAA, and 1 g CGAA per kg dry matter. The whole experiment was completed in two consecutive growing stages (stage 1, 13–30 kg; stage 2, 30–50 kg). Under high-concentrate feeding pattern (Stage 1, 25: 75; Stage 2, 20: 80), UGAA or CGAA supplementation in young lambs presented greater dry matter intake (DMI) in stage 1 and average daily gain (ADG) in the whole experimental period; lambs in OH group had higher ADG and DMI than that in OHWS group in stage 1 and whole experimental period, but this phenomenon was not observed in stage 2. Both UCGA and CGAA addition increased dietary DM, organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) digestion in both stages. In blood metabolism, UCGA and CGAA addition resulted in a greater total protein (TP) and insulin-like growth factor 1(IGF-1) levels, as well as antioxidant capacity; at the same time, UCGA and CGAA addition increased GAA metabolism-creatine kinase and decreased guanidinoacetate N-methyltransferase (GAMT) and L-Arginine glycine amidine transferase catalyzes (AGAT) activity. In a brief, the results obtained in the present study suggested that GAA (UGAA and CGAA; 1 g/kg DM) could be applied to improve growth performance in younger (13–30 kg) instead of older (30–50 kg) lambs in high-concentrate feedlotting practice.
- Published
- 2022
- Full Text
- View/download PDF
4. In situ rumen degradation characteristics and bacterial colonization of whole cottonseed, cottonseed hull and cottonseed meal with different gossypol content
- Author
-
Wei-Kang Wang, Yan-Lu Wang, Wen-Juan Li, Qi-Chao Wu, Kai-Lun Yang, Sheng-Li Li, and Hong-Jian Yang
- Subjects
Attached bacteria ,Cotton by-products ,Gossypol ,In situ degradation ,Biotechnology ,TP248.13-248.65 ,Microbiology ,QR1-502 - Abstract
Abstract Regarding whole cottonseed (WCS), cottonseed meal (CSM), and cottonseed hull (CSH), in situ rumen incubation was applied to determine their nutrient and gossypol degradation characteristics and bacterial colonization profile in lactating Holstein cows. Nylon bags containing the cotton by-products were incubated for 0, 6, 12, 24, 36, 48 and 72 h in the rumen, respectively. The relationship between nutrient degradability and free gossypol (FG) content were examined, and the differences in the composition and inferred gene function of the colonized microbiota were studied. As a result, CSM presented highest effective degradability of dry matter, neutral detergent fibre and acid detergent fibre, but the highest effective degradability of crude protein was found in WCS. Free gossypol disappearance rate increased significantly in the first 6 h, and it reached approximately 94% at 72 h of incubation among all samples. The level of FG did not affect nutrient degradability of cotton by-products. Significant differences were noted in attached bacterial community structure among cotton by-products after 24 h rumen incubation. Among the most abundant taxa at genus level, a greater abundance of Cercis gigantea and Succiniclasticum was observed in WCS samples, whereas the CSH and CSM samples contained a greater proportion of Prevotella 1 and Rikenellaceae RC9 gut group. The redundancy analysis revealed that the level of neutral detergent fibre, ether extract, and FG in cotton by-products were significantly positive related with the composition of the attached bacteria. Collectively, our results revealed the dynamics of degradation characteristics, and the difference in the composition of bacterial colonization. These findings are of importance for the targeted improvement of cotton by-products nutrient use efficiency in ruminants and further understanding of the gossypol degradation mechanism in the rumen.
- Published
- 2021
- Full Text
- View/download PDF
5. Dietary Guanidine Acetic Acid Addition Improved Carcass Quality with Less Back-Fat Thickness and Remarkably Increased Meat Protein Deposition in Rapid-Growing Lambs Fed Different Forage Types
- Author
-
Wen-Juan Li, Yao-Wen Jiang, Zhao-Yang Cui, Qi-Chao Wu, Fan Zhang, He-Wei Chen, Yan-Lu Wang, Wei-Kang Wang, Liang-Kang Lv, Feng-Liang Xiong, Ying-Yi Liu, Ailiyasi Aisikaer, Sheng-Li Li, Yu-Kun Bo, and Hong-Jian Yang
- Subjects
GAA ,forage type ,water-holding capacity ,protein deposition ,muscle gene expression ,Chemical technology ,TP1-1185 - Abstract
The aim of this study was to investigate whether guanidine acetic acid (GAA) yields a response in rapid-growing lambs depending on forage type. In this study, seventy-two small-tailed Han lambs (initial body weights = 12 ± 1.6 kg) were used in a 120-d feeding experiment after a 7-d adaptation period. A 2 × 3 factorial experimental feeding design was applied to the lambs, which were fed a total mixed ration with two forage types (OH: oaten hay; OHWS: oaten hay plus wheat silage) and three forms of additional GAA (GAA: 0 g/kg; UGAA: Uncoated GAA, 1 g/kg; CGAA: Coated GAA, 1 g/kg). The OH diet had a greater dry matter intake, average daily gain, and hot carcass weight than the OHWS diet. The GAA supplementation increased the final body weight, hot carcass weight, dressing percentage, and ribeye area in the longissimus lumborum. Meanwhile, it decreased backfat thickness and serum triglycerides. Dietary GAA decreased the acidity of the meat and elevated the water-holding capacity in mutton. In addition, the crude protein content in mutton increased with GAA addition. Dietary GAA (UGAA or CGAA) might be an effective additive in lamb fed by different forage types, as it has potential to improve growth performance and meat quality.
- Published
- 2023
- Full Text
- View/download PDF
6. The Effect of γ-Aminobutyric Acid Addition on In Vitro Ruminal Fermentation Characteristics and Methane Production of Diets Differing in Forage-to-Concentrate Ratio
- Author
-
Yan-Lu Wang, Zhi-Hui Zhang, Wei-Kang Wang, Qi-Chao Wu, Fan Zhang, Wen-Juan Li, Sheng-Li Li, Wei Wang, Zhi-Jun Cao, and Hong-Jian Yang
- Subjects
gamma-aminobutyric acid ,in vitro rumen fermentation ,gas production ,Fermentation industries. Beverages. Alcohol ,TP500-660 - Abstract
Gamma-aminobutyric acid (GABA), known as the most abundant inhibitory neurotransmitter in the mammalian brain, can permeate ruminal epithelia by passive diffusion and enrich in the rumen environment. To explore whether the addition of GABA can regulate rumen fermentation characteristics as well as methane production, a 2 × 6 factorial in vitro rumen batch culture was conducted to determine the supplemental effect of GABA at inclusion levels of 0 (Control), 10, 20, 30, 40 and 50 mg in culture fluids on rumen fermentation of two total mixed rations (HF—a high-fiber ration consisted of 70% corn silage and 30% concentrate; and LF—a low-fiber ration consisted of 30% corn silage and 70% concentrate). After 72 h in vitro incubation of two rations with mixed rumen microoganisms obtained from five rumen-cannulated lactating Holstein dairy cows, increasing GABA addition linearly increased cumulative gas production in the LF group, though in vitro dry matter digestibility was not affected in either the LF or HF group. Kinetic gas production analysis noted that increasing GABA addition mostly decreased the gas production rate (i.e., RmaxG), as well as the ration digestion rate (RmaxS) to reach maximum fermentation. The GABA addition did not affect pH or microbial growth (i.e., MCP). However, total volatile fatty acid production in both LF and HF groups all linearly increased with the increase in GABA addition. Along with the increase in GABA addition in both LF and HF groups, the ratio of non-glucogenic to glucogenic volatile fatty acids both increased, while the molar proportions of propionate and valerate were significantly decreased, and the acetate and butyrate proportions were increased after 72 h in vitro rumen fermentation. The time-course change of fermentation end-products generally showed that carbon dioxide declined from approximately 89% to 74%, and methane increased from approximately 11% to 26%. After 72 h in vitro fermentation, molar methane proportion was greater in the LF than in the HF group, and increasing GABA addition quadratically increased methane production in the LF group while a slight increase occurred in the HF group.
- Published
- 2023
- Full Text
- View/download PDF
7. In Situ Rumen Degradation Characteristics and Bacterial Colonization of Corn Silages Differing in Ferulic and p-Coumaric Acid Contents
- Author
-
Yan-Lu Wang, Wei-Kang Wang, Qi-Chao Wu, Fan Zhang, Wen-Juan Li, Sheng-Li Li, Wei Wang, Zhi-Jun Cao, and Hong-Jian Yang
- Subjects
corn silage ,rumen-attached bacteria ,phenolic acids ,in situ degradation ,Biology (General) ,QH301-705.5 - Abstract
In plant cell wall, ferulic acid (FA) and p-coumaric acid (pCA) are commonly linked with arabinoxylans and lignin through ester and ether bonds. These linkages were deemed to hinder the access of rumen microbes to cell wall polysaccharides. The attachment of rumen microbes to plant cell wall was believed to have profound effects on the rate and the extent of forage digestion in rumen. The objective of this study was to evaluate the effect of bound phenolic acid content and their composition in corn silages on the nutrient degradability, and the composition of the attached bacteria. Following an in situ rumen degradation method, eight representative corn silages with different FA and pCA contents were placed into nylon bags and incubated in the rumens of three matured lactating Holstein cows for 0, 6, 12, 24, 36, 48, and 72 h, respectively. Corn silage digestibility was assessed by in situ degradation methods. As a result, the effective degradability of dry matter, neutral detergent fibre, and acid detergent fibre were negatively related to the ether-linked FA and pCA, and their ratio in corn silages, suggesting that not only the content and but also the composition of phenolic acids significantly affected the degradation characteristics of corn silages. After 24 h rumen fermentation, Firmicutes, Actinobacteria, and Bacteroidota were observed as the dominant phyla in the bacterial communities attached to the corn silages. After 72 h rumen fermentation, the rumen degradation of ester-linked FA was much greater than that of ester-linked pCA. The correlation analysis noted that Erysipelotrichaceae_UCG-002, Olsenella, Ruminococcus_gauvreauii_group, Acetitomaculum, and Bifidobacterium were negatively related to the initial ether-linked FA content while Prevotella was positively related to the ether-linked FA content and the ratio of pCA to FA. In summary, the present results suggested that the content of ether-linked phenolic acids in plant cell walls exhibited a more profound effect on the pattern of microbial colonization than the fibre content.
- Published
- 2022
- Full Text
- View/download PDF
8. The Effect of Different Lactic Acid Bacteria Inoculants on Silage Quality, Phenolic Acid Profiles, Bacterial Community and In Vitro Rumen Fermentation Characteristic of Whole Corn Silage
- Author
-
Yan-Lu Wang, Wei-Kang Wang, Qi-Chao Wu, Fan Zhang, Wen-Juan Li, Zhuo-Meng Yang, Yu-Kun Bo, and Hong-Jian Yang
- Subjects
whole corn silage ,lactic acid bacteria ,fermentation quality ,microbial community ,phenolic acid ,in vitro fermentation ,Fermentation industries. Beverages. Alcohol ,TP500-660 - Abstract
Corn silage is an important source of forage, but whether or not bacterial inoculants should be applied is somewhat controversial in ruminant feeding practice. In the present study, chopped whole corn plants treated with a single inoculant of Lactobacillus buchneri (LB), Lactobacillus plantarum (LP), Pediococcus pentosaceus (PP) served as either homofermentation (e.g., lactate only) or heterofermentation (e.g., lactate and acetate) controls and compared with those treated with either a mixture of the lactic acid bacteria (QA: 60% LP, 10%PP, 30% LB) or a mixture of the lactic acid bacteria (QB: 60% LP, 15% PP, 25% LB), to investigate their effects on the fermentation quality, ester-linked phenolic acids, and in vitro digestibility. After 60 day ensiling, the addition of QA exhibited the lowest pH (3.51) with greater lactic acid (LA) production. The ester-linked ferulic acid (FAest) and p-coumaric acid (pCAest) concentrations were significantly decreased during 60 days ensiling. And among all these groups, the LB and QA treated group showed a lower concentration of FAest and pCAest than other groups. After 60 days ensiling, Lactobacillus was the dominant genus in all LAB treated groups. Meanwhile, negative correlations of Bacillus, Bacteroides, Bifidobacterium, Blautia, Prevotella, Ruminococcus, and Roseburia with FAest content after 60 days ensiling occurred in the present study. Komagataeibacter was mainly found in LB and PP addition silages, and presented a significant negative effect with the level of acid detergent fiber (ADF). To explore whether the addition of LABs can improve digestibility of whole corn silage, an in vitro rumen fermentation was conducted using the 60 day ensiled whole corn silages as substrates. The QA addition group exhibited a greater 48 h and 96 h in vitro dry matter and ADF disappearance, greater 48 h gas production and less methane emissions. Even though there were the same neutral NDF levels in corn silages treated with LB and QA after 60 days ensiling, the QA treated silages with lower FAest and pCAest presented higher IVDMD after 96 h and 48 h in vitro fermentation. In brief, the addition of mixed inoculants of 60% LB,10% PP, 30% LB compared with the addition of whichever single HoLAB or HeLAB inoculants, facilitated the release of ester-linked phenolic acids (e.g., ferulic and p-coumaric acids) and remarkably, improved silage quality in terms of sharp pH decline and greater lactate production. Taken together with the improvement in rumen microbial fermentation, the results obtained in the present study provided concrete evidence for the role of mixed LAB application in corn silage preparation for ruminant feeding practices.
- Published
- 2022
- Full Text
- View/download PDF
9. Dietary Cysteamine Supplementation Remarkably Increased Feed Efficiency and Shifted Rumen Fermentation toward Glucogenic Propionate Production via Enrichment of Prevotella in Feedlot Lambs
- Author
-
Qi-Chao Wu, Wei-Kang Wang, Fan Zhang, Wen-Juan Li, Yan-Lu Wang, Liang-Kang Lv, and Hong-Jian Yang
- Subjects
cysteamine ,feedlot lamb ,rumen microorganism ,blood metabolites ,fermentation ,Biology (General) ,QH301-705.5 - Abstract
Cysteamine (CS) is an essential nutritional regulator that improves the productive performance of animals by regulating somatotropic hormone secretion. To investigate the fattening potential and effects of CS on rumen microbial fermentation, 48 feedlot lambs were randomly assigned to four groups and fed diets supplemented with different CS concentrations (0, 20, 40, and 60 mg/kg BW). An increase in dietary CS concentrations linearly increased the average daily gain (ADG) and dry matter intake (p < 0.05) but decreased the feed-to-gain ratio (p < 0.01). For the serum hormone, increasing the dietary CS concentration linearly decreased somatostatin and leptin concentration (p < 0.01) but linearly increased the concentration of growth hormone and insulin-like growth factor 1 (p < 0.01). Regarding rumen fermentation, ruminal pH, ammonia-N, and butyrate content did not differ among the four treatments, although dietary CS supplementation linearly increased microbial protein and propionate and decreased the amount of acetate (p < 0.05). Furthermore, an increase in dietary CS concentrations quadratically decreased the estimated methane production and methane production per kg ADG (p < 0.05). High-throughput sequencing revealed that increased dietary CS concentrations quadratically increased Prevotella (p < 0.05), and Prevotella and norank_f__norank_o__Clostridia_UCG-014 were positively correlated with growth performance and rumen fermentation in a Spearman correlation analysis (r > 0.55, p < 0.05). Overall, a CS concentration higher than 20 mg/kg BW produced growth-promoting effects by inhibiting somatostatin concentrations and shifting the rumen toward glucogenic propionate fermentation by enriching Prevotella. In addition, Prevotella and norank_f__norank_o__Clostridia_UCG-014 were positively correlated with growth performance in lambs.
- Published
- 2022
- Full Text
- View/download PDF
10. Melatonin for the treatment of spinal cord injury
- Author
-
Yan Zhang, Wen-Xiu Zhang, Yan-Jun Zhang, Ya-Dong Liu, Zong-Jian Liu, Qi-Chao Wu, Yun Guan, and Xue-Ming Chen
- Subjects
spinal cord injury ,melatonin ,secondary damage ,neuroprotection ,antioxidative ,antiapoptotic ,anti-inflammatory ,synergistic effects ,neural regeneration ,Neurology. Diseases of the nervous system ,RC346-429 - Abstract
Spinal cord injury (SCI) from trauma or disease severely impairs sensory and motor function. Neurorehabilitation after SCI is a complex medical process that focuses on improving neurologic function and repairing damaged connections in the central nervous system. An increasing number of preclinical studies suggest that melatonin may be useful for the treatment of SCI. Melatonin is an indolamine that is primarily secreted by the pineal gland and known to be regulated by photoperiodicity. However, it is also a versatile hormone with antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. Here, we review the neuroprotective properties of melatonin and the potential mechanisms by which it might be beneficial in the treatment of SCI. We also describe therapies that combine melatonin with exercise, oxytetracycline, and dexamethasone to attenuate the secondary injury after SCI and limit potential side effects. Finally, we discuss how injury at different spinal levels may differentially affect the secretion of melatonin.
- Published
- 2018
- Full Text
- View/download PDF
11. Isolation and Identification of a Rumen Lactobacillus Bacteria and Its Degradation Potential of Gossypol in Cottonseed Meal during Solid-State Fermentation
- Author
-
Wei-Kang Wang, Wen-Juan Li, Qi-Chao Wu, Yan-Lu Wang, Sheng-Li Li, and Hong-Jian Yang
- Subjects
gossypol ,rumen ,solid-state fermentation ,cottonseed meal ,Biology (General) ,QH301-705.5 - Abstract
Cottonseed meal (CSM) is an important protein feed source for dairy cows. Its inclusion in ruminant diets is limited due to the presence of the highly toxic gossypol though rumen microorganisms are believed to be capable of gossypol degrading and transforming. The objective of the present study was to isolate the gossypol-degrading bacteria from the rumen contents and to assess its potential for gossypol degradation in vitro. A strain named Lactobacillus agilis WWK129 was anaerobically isolated from dairy cows after mixed rumen microorganisms were grown on a substrate with gossypol as the sole carbon source. Furthermore, the strain was applied at 5% inoculum concentration in vitro to continuously ferment CSM at 39 °C for five days, and it presented gossypol degradability as high as 83%. Meanwhile, the CSM contents of crude protein, essential amino acids increased significantly along with the increase of lactic acid yield (p < 0.01). Compared with the original CSM, the fermented CSM contents of neutral detergent fiber and acid detergent fiber was remarkably decreased after the anaerobic fermentation (p < 0.01). In brief, the Lactobacillus strain isolated from the rumen is not only of great importance for gossypol biodegradation of CSM, but it could also be used to further explore the role of rumen microorganisms in gossypol degradation by the ruminants.
- Published
- 2021
- Full Text
- View/download PDF
12. Gossypol Exhibited Higher Detrimental Effect on Ruminal Fermentation Characteristics of Low-Forage in Comparison with High-Forage Mixed Feeds
- Author
-
Wei-Kang Wang, Yan-Lu Wang, Wen-Juan Li, Qi-Chao Wu, Sheng-Li Li, and Hong-Jian Yang
- Subjects
gossypol ,in vitro fermentation ,rumen microbes ,Chemical technology ,TP1-1185 - Abstract
Gossypol is a key anti-nutritional factor which limits the feeding application of cottonseed by-products in animal production. A 2 × 4 factorial in vitro experiment was conducted to determine the effect of gossypol addition levels of 0, 0.25, 0.5, and 0.75 mg/g on ruminal fermentation of a high-forage feed (HF, Chinese wildrye hay/corn meal = 3:2) in comparison with a low-forage feed (LF, Chinese wildrye hay/corn meal = 2:3). After 48 h of incubation, in vitro dry matter disappearance was greater in the LF than the HF group, while the cumulative gas production and asymptotic gas production were greater in the HF than the LF group (p < 0.05). Regardless of whatever ration type was incubated, the increasing gossypol addition did not alter in vitro dry matter disappearance. The asymptotic gas production, cumulative gas production, molar percentage of CO2 and H2 in fermentation gases, and microbial protein in cultural fluids decreased with the increase in the gossypol addition. Conversely, the gossypol addition increased the molar percentage of CH4, ammonia N, and total volatile fatty acid production. More than 95% of the gossypol addition disappeared after 48 h of in vitro incubation. Regardless of whatever ration type was incubated, the real-time PCR analysis showed that the gossypol addition decreased the populations of Fibrobactersuccinogenes, Ruminococcus albus, Butyrivibrio fibrisolvens, Prevotella ruminicola, Selenomonas ruminantium, and fungi but increased Ruminococcus flavefaciens, protozoa, and total bacteria in culture fluids in comparison with the control (p < 0.01). Additionally, the tendency of a smaller population was observed for R. albus, B. fibrisolvens, and fungi with greater inclusion of gossypol, but a greater population was observed for F. succinogenes, R. flavefaciens, S. ruminantium, protozoa, and total bacteria. In summary, the present results suggest that rumen microorganisms indeed presented a high ability to degrade gossypol, but there was an obvious detrimental effect of the gossypol addition on rumen fermentation by decreasing microbial activity when the gossypol inclusion exceeded 0.5 mg/g, and such inhibitory effect was more pronounced in the low-forage than the high-forage group.
- Published
- 2021
- Full Text
- View/download PDF
13. Isolation and Identification of a Rumen Lactobacillus Bacteria and Its Degradation Potential of Gossypol in Cottonseed Meal during Solid-State Fermentation
- Author
-
Qi-Chao Wu, Shengli Li, Yan-Lu Wang, Hong-Jian Yang, Wei-Kang Wang, and Wen-Juan Li
- Subjects
Microbiology (medical) ,rumen ,solid-state fermentation ,biology ,QH301-705.5 ,food and beverages ,biology.organism_classification ,Microbiology ,gossypol ,Lactic acid ,chemistry.chemical_compound ,Rumen ,Neutral Detergent Fiber ,cottonseed meal ,chemistry ,Solid-state fermentation ,Gossypol ,Virology ,Lactobacillus ,Fermentation ,Food science ,Biology (General) ,Cottonseed meal - Abstract
Cottonseed meal (CSM) is an important protein feed source for dairy cows. Its inclusion in ruminant diets is limited due to the presence of the highly toxic gossypol though rumen microorganisms are believed to be capable of gossypol degrading and transforming. The objective of the present study was to isolate the gossypol-degrading bacteria from the rumen contents and to assess its potential for gossypol degradation in vitro. A strain named Lactobacillus agilis WWK129 was anaerobically isolated from dairy cows after mixed rumen microorganisms were grown on a substrate with gossypol as the sole carbon source. Furthermore, the strain was applied at 5% inoculum concentration in vitro to continuously ferment CSM at 39 °C for five days, and it presented gossypol degradability as high as 83%. Meanwhile, the CSM contents of crude protein, essential amino acids increased significantly along with the increase of lactic acid yield (p <, 0.01). Compared with the original CSM, the fermented CSM contents of neutral detergent fiber and acid detergent fiber was remarkably decreased after the anaerobic fermentation (p <, 0.01). In brief, the Lactobacillus strain isolated from the rumen is not only of great importance for gossypol biodegradation of CSM, but it could also be used to further explore the role of rumen microorganisms in gossypol degradation by the ruminants.
- Published
- 2021
14. Foxtail millet (Setaria italica L.) silage compared peanut vine hay (Arachis hypogaea L.) exhibits greater feed efficiency via enhancing nutrient digestion and promoting rumen fermentation more efficiently in feedlotting lambs
- Author
-
Qi-Chao Wu, Wen-Juan Li, Wei-Kang Wang, Yan-Lu Wang, Fan Zhang, Liang-Kang Lv, and Hong-Jian Yang
- Subjects
Food Animals ,Animal Science and Zoology - Published
- 2022
- Full Text
- View/download PDF
15. In situ rumen degradation characteristics and bacterial colonization of whole cottonseed, cottonseed hull and cottonseed meal with different gossypol content
- Author
-
Kai-Lun Yang, Hong-Jian Yang, Qi-Chao Wu, Shengli Li, Wen-Juan Li, Wei-Kang Wang, and Yan-Lu Wang
- Subjects
In situ degradation ,Biophysics ,Microbiology ,Applied Microbiology and Biotechnology ,Cottonseed ,03 medical and health sciences ,chemistry.chemical_compound ,Rumen ,Prevotella ,Cotton by-products ,Dry matter ,Food science ,Cottonseed meal ,Incubation ,030304 developmental biology ,0303 health sciences ,biology ,030306 microbiology ,Gossypol ,biology.organism_classification ,QR1-502 ,chemistry ,Attached bacteria ,Original Article ,Composition (visual arts) ,TP248.13-248.65 ,Biotechnology - Abstract
Regarding whole cottonseed (WCS), cottonseed meal (CSM), and cottonseed hull (CSH), in situ rumen incubation was applied to determine their nutrient and gossypol degradation characteristics and bacterial colonization profile in lactating Holstein cows. Nylon bags containing the cotton by-products were incubated for 0, 6, 12, 24, 36, 48 and 72 h in the rumen, respectively. The relationship between nutrient degradability and free gossypol (FG) content were examined, and the differences in the composition and inferred gene function of the colonized microbiota were studied. As a result, CSM presented highest effective degradability of dry matter, neutral detergent fibre and acid detergent fibre, but the highest effective degradability of crude protein was found in WCS. Free gossypol disappearance rate increased significantly in the first 6 h, and it reached approximately 94% at 72 h of incubation among all samples. The level of FG did not affect nutrient degradability of cotton by-products. Significant differences were noted in attached bacterial community structure among cotton by-products after 24 h rumen incubation. Among the most abundant taxa at genus level, a greater abundance of Cercis gigantea and Succiniclasticum was observed in WCS samples, whereas the CSH and CSM samples contained a greater proportion of Prevotella 1 and Rikenellaceae RC9 gut group. The redundancy analysis revealed that the level of neutral detergent fibre, ether extract, and FG in cotton by-products were significantly positive related with the composition of the attached bacteria. Collectively, our results revealed the dynamics of degradation characteristics, and the difference in the composition of bacterial colonization. These findings are of importance for the targeted improvement of cotton by-products nutrient use efficiency in ruminants and further understanding of the gossypol degradation mechanism in the rumen.
- Published
- 2021
- Full Text
- View/download PDF
16. Melatonin for the treatment of spinal cord injury
- Author
-
Yanjun Zhang, Qi Chao Wu, Wen Xiu Zhang, Xue Ming Chen, Ya Dong Liu, Zong Jian Liu, Yun Guan, and Yan Zhang
- Subjects
0301 basic medicine ,endocrine system ,spinal cord injury ,melatonin ,secondary damage ,neuroprotection ,antioxidative ,antiapoptotic ,anti-inflammatory ,synergistic effects ,neural regeneration ,Central nervous system ,Review ,Pharmacology ,Neuroprotection ,lcsh:RC346-429 ,Melatonin ,03 medical and health sciences ,Pineal gland ,0302 clinical medicine ,Developmental Neuroscience ,medicine ,Spinal cord injury ,Dexamethasone ,Neurorehabilitation ,lcsh:Neurology. Diseases of the nervous system ,business.industry ,medicine.disease ,030104 developmental biology ,medicine.anatomical_structure ,business ,030217 neurology & neurosurgery ,hormones, hormone substitutes, and hormone antagonists ,medicine.drug ,Hormone - Abstract
Spinal cord injury (SCI) from trauma or disease severely impairs sensory and motor function. Neurorehabilitation after SCI is a complex medical process that focuses on improving neurologic function and repairing damaged connections in the central nervous system. An increasing number of preclinical studies suggest that melatonin may be useful for the treatment of SCI. Melatonin is an indolamine that is primarily secreted by the pineal gland and known to be regulated by photoperiodicity. However, it is also a versatile hormone with antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. Here, we review the neuroprotective properties of melatonin and the potential mechanisms by which it might be beneficial in the treatment of SCI. We also describe therapies that combine melatonin with exercise, oxytetracycline, and dexamethasone to attenuate the secondary injury after SCI and limit potential side effects. Finally, we discuss how injury at different spinal levels may differentially affect the secretion of melatonin.
- Published
- 2018
17. In-situ Enhanced Toughening of Poly(ethylene terephthalate)/elastomer Blends via Gamma-Ray Radiation at Presence of Trimethylolpropane Triacrylate.
- Author
-
Li-zhao Xie, Le-chen Chen, Mo-zhen Wang, Qi-chao Wu, Xiao Zhou, and Xue-wu Ge
- Abstract
Gamma-ray radiation has always been a convenient and effective way to modify the inter- facial properties in polymer blends. In this work, a small amount of trimethylolpropane triacrylate (TMPTA) was incorporated into poly(ethylene terephthalate) (PET)/random terpolymer elastomer (ST2000) blends by melt-blending. The existence of TMPTA would induce the crosslinking of PET and ST2000 molecular chains at high temperatures of blend- ing, resulting in the improvement in the impact strength but the loss in the tensile strength. When the PET/ST2000 blends were irradiated by gamma-ray radiation, the integrated me- chanical properties could be enhanced significantly at a high absorbed dose. The irradiated sample at a dose of 100 kGy even couldn't be broken under the impact test load, and at the same time, has nearly no loss of tensile strength. Based on the analysis of the impact- fractured surface morphologies of the blends, it can be concluded that gamma-ray radiation at high absorbed dose can further in situ enhance the interfacial adhesion by promoting the crosslinking reactions of TMPTA and polymer chains. As a result, the toughness and strength of PET/ST2000 blend could be dramatically improved. This work provides a facial and practical way to the fabrication of polymer blends with high toughness and strength. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
18. Antimicrobial Expanded Polytetrafluoroethylene Film Prepared by γ-ray Radiation Induced Grafting of Poly(acrylic acid).
- Author
-
Yun-long Wang, Mo-zhen Wang, Qi-chao Wu, Xiao Zhou, and Xue-wu Ge
- Abstract
The simultaneous ,-ray-radiation-induced grafting polymerization of acrylic acid on expanded polytetrafluoroethylene (ePTFE) film was investigated. It was found that the degree of grafting (DG) of poly(acrylic acid) (PAA) can be controlled by the monomer concentration, absorbed dose, and dose rate under an optimal inhibitor concentration of [Fe2+]=18 mmol/L. SEM observation showed that the macroporous structure in ePTFE films would be covered gradually with the increase of the DG of PAA. The prepared ePTFE-g-PAA film was immersed in a neutral silver nitrate solution to fabricate an ePTFE-g-PAA/Ag hybrid film after the addition of NaBH4 as a reduction agent of Ag+ to Ag atom. SEM, XRD, and XPS results proved that Ag nanoparticles with a size of several tens of nanometers to 100 nanometers were in situ immobilized on ePTFE film. The loading capacity of Ag nanoparticles could be tuned by the DG of PAA, and determined by thermal gravimetric analysis. The quantitative antibacterial activity of the obtained ePTFE-g-PAA/Ag hybrid films was measured using counting plate method. It can kill all the Escherichia coli in the suspension in 1 h. Moreover, this excellent antibacterial activity can last at least for 4 h. This work provides a facile and practical way to make ePTFE meet the demanding antimicrobial requirement in more and more practical application areas. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
19. Microencapsulation of UV-Curable Self-healing Agent for Smart Anticorrosive Coating.
- Author
-
Dong Zhao, Mo-zhen Wang, Qi-chao Wu, Xiao Zhou, and Xue-wu Ge
- Abstract
UV-curable polyurethane prepolymer and photoinitiator 1173 were facilely encapsulated in a poly(urea-formaldehyde) shell, which was in situ formed by the polymerization of formalde- hyde and urea in an oil-in-water emulsion. The diameters of the microcapsules ranged from 118 μm to 663 μm depending on agitation speed, and were obtained via optical microscopy and scanning electron microscopy analyses. The encapsulation percent and the yield of microcapsules prepared at the agitation speed of 600 r/min can reach 97.52wt% and 65.23wt%, respectively. When the water-borne polyurethane (WPU) coating embedded with the prepared microcapsules were scratched, the healing agent could be released from ruptured microcapsules and filled the scribed region. The excellent anticorrosion properties of the WPU coating embedded with the prepared microcapsules were confirmed by the results obtained from both electrochemical impedance spectroscopy and Tafel curves. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.