18 results on '"Q-déformations"'
Search Results
2. On the dynamics of the q-deformed logistic map.
- Author
-
Cánovas, J. and Muñoz-Guillermo, M.
- Subjects
- *
TOPOLOGICAL entropy , *LYAPUNOV exponents , *DYNAMICAL systems , *DYNAMICS , *QUALITY factor - Abstract
Abstract We analyze the q -deformed logistic map, where the q -deformation follows the scheme inspired in the Tsallis q -exponential function. We compute the topological entropy of the dynamical system, obtaining the parametric region in which the topological entropy is positive and hence the region in which chaos in the sense of Li and Yorke exists. In addition, it is shown the existence of the so-called Parrondo's paradox where two simple maps are combined to give a complicated dynamical behavior. Highlights • The q -deformed logistic map is analyzed by computing its topological entropy and Lyapunov exponents. • It is shown that it is useful to see the q -deformation as the composition of two maps. • The existence of Parrondo's paradox "simple+simple gives complex" is shown. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
3. The Structure of Hecke Operator Algebras
- Author
-
Klisse, M., van Neerven, J.M.A.M., Caspers, M.P.T., and Delft University of Technology
- Subjects
C*-algebras ,von Neumann algebras ,graph products of operator algebras ,geometric group theory ,approximation properties ,Coxeter groups ,q-deformations ,ideals in C*-algebras ,rigidity of operator algebras ,Iwahori-Hecke algebras ,C*-dynamical systems - Abstract
This dissertation is concerned with the study of the structure of certain deformations of operator algebras associated with Coxeter groups. These operator algebras, called Hecke C*-algebras and Hecke-von Neumann algebras, are operator algebraic completions of Iwahori-Hecke algebras. They occur as natural abstractions of certain endomorphism rings occurring in the representation theory of Lie groups and play a role in knot theory, combinatorics, the theory of buildings, quantum group theory, non-commutative geometry, and the local Langlands program. In this thesis we mainly focus on the ideal structure of Hecke C*-algebras, on approximation properties, and the rigidity of Hecke-von Neumann algebras. On our way we encounter and study several other concepts such as (Khintchine inequalities of) graph products of operator algebras, topological dynamics associated with boundaries and compactifications of graphs and (Coxeter) groups, C*-simplicity methods, the relative Haagerup property of sigma-finite unital inclusions of von Neumann algebras, approximation properties of operator algebras, and the rigidity theory of von Neumann algebras.
- Published
- 2022
4. The Structure of Hecke Operator Algebras
- Author
-
Klisse, M. (author) and Klisse, M. (author)
- Abstract
This dissertation is concerned with the study of the structure of certain deformations of operator algebras associated with Coxeter groups. These operator algebras, called Hecke C*-algebras and Hecke-von Neumann algebras, are operator algebraic completions of Iwahori-Hecke algebras. They occur as natural abstractions of certain endomorphism rings occurring in the representation theory of Lie groups and play a role in knot theory, combinatorics, the theory of buildings, quantum group theory, non-commutative geometry, and the local Langlands program. In this thesis we mainly focus on the ideal structure of Hecke C*-algebras, on approximation properties, and the rigidity of Hecke-von Neumann algebras. On our way we encounter and study several other concepts such as (Khintchine inequalities of) graph products of operator algebras, topological dynamics associated with boundaries and compactifications of graphs and (Coxeter) groups, C*-simplicity methods, the relative Haagerup property of sigma-finite unital inclusions of von Neumann algebras, approximation properties of operator algebras, and the rigidity theory of von Neumann algebras., Analysis
- Published
- 2022
5. Twisting it up the Quantum Way : On Matrix Models, q-deformations and Supersymmetric Gauge Theories
- Author
-
Lodin, Rebecca and Lodin, Rebecca
- Abstract
The mathematical framework which quantum field theory constitutes has been very successful in describing nature. As an extension of such a framework, the idea of supersymmetry was introduced. This greatly simplified the mathematical description of the theories, making them more tractable. Recently, the method of supersymmetric localisation, in which one can compute infinite dimensional integrals exactly, enabled computations of partition functions for different supersymmetric gauge theories in various dimensions. Such partition functions sometimes resulted in the form of matrix models or even q-deformed matrix models, where the latter are not very well-studied. Classical, or un-deformed, matrix models on the other hand are studied in much greater detail. One particular tool that is used in the study of classical matrix models is the Ward identities called Virasoro constraints. Motivated by firstly the desire to understand q-deformed matrix models better and secondly the gauge theory applications of the results, we studied the derivation of and solution to such q-deformed Virasoro constraints. We also explored the implications of partition functions taking the form of q-deformed matrix models in the case of three and four dimensional supersymmetric gauge theories. Furthermore, we studied various generalisations of the classical matrix model, such as having different limits of integration and different potentials, in order to see how the Virasoro constraints and its solution changed. Finally, we made a connection with the area of integrability and investigated how classical matrix model satisfying the Virasoro constraints could be related to certain tau-functions satisfying the Hirota equations., Online defence: https://uu-se.zoom.us/j/69129104699For passcode, please contact rebecca.lodin@physics.uu.se
- Published
- 2021
6. Revisiting the dynamic of q-deformed logistic maps.
- Author
-
Cánovas, Jose S. and Rezgui, Houssem Eddine
- Subjects
- *
TOPOLOGICAL entropy , *LYAPUNOV exponents , *EQUILIBRIUM - Abstract
We consider the logistic family and apply the q -deformation ϕ q (x) = 1 − q x 1 − q . We study the stability regions of the fixed points of the q -deformed logistic map and the regions where the dynamic is complex through topological entropy and Lyapunov exponents. Our results show that the dynamic of this deformed family is richer than that of the q -deformed family studied in Cánovas (2022). • A periodic system is studied by generating a q-deformation of the logistic map. • Local and global stability of equilibrium points have been analyzed. • Complexity and chaos are analyzed by means of topological entropy and Lyapunov exponents. • The dynamic for this q-deformation is richer than that of rational q-deformations. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
7. Q-Deformed KP Hierarchy: Its Additional Symmetries and Infinitesimal Bäcklund Transformations.
- Author
-
Tu, Ming-Hsien
- Abstract
We study the additional symmetries associated with the q-deformed Kadomtsev–Petviashvili (q-KP) hierarchy. After identifying the resolvent operator as the generator of the additional symmetries, the q-KP hierarchy can be consistently reduced to the so-called q-deformed constrained KP (q-cKP) hierarchy. We then show that the additional symmetries acting on the wave function can be viewed as infinitesimal Bäcklund transformations by acting the vertex operator on the tau-function of the q-KP hierarchy. This establishes the Adler–Shiota–van Moerbeke formula for the q-KP hierarchy. [ABSTRACT FROM AUTHOR]
- Published
- 1999
- Full Text
- View/download PDF
8. On Darboux–Bäcklund Transformations for the Q-Deformed Korteweg–de Vries Hierarchy.
- Author
-
Tu, Ming-Hsien, Shaw, Jiin-Chang, and Lee, Chin-Rong
- Abstract
We study Darboux–Bäcklund transformations (DBTs) for the q-deformed Korteweg–de Vries hierarchy by using the q-deformed pseudodifferential operators. The elementary DBTs are triggered by the gauge operators constructed from the (adjoint) wave functions of the associated linear systems. Iterating these elementary DBTs, we obtain not only q-deformed Wronskian-type but also binary-type representations of the tau-function of the hierarchy. [ABSTRACT FROM AUTHOR]
- Published
- 1999
- Full Text
- View/download PDF
9. Deformations of the Classical W-Algebras Associated to Dn, E6, G2.
- Author
-
Kogan, Alexander
- Abstract
We give explicit formulas for the generators of q-deformed W-algebras associated to Lie algebras D
n , E6 and G2 , and compute the Poisson brackets between the generators. [ABSTRACT FROM AUTHOR]- Published
- 1998
- Full Text
- View/download PDF
10. Matrices de Cartan, bases distinguées et systèmes de Toda
- Author
-
Brillon, Laura, Institut de Mathématiques de Toulouse UMR5219 (IMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier - Toulouse III, and Vadim Schechtman
- Subjects
Elément de Coxeter ,Matrices de Gabrielov ,Thom ,Vecteur de Perron ,Q-déformations ,Perron -- Frobenius eigenvectors ,Vanishing cycles ,Distinguished basis ,Matrices de Cartan ,Cartan matrices ,Bases distinguées ,Théorème de Sebastiani ,Gabrielov's matrices ,Frobenius ,Sebastiani -- Thom theorem ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,Q-deformation ,Cycle évanescent ,Coxeter element ,Toda systems ,Systèmes de Toda - Abstract
In this thesis, our goal is to study various aspects of root systems of simple Lie algebras. In the first part, we study the coordinates of the eigenvectors of the Cartan matrices. We start by generalizing the work of physicists who showed that the particle masses of the affine Toda field theory are equal to the coordinates of the Perron -- Frobenius eigenvector of the Cartan matrix. Then, we adopt another approach. Namely, using the ideas coming from the singularity theory, we compute the coordinates of the eigenvectors of some root systems. In the second part, inspired by Givental's ideas, we introduce q-deformations of Cartan matrices and we study their spectrum and their eigenvectors. Then, we propose a q-deformation of Toda's equations et compute 1-solitons solutions, using the Hirota's method and Hollowood's work. Finally, our interest is focused on a set of transformations which induce an action of the braid group on the set of ordered root basis. In particular, we study an orbit for this action, the set of distinguished basis and some associated matrices.; Dans cette thèse, nous nous intéressons à plusieurs aspects des systèmes de racines des algèbres de Lie simples. Dans un premier temps, nous étudions les coordonnées des vecteurs propres des matrices de Cartan. Nous commençons par généraliser les travaux de physiciens qui ont montré que les masses des particules dans la théorie des champs de Toda affine sont égales aux coordonnées du vecteur propre de Perron -- Frobenius de la matrice de Cartan. Puis nous adoptons une approche différente, puisque nous utilisons des résultats de la théorie des singularités pour calculer les coordonnées des vecteurs propres de certains systèmes de racines. Dans un deuxième temps, en s'inspirant des idées de Givental, nous introduisons les matrices de Cartan q-déformées et étudions leur spectre et leurs vecteurs propres. Puis, nous proposons une q-déformation des équations de Toda et construisons des 1-solitons solutions en adaptant la méthode de Hirota, d'après les travaux de Hollowood. Enfin, notre intérêt se porte sur un ensemble de transformations agissant sur l'ensemble des bases ordonnées de racines comme le groupe de tresses. En particulier, nous étudions les bases distinguées, qui forment l'une des orbites de cette action, et des matrices que nous leur associons.
- Published
- 2017
11. Cartan matrix, distinguished basis and Toda's systems
- Author
-
Brillon, Laura, Institut de Mathématiques de Toulouse UMR5219 (IMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier - Toulouse III, Vadim Schechtman, Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Elément de Coxeter ,Matrices de Gabrielov ,Thom ,Vecteur de Perron ,Q-déformations ,Perron -- Frobenius eigenvectors ,Vanishing cycles ,Distinguished basis ,Matrices de Cartan ,Cartan matrices ,Bases distinguées ,Théorème de Sebastiani ,Gabrielov's matrices ,Frobenius ,Sebastiani -- Thom theorem ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,Q-deformation ,Cycle évanescent ,Coxeter element ,Toda systems ,Systèmes de Toda - Abstract
In this thesis, our goal is to study various aspects of root systems of simple Lie algebras. In the first part, we study the coordinates of the eigenvectors of the Cartan matrices. We start by generalizing the work of physicists who showed that the particle masses of the affine Toda field theory are equal to the coordinates of the Perron -- Frobenius eigenvector of the Cartan matrix. Then, we adopt another approach. Namely, using the ideas coming from the singularity theory, we compute the coordinates of the eigenvectors of some root systems. In the second part, inspired by Givental's ideas, we introduce q-deformations of Cartan matrices and we study their spectrum and their eigenvectors. Then, we propose a q-deformation of Toda's equations et compute 1-solitons solutions, using the Hirota's method and Hollowood's work. Finally, our interest is focused on a set of transformations which induce an action of the braid group on the set of ordered root basis. In particular, we study an orbit for this action, the set of distinguished basis and some associated matrices.; Dans cette thèse, nous nous intéressons à plusieurs aspects des systèmes de racines des algèbres de Lie simples. Dans un premier temps, nous étudions les coordonnées des vecteurs propres des matrices de Cartan. Nous commençons par généraliser les travaux de physiciens qui ont montré que les masses des particules dans la théorie des champs de Toda affine sont égales aux coordonnées du vecteur propre de Perron -- Frobenius de la matrice de Cartan. Puis nous adoptons une approche différente, puisque nous utilisons des résultats de la théorie des singularités pour calculer les coordonnées des vecteurs propres de certains systèmes de racines. Dans un deuxième temps, en s'inspirant des idées de Givental, nous introduisons les matrices de Cartan q-déformées et étudions leur spectre et leurs vecteurs propres. Puis, nous proposons une q-déformation des équations de Toda et construisons des 1-solitons solutions en adaptant la méthode de Hirota, d'après les travaux de Hollowood. Enfin, notre intérêt se porte sur un ensemble de transformations agissant sur l'ensemble des bases ordonnées de racines comme le groupe de tresses. En particulier, nous étudions les bases distinguées, qui forment l'une des orbites de cette action, et des matrices que nous leur associons.
- Published
- 2017
12. Inverse Spectral Transform for the q-Deformed Volterra Equation
- Author
-
Lombardo, S.
- Published
- 2002
- Full Text
- View/download PDF
13. Deformations of the Classical W-Algebras Associated to Dn, E6, G2
- Author
-
Kogan, Alexander
- Published
- 1998
- Full Text
- View/download PDF
14. Generalized Fock spaces, new forms of quantum statistics and their algebras
- Author
-
Mishra, A K and Rajasekaran, G
- Published
- 1995
- Full Text
- View/download PDF
15. Comment on: 'Maths-type q-deformed coherent states for q > 1 ': [Phys. Lett. A 313 (2003) 29]
- Author
-
Quesne, Christiane, Penson, Karol, Tkachuk, Volodymyr, Quesne, Christiane, Penson, Karol, and Tkachuk, Volodymyr
- Abstract
SCOPUS: no.j, info:eu-repo/semantics/published
- Published
- 2004
16. Maths-type q-deformed coherent states for q > 1
- Author
-
Quesne, Christiane, Penson, Karol, Tkachuk, Volodymyr, Quesne, Christiane, Penson, Karol, and Tkachuk, Volodymyr
- Abstract
Maths-type q-deformed coherent states with q > 1 allow a resolution of unity in the form of an ordinary integral. They are sub-Poissonian and squeezed. They may be associated with a harmonic oscillator with minimal uncertainties in both position and momentum and are intelligent coherent states for the corresponding deformed Heisenberg algebra. © 2003 Elsevier Science B.V. All rights reserved., SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2003
17. Tau function solutions to a q-deformation of the KP hierarchy
- Author
-
UCL, Iliev, P, UCL, and Iliev, P
- Abstract
We construct tau-function solutions to the q-KP hierarchy as deformation of classical tau functions.
- Published
- 1998
18. q-discriminants and Vertex Operators
- Author
-
Naihuan Jing and Mourad E. H. Ismail
- Subjects
Vertex (graph theory) ,Applied Mathematics ,vertex operators ,Combinatorics ,Lie algebra ,Orthogonal polynomials ,Heisenberg group ,zeros ,discriminants ,Yangian ,Quantum ,orthogonal polynomials ,q-deformations ,Mathematics - Abstract
Discriminants and their discrete and q-analogs are usually studied in the q-analysis theory. In this paper we propose a unified realization of discriminants using vertex operators coming from infinite dimensional Lie algebras and their quantum deformations as well as Yangian deformations. In this picture all of them appear as matrix coefficients of certain products of vertex operators according to respective cases.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.