V diplomski nalogi je uporabljen Buhlmann-Straubov model kredibilnosti na konkretnem primeru iz zavarovalništva. Ideja modela je, da želimo čim bolj pravično urediti plačilo premije, in sicer, tisti, ki povzročajo veliko škod, plačajo večjo premijo, in obratno, tisti, ki ne povzročajo škod plačajo osnovno premijo. V zavarovalniški praksi so parametri velikokrat neznani, zato moramo najti cenilko za iskano premijo. Najprej ocenimo tveganje v kolektivu, kjer le-ta predstavlja celotno skupino s podobnim tveganjem. Uporabili in predstavili smo Bayesovo interpretacijo, saj je Bayesova premija znana kot najboljša izkustvena cenilka. Vendar pa Bayesova premija ni povzeta iz podatkov in ni dobljena z ugibanjem, in s tem ne izpolnjuje zahteve po enostavnosti. Zato uporabimo cenilke kredibilnosti, ki jih lahko izrazimo analitično. V diplomski nalogi so prestavljene v različnih modelih in le-ti so osnova za Buhlmann-Straubov model kredibilnosti. In this diploma thesis, we present the Buhlmann-Straub credibility model on a concrete example from the insurance practice. The idea of the model is to regulate the premium impartially. Namely the higher risk insurees shall pay higher insurance premium and vice versa, the ones that are low risk shall pay only basic insurance premium. In insurance practice, the parameters are in most cases unknown, therefore we have to find an estimator for the desired premium. First we estimate the risk in a collective, which forms a group with similar risk. We apply Bayes interpretation, which is known as the most suitable empirical estimator. However, the Bayes premium is not abstracted from data and is not obtained with guessing and consequently does not fulfil the requirement of simplicity. Therefore, we use estimators of credibility that can be expressed analytically. We present various estimators in different models, which are the basis of Buhlman-Straub credibility model.