5 results on '"Prochnow CA"'
Search Results
2. Implementation of genomic medicine for rare disease in a tertiary healthcare system: Mayo Clinic Program for Rare and Undiagnosed Diseases (PRaUD).
- Author
-
Pinto E Vairo F, Kemppainen JL, Vitek CRR, Whalen DA, Kolbert KJ, Sikkink KJ, Kroc SA, Kruisselbrink T, Shupe GF, Knudson AK, Burke EM, Loftus EC, Bandel LA, Prochnow CA, Mulvihill LA, Thomas B, Gable DM, Graddy CB, Garzon GGM, Ekpoh IU, Porquera EMC, Fervenza FC, Hogan MC, El Ters M, Warrington KJ, Davis JM 3rd, Koster MJ, Orandi AB, Basiaga ML, Vella A, Kumar S, Creo AL, Lteif AN, Pittock ST, Tebben PJ, Abate EG, Joshi AY, Ristagno EH, Patnaik MS, Schimmenti LA, Dhamija R, Sabrowsky SM, Wierenga KJ, Keddis MT, Samadder NJJ, Presutti RJ, Robinson SI, Stephens MC, Roberts LR, Faubion WA Jr, Driscoll SW, Wong-Kisiel LC, Selcen D, Flanagan EP, Ramanan VK, Jackson LM, Mauermann ML, Ortega VE, Anderson SA, Aoudia SL, Klee EW, McAllister TM, and Lazaridis KN
- Subjects
- United States, Humans, Tertiary Healthcare, Genomic Medicine, Genetic Testing, Genetic Counseling, Rare Diseases diagnosis, Rare Diseases genetics, Rare Diseases therapy, Undiagnosed Diseases
- Abstract
Background: In the United States, rare disease (RD) is defined as a condition that affects fewer than 200,000 individuals. Collectively, RD affects an estimated 30 million Americans. A significant portion of RD has an underlying genetic cause; however, this may go undiagnosed. To better serve these patients, the Mayo Clinic Program for Rare and Undiagnosed Diseases (PRaUD) was created under the auspices of the Center for Individualized Medicine (CIM) aiming to integrate genomics into subspecialty practice including targeted genetic testing, research, and education., Methods: Patients were identified by subspecialty healthcare providers from 11 clinical divisions/departments. Targeted multi-gene panels or custom exome/genome-based panels were utilized. To support the goals of PRaUD, a new clinical service model, the Genetic Testing and Counseling (GTAC) unit, was established to improve access and increase efficiency for genetic test facilitation. The GTAC unit includes genetic counselors, genetic counseling assistants, genetic nurses, and a medical geneticist. Patients receive abbreviated point-of-care genetic counseling and testing through a partnership with subspecialty providers., Results: Implementation of PRaUD began in 2018 and GTAC unit launched in 2020 to support program expansion. Currently, 29 RD clinical indications are included in 11 specialty divisions/departments with over 142 referring providers. To date, 1152 patients have been evaluated with an overall solved or likely solved rate of 17.5% and as high as 66.7% depending on the phenotype. Noteworthy, 42.7% of the solved or likely solved patients underwent changes in medical management and outcome based on genetic test results., Conclusion: Implementation of PRaUD and GTAC have enabled subspecialty practices advance expertise in RD where genetic counselors have not historically been embedded in practice. Democratizing access to genetic testing and counseling can broaden the reach of patients with RD and increase the diagnostic yield of such indications leading to better medical management as well as expanding research opportunities., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
3. Impact of integrated translational research on clinical exome sequencing.
- Author
-
Klee EW, Cousin MA, Pinto E Vairo F, Morales-Rosado JA, Macke EL, Jenkinson WG, Ferrer A, Schultz-Rogers LE, Olson RJ, Oliver GR, Sigafoos AN, Schwab TL, Zimmermann MT, Urrutia RA, Kaiwar C, Gupta A, Blackburn PR, Boczek NJ, Prochnow CA, Lowy RJ, Mulvihill LA, McAllister TM, Aoudia SL, Kruisselbrink TM, Gunderson LB, Kemppainen JL, Fisher LJ, Tarnowski JM, Hager MM, Kroc SA, Bertsch NL, Agre KE, Jackson JL, Macklin-Mantia SK, Murphree MI, Rust LM, Summer Bolster JM, Beck SA, Atwal PS, Ellingson MS, Barnett SS, Rasmussen KJ, Lahner CA, Niu Z, Hasadsri L, Ferber MJ, Marcou CA, Clark KJ, Pichurin PN, Deyle DR, Morava-Kozicz E, Gavrilova RH, Dhamija R, Wierenga KJ, Lanpher BC, Babovic-Vuksanovic D, Farrugia G, Schimmenti LA, Stewart AK, and Lazaridis KN
- Published
- 2023
- Full Text
- View/download PDF
4. Identification of Genetic Causes of Focal Segmental Glomerulosclerosis Increases With Proper Patient Selection.
- Author
-
Miao J, Pinto E Vairo F, Hogan MC, Erickson SB, El Ters M, Bentall AJ, Kukla A, Greene EL, Hernandez LH, Sethi S, Lazaridis KN, Pichurin PN, Lisi E, Prochnow CA, Zand L, and Fervenza FC
- Subjects
- Adult, Biopsy methods, Collagen Type IV genetics, Female, Glomerulosclerosis, Focal Segmental classification, Glomerulosclerosis, Focal Segmental diagnosis, Humans, Male, Middle Aged, Exome Sequencing, Glomerulosclerosis, Focal Segmental genetics, Patient Selection
- Abstract
Objective: To increase the likelihood of finding a causative genetic variant in patients with a focal segmental glomerulosclerosis (FSGS) lesion, clinical and histologic characteristics were analyzed., Patients and Methods: Individuals 18 years and older with an FSGS lesion on kidney biopsy evaluated at Mayo Clinic from November 1, 1999, through October 31, 2019, were divided into 4 groups based on clinical and histologic characteristics: primary FSGS, secondary FSGS with known cause, secondary FSGS without known cause, and undetermined FSGS. A targeted gene panel and a customized gene panel retrieved from exome sequencing were performed., Results: The overall rate of detection of a monogenic cause was 42.9% (21/49). Individuals with undetermined FSGS had the highest rate of positivity (87.5%; 7/8) followed by secondary FSGS without an identifiable cause (61.5%; 8/13) and secondary FSGS with known cause (33.3%; 5/15). Four of 5 (80%) individuals in the latter group who had positive genetic testing results also had a family history of kidney disease. Univariate analysis showed that family history of kidney disease (odds ratio [OR], 13.8; 95% CI, 3.7 to 62.4; P<.001), absence of nephrotic syndrome (OR, 8.2; 95% CI, 1.9 to 58.1; P=.004), and female sex (OR, 5.1; 95% CI, 1.5 to 19.9; P=.01) were strong predictors of finding a causative genetic variant in the entire cohort. The most common variants were in the collagen genes (52.4%; 11/21), followed by the podocyte genes (38.1%; 8/21)., Conclusion: In adults with FSGS lesions, proper selection of patients increases the rate of positive genetic testing significantly. The majority of individuals with undetermined FSGS in whom the clinical presentation and histologic parameters are discordant had a genetic diagnosis., (Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
5. Impact of integrated translational research on clinical exome sequencing.
- Author
-
Klee EW, Cousin MA, Pinto E Vairo F, Morales-Rosado JA, Macke EL, Jenkinson WG, Ferrer A, Schultz-Rogers LE, Olson RJ, Oliver GR, Sigafoos AN, Schwab TL, Zimmermann MT, Urrutia RA, Kaiwar C, Gupta A, Blackburn PR, Boczek NJ, Prochnow CA, Lowy RJ, Mulvihill LA, McAllister TM, Aoudia SL, Kruisselbrink TM, Gunderson LB, Kemppainen JL, Fisher LJ, Tarnowski JM, Hager MM, Kroc SA, Bertsch NL, Agre KE, Jackson JL, Macklin-Mantia SK, Murphree MI, Rust LM, Summer Bolster JM, Beck SA, Atwal PS, Ellingson MS, Barnett SS, Rasmussen KJ, Lahner CA, Niu Z, Hasadsri L, Ferber MJ, Marcou CA, Clark KJ, Pichurin PN, Deyle DR, Morava-Kozicz E, Gavrilova RH, Dhamija R, Wierenga KJ, Lanpher BC, Babovic-Vuksanovic D, Farrugia G, Schimmenti LA, Stewart AK, and Lazaridis KN
- Subjects
- Genetic Testing, Humans, Phenotype, Translational Research, Biomedical, Exome Sequencing, Exome genetics, Undiagnosed Diseases
- Abstract
Purpose: Exome sequencing often identifies pathogenic genetic variants in patients with undiagnosed diseases. Nevertheless, frequent findings of variants of uncertain significance necessitate additional efforts to establish causality before reaching a conclusive diagnosis. To provide comprehensive genomic testing to patients with undiagnosed disease, we established an Individualized Medicine Clinic, which offered clinical exome testing and included a Translational Omics Program (TOP) that provided variant curation, research activities, or research exome sequencing., Methods: From 2012 to 2018, 1101 unselected patients with undiagnosed diseases received exome testing. Outcomes were reviewed to assess impact of the TOP and patient characteristics on diagnostic rates through descriptive and multivariate analyses., Results: The overall diagnostic yield was 24.9% (274 of 1101 patients), with 174 (15.8% of 1101) diagnosed on the basis of clinical exome sequencing alone. Four hundred twenty-three patients with nondiagnostic or without access to clinical exome sequencing were evaluated by the TOP, with 100 (9% of 1101) patients receiving a diagnosis, accounting for 36.5% of the diagnostic yield. The identification of a genetic diagnosis was influenced by the age at time of testing and the disease phenotype of the patient., Conclusion: Integration of translational research activities into clinical practice of a tertiary medical center can significantly increase the diagnostic yield of patients with undiagnosed disease.
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.