1. High ambient temperature may induce presbyopia via TRPV1 activation.
- Author
-
Nakazawa Y, Kuno Y, Shimada H, Nagai N, Hiramatsu N, Takeda S, Yamamoto N, Funakoshi-Tago M, and Sasaki H
- Subjects
- Humans, Cell Line, Hot Temperature adverse effects, MAP Kinase Signaling System, Cataract metabolism, Cataract pathology, Cataract etiology, src-Family Kinases metabolism, Animals, Temperature, TRPV Cation Channels metabolism, TRPV Cation Channels genetics, Lens, Crystalline metabolism, Lens, Crystalline pathology, Presbyopia metabolism, Presbyopia pathology, Epithelial Cells metabolism, Epithelial Cells pathology
- Abstract
The prevalence of presbyopia and nuclear cataracts (NUC) is reported to be higher in tropical areas than that in other regions, suggesting a potential influence of high temperatures on lens health. Transient receptor potential vanilloid (TRPV) channels play a crucial role in detecting ambient temperatures across various species, with TRPV1 and TRPV4 expressed in lens epithelial cells. In this study, we investigated whether ambient temperatures affect TRPV1 and TRPV4 activity in the lens, potentially contributing to the development of presbyopia and NUC. We conducted experiments using cultured human lens epithelial cell lines under different temperature conditions. Our results revealed that the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) and p38 pathways, downstream molecules of TRPV1, were activated, while Src family kinase, a downstream molecule of TRPV4, was inhibited at 37.5 °C culture compared to 35.0 °C. Confocal microscope images demonstrated higher expression of TRPV1 in 3D-structured cells under high-temperature culture conditions. Additionally, in organ culture lenses, higher elasticity was observed at elevated temperatures compared to that at lower temperatures. These results suggest that high ambient temperatures may induce lens sclerosis via TRPV1 activation, potentially contributing to the development of presbyopia and NUC., (© 2024. The Author(s) under exclusive licence to The Japanese Society for Clinical Molecular Morphology.)
- Published
- 2024
- Full Text
- View/download PDF