16 results on '"Pozzi ECC"'
Search Results
2. Boron neutron capture therapy for oral precancer: proof of principle in an experimental animal model
- Author
-
Hughes, A Monti, primary, Pozzi, ECC, additional, Thorp, S, additional, Garabalino, MA, additional, Farías, RO, additional, González, SJ, additional, Heber, EM, additional, Itoiz, ME, additional, Aromando, RF, additional, Molinari, AJ, additional, Miller, M, additional, Nigg, DW, additional, Curotto, P, additional, Trivillin, VA, additional, and Schwint, AE, additional
- Published
- 2013
- Full Text
- View/download PDF
3. Cobaltabis(Dicarbollide) [ o -COSAN] - for Boron Neutron Capture Therapy of Head and Neck Cancer: Biodistribution and Irradiation Studies in an Experimental Oral Cancer Model.
- Author
-
Palmieri MA, Monti Hughes A, Trivillin VA, Garabalino MA, Ramos PS, Thorp SI, Curotto P, Pozzi ECC, Nuez Martínez M, Teixidor F, Viñas C, and Schwint AE
- Abstract
Background: Boron neutron capture therapy (BNCT) is a tumor-selective particle radiotherapy that combines preferential boron accumulation in tumors and neutron irradiation. Based on previous studies in tumor-bearing mice, this study evaluated the biodistribution of the sodium salt of cobaltabis(dicarbollide) (Na[3,3'-Co(C
2 B9 H11 )2 ], abbreviated as Na[ o -COSAN]) in the hamster cheek pouch oral cancer model and the Na[ o -COSAN]/BNCT therapeutic effect on tumors and induced radiotoxicity. The synthesis and comprehensive characterization of10 B-enriched trimethylammonium salt of nido -[7,8-C2 10 B9 H12 ]- o -carborane, along with the cesium and sodium salts of [ o -10 COSAN] cobaltabis(dicarbollide) are reported here for the first time., Methods: Hamsters bearing tumors were injected with Na[ o -COSAN] (7.5 mg B/kg) and euthanized at different time-points after injection (30 min, 2, 3, 5, and 18 h post-administration) to evaluate boron uptake in different tissues/organs. Based on these results, tumor-bearing animals were treated with Na[10 B- o -COSAN]/BNCT (7.5 mg B/kg b.w., 3 h), prescribing 5 Gy total in absorbed dose to the precancerous tissue surrounding tumors, i.e., the dose-limiting tissue., Results: Na[ o -10 COSAN] exhibited no toxicity. Although biodistribution studies employing Na[ o -COSAN] have shown low absolute boron concentration in the tumor (approx. 11 ppm), Na[ o -10 COSAN]/BNCT induced a high and significant therapeutic effect on tumors versus the control group (cancerized, untreated animals). Moreover, only half of the animals exhibited severe mucositis in the precancerous dose-limiting tissue after BNCT, which resolved completely at 21 days after irradiation., Conclusions: Na[ o -10 COSAN] would be potentially useful to treat head and neck cancer with BNCT.- Published
- 2024
- Full Text
- View/download PDF
4. Enhanced Resolution of Neutron Autoradiography with UV-C Sensitization to Study Boron Microdistribution in Animal Models.
- Author
-
Portu AM, Espain MS, Thorp SI, Trivillin VA, Curotto P, Monti Hughes A, Pozzi ECC, Garabalino MA, Palmieri MA, Granell PN, Golmar F, Schwint AE, and Saint Martin G
- Abstract
The assessment of boron microdistribution is essential to evaluate the suitability of boron neutron capture therapy (BNCT) in different biological models. In our laboratory, we have reported a methodology to produce cell imprints on polycarbonate through UV-C sensitization. The aim of this work is to extend the technique to tissue samples in order to enhance spatial resolution. As tissue structure largely differs from cultured cells, several aspects must be considered. We studied the influence of the parameters involved in the imprint and nuclear track formation, such as neutron fluence, different NTDs, etching and UV-C exposure times, tissue absorbance, thickness, and staining, among others. Samples from different biological models of interest for BNCT were used, exhibiting homogeneous and heterogeneous histology and boron microdistribution. The optimal conditions will depend on the animal model under study and the resolution requirements. Both the imprint sharpness and the fading effect depend on tissue thickness. While 6 h of UV-C was necessary to yield an imprint in CR-39, only 5 min was enough to observe clear imprints on Lexan. The information related to microdistribution of boron obtained with neutron autoradiography is of great relevance when assessing new boron compounds and administration protocols and also contributes to the study of the radiobiology of BNCT.
- Published
- 2023
- Full Text
- View/download PDF
5. Therapeutic Efficacy, Radiotoxicity and Abscopal Effect of BNCT at the RA-3 Nuclear Reactor Employing Oligo-Fucoidan and Glutamine as Adjuvants in an Ectopic Colon Cancer Model in Rats.
- Author
-
Frydryk Benitez DN, Palmieri MA, Langle YV, Monti Hughes A, Pozzi ECC, Thorp SI, Garabalino MA, Curotto P, Ramos PS, Paparella ML, Polti L, Eiján A, Schwint AE, and Trivillin VA
- Abstract
Boron neutron capture therapy (BNCT) is based on the preferential uptake of
10 B compounds by tumors, followed by neutron irradiation. The aim of this study was to assess, in an ectopic colon cancer model, the therapeutic efficacy, radiotoxicity, abscopal effect and systemic immune response associated with (BPA/Borophenylalanine+GB-10/Decahydrodecaborate)-BNCT (Comb-BNCT) alone or in combination with Oligo-Fucoidan (O-Fuco) or Glutamine (GLN), compared to the "standard" BPA-BNCT protocol usually employed in clinical trials. All treatments were carried out at the RA-3 nuclear reactor. Boron biodistribution studies showed therapeutic values above 20 ppm10 B in tumors. At 7 weeks post-treatment, the ratio of tumor volume post-/pre-BNCT was significantly smaller for all BNCT groups vs. SHAM ( p < 0.05). The parameter "incidence of tumors that underwent a reduction to ≤50% of initial tumor volume" exhibited values of 62% for Comb-BNCT alone, 82% for Comb-BNCT+GLN, 73% for Comb-BNCT+O-Fuco and only 30% for BPA-BNCT. For BPA-BNCT, the incidence of severe dermatitis was 100%, whereas it was significantly below 70% ( p ≤ 0.05) for Comb-BNCT, Comb-BNCT+O-Fuco and Comb-BNCT+GLN. Considering tumors outside the treatment area, 77% of Comb-BNCT animals had a tumor volume lower than 50 mm3 vs. 30% for SHAM ( p ≤ 0.005), suggesting an abscopal effect of Comb-BNCT. Inhibition of metastatic spread to lymph nodes was observed in all Comb-BNCT groups. Considering systemic aspects, CD8+ was elevated for Comb-BNCT+GLN vs. SHAM ( p ≤ 0.01), and NK was elevated for Comb-BNCT vs. SHAM ( p ≤ 0.05). Comb-BNCT improved therapeutic efficacy and reduced radiotoxicity compared to BPA-BNCT and induced an immune response and an abscopal effect.- Published
- 2023
- Full Text
- View/download PDF
6. Enhancement in the Therapeutic Efficacy of In Vivo BNCT Mediated by GB-10 with Electroporation in a Model of Oral Cancer.
- Author
-
Olaiz N, Monti Hughes A, Pozzi ECC, Thorp S, Curotto P, Trivillin VA, Ramos PS, Palmieri MA, Marshall G, Schwint AE, and Garabalino MA
- Subjects
- Cricetinae, Animals, Tissue Distribution, Boron, Electroporation, Boron Neutron Capture Therapy methods, Mucositis, Mouth Neoplasms radiotherapy, Mouth Neoplasms pathology
- Abstract
Boron neutron capture therapy (BNCT) combines preferential tumor uptake of
10 B compounds and neutron irradiation. Electroporation induces an increase in the permeability of the cell membrane. We previously demonstrated the optimization of boron biodistribution and microdistribution employing electroporation (EP) and decahydrodecaborate (GB-10) as the boron carrier in a hamster cheek pouch oral cancer model. The aim of the present study was to evaluate if EP could improve tumor control without enhancing the radiotoxicity of BNCT in vivo mediated by GB-10 with EP 10 min after GB-10 administration. Following cancerization, tumor-bearing hamster cheek pouches were treated with GB-10/BNCT or GB-10/BNCT + EP. Irradiations were carried out at the RA-3 Reactor. The tumor response and degree of mucositis in precancerous tissue surrounding tumors were evaluated for one month post-BNCT. The overall tumor response (partial remission (PR) + complete remission (CR)) increased significantly for protocol GB-10/BNCT + EP (92%) vs. GB-10/BNCT (48%). A statistically significant increase in the CR was observed for protocol GB-10/BNCT + EP (46%) vs. GB-10/BNCT (6%). For both protocols, the radiotoxicity (mucositis) was reversible and slight/moderate. Based on these results, we concluded that electroporation improved the therapeutic efficacy of GB-10/BNCT in vivo in the hamster cheek pouch oral cancer model without increasing the radiotoxicity.- Published
- 2023
- Full Text
- View/download PDF
7. Boron Neutron Capture Therapy (BNCT) Mediated by Maleimide-Functionalized Closo -Dodecaborate Albumin Conjugates (MID:BSA) for Oral Cancer: Biodistribution Studies and In Vivo BNCT in the Hamster Cheek Pouch Oral Cancer Model.
- Author
-
Monti Hughes A, Goldfinger JA, Palmieri MA, Ramos P, Santa Cruz IS, De Leo L, Garabalino MA, Thorp SI, Curotto P, Pozzi ECC, Kawai K, Sato S, Itoiz ME, Trivillin VA, Guidobono JS, Nakamura H, and Schwint AE
- Abstract
Background: BNCT (Boron Neutron Capture Therapy) is a tumor-selective particle radiotherapy that combines preferential boron accumulation in tumors and neutron irradiation. Although p -boronophenylalanine (BPA) has been clinically used, new boron compounds are needed for the advancement of BNCT. Based on previous studies in colon tumor-bearing mice, in this study, we evaluated MID:BSA (maleimide-functionalized closo -dodecaborate conjugated to bovine serum albumin) biodistribution and MID:BSA/BNCT therapeutic effect on tumors and associated radiotoxicity in the hamster cheek pouch oral cancer model., Methods: Biodistribution studies were performed at 30 mg B/kg and 15 mg B/kg (12 h and 19 h post-administration). MID:BSA/BNCT (15 mg B/kg, 19 h) was performed at three different absorbed doses to precancerous tissue., Results: MID:BSA 30 mg B/kg protocol induced high BSA toxicity. MID:BSA 15 mg B/kg injected at a slow rate was well-tolerated and reached therapeutically useful boron concentration values in the tumor and tumor/normal tissue ratios. The 19 h protocol exhibited significantly lower boron concentration values in blood. MID:BSA/BNCT exhibited a significant tumor response vs. the control group with no significant radiotoxicity., Conclusions: MID:BSA/BNCT would be therapeutically useful to treat oral cancer. BSA toxicity is a consideration when injecting a compound conjugated to BSA and depends on the animal model studied.
- Published
- 2022
- Full Text
- View/download PDF
8. Evaluation of local, regional and abscopal effects of Boron Neutron Capture Therapy (BNCT) combined with immunotherapy in an ectopic colon cancer model.
- Author
-
Trivillin VA, Langle YV, Palmieri MA, Pozzi ECC, Thorp SI, Benitez Frydryk DN, Garabalino MA, Monti Hughes A, Curotto PM, Colombo LL, Santa Cruz IS, Ramos PS, Itoiz ME, Argüelles C, Eiján AM, and Schwint AE
- Subjects
- Animals, Colonic Neoplasms immunology, Colonic Neoplasms radiotherapy, Combined Modality Therapy methods, Disease Models, Animal, Female, Male, Rats, Treatment Outcome, Boron Neutron Capture Therapy methods, Colonic Neoplasms therapy, Immunotherapy methods
- Abstract
Objective: The aim of the present study was to evaluate the local and regional therapeutic efficacy and abscopal effect of BNCT mediated by boronophenyl-alanine, combined with Bacillus Calmette-Guerin (BCG) as an immunotherapy agent in this model., Methods: The local effect of treatment was evaluated in terms of tumor response in the irradiated tumor-bearing right hind flank. Metastatic spread to tumor-draining lymph nodes was analyzed as an indicator of regional effect. The abscopal effect of treatment was assessed as tumor growth inhibition in the contralateral (non-irradiated) left hind flank inoculated with tumor cells 2 weeks post-irradiation. The experimental groups BNCT, BNCT + BCG, BCG, Beam only (BO), BO +BCG, SHAM (tumor-bearing, no treatment, same manipulation) were studied., Results: BNCT and BNCT + BCG induced a highly significant local anti-tumor response, whereas BCG alone induced a weak local effect. BCG and BNCT + BCG induced a significant abscopal effect in the contralateral non-irradiated leg. The BNCT + BCG group showed significantly less metastatic spread to tumor-draining lymph nodes vs SHAM and vs BO., Conclusion: This study suggests that BNCT + BCG-immunotherapy would induce local, regional and abscopal effects in tumor-bearing animals. BNCT would be the main effector of the local anti-tumor effect whereas BCG would be the main effector of the abscopal effect., Advances in Knowledge: Although the local effect of BNCT has been widely evidenced, this is the first study to show the local, regional and abscopal effects of BNCT combined with immunotherapy, contributing to comprehensive cancer treatment with combined therapies.
- Published
- 2021
- Full Text
- View/download PDF
9. Neutron autoradiography to study the microdistribution of boron in the lung.
- Author
-
Espain MS, Dattoli Viegas AM, Trivillin VA, Saint Martin G, Thorp SI, Curotto P, Pozzi ECC, González SJ, and Portu AM
- Subjects
- Animals, Boron Neutron Capture Therapy methods, Rats, Autoradiography methods, Boron pharmacokinetics, Lung metabolism, Neutrons
- Abstract
In Argentina, a multi-institutional project has been established to assess the feasibility of applying BNCT ex-situ to the treatment of patients with multiple metastases in both lungs. Within this context, this work aims at applying the neutron autoradiography technique to study boron microdistribution in the lung. A comprehensive analysis of the different aspects for the generation of autoradiographic images of both normal and metastatic BDIX rat lungs was achieved. Histology, boron uniformity, optimal tissue thickness and water content in tissue were explored for the two types of samples. A qualitative and a quantitative analysis were performed. No heterogeneities in uptake were observed in normal lung. Conversely, samples with metastasis showed preferential boron uptake in the tumour areas with respect to surrounding tissue. Surrounding tissue would present a slightly higher uptake of boron than the normal lung. Quantitative results of boron concentration values and ratios determined by neutron autoradiography were obtained. In order to contribute to BNCT dosimetry, further analysis increasing the number of samples is warranted., (Copyright © 2020 Elsevier Ltd. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
10. Clinical Veterinary Boron Neutron Capture Therapy (BNCT) Studies in Dogs with Head and Neck Cancer: Bridging the Gap between Translational and Clinical Studies.
- Author
-
Schwint AE, Monti Hughes A, Garabalino MA, Santa Cruz GA, González SJ, Longhino J, Provenzano L, Oña P, Rao M, Cantarelli MLÁ, Leiras A, Olivera MS, Trivillin VA, Alessandrini P, Brollo F, Boggio E, Costa H, Ventimiglia R, Binia S, Pozzi ECC, Nievas SI, and Santa Cruz IS
- Abstract
Translational Boron Neutron Capture Therapy (BNCT) studies performed by our group and clinical BNCT studies worldwide have shown the therapeutic efficacy of BNCT for head and neck cancer. The present BNCT studies in veterinary patients with head and neck cancer were performed to optimize the therapeutic efficacy of BNCT, contribute towards exploring the role of BNCT in veterinary medicine, put in place technical aspects for an upcoming clinical trial of BNCT for head and neck cancer at the RA-6 Nuclear Reactor, and assess the feasibility of employing the existing B2 beam to treat large, deep-seated tumors. Five dogs with head and neck cancer with no other therapeutic option were treated with two applications of BNCT mediated by boronophenyl-alanine (BPA) separated by 3-5 weeks. Two to three portals per BNCT application were used to achieve a potentially therapeutic dose over the tumor without exceeding normal tissue tolerance. Clinical and Computed Tomography results evidenced partial tumor control in all cases, with slight-moderate mucositis, excellent life quality, and prolongation in the survival time estimated at recruitment. These exploratory studies show the potential value of BNCT in veterinary medicine and contribute towards initiating a clinical BNCT trial for head and neck cancer at the RA-6 clinical facility.
- Published
- 2020
- Full Text
- View/download PDF
11. Optimization of the classical oral cancerization protocol in hamster to study oral cancer therapy.
- Author
-
Santa Cruz IS, Garabalino MA, Trivillin VA, Itoiz ME, Pozzi ECC, Thorp S, Curotto P, Guidobono JS, Heber EM, Nigg DW, Schwint AE, and Monti Hughes A
- Abstract
Objective(s): The hamster carcinogenesis model recapitulates oral oncogenesis. Dimethylbenz[a]anthracene (DMBA) cancerization induces early severe mucositis, affecting animal's welfare and causing tissue loss and pouch shortening. "Short" pouches cannot be everted for local irradiation for boron neutron capture therapy (BNCT). Our aim was to optimize the DMBA classical cancerization protocol to avoid severe mucositis, without affecting tumor development. We evaluated BNCT in animals cancerized with this novel protocol., Materials and Methods: We studied: Classical cancerization protocol (24 applications) and Classical with two interruptions (completed at the end of the cancerization protocol). BNCT mediated by boronophenylalanine (BPA) was performed in both groups., Results: The twice-interrupted group exhibited a significantly lower percentage of animals with severe mucositis versus the non-interrupted group (17% versus 71%) and a significantly higher incidence of long pouches (100% versus 53%). Tumor development and the histologic characteristics of tumor and precancerous tissue were not affected by the interruptions. For both groups, overall tumor response was more than 80%, with a similar incidence of BNCT-induced severe mucositis., Conclusion(s): The twice-interrupted protocol reduced severe mucositis during cancerization without affecting tumor development. This favored the animal's welfare and reduced the number of animals to be cancerized for our studies, without affecting BNCT response., (© 2020 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
12. Electroporation optimizes the uptake of boron-10 by tumor for boron neutron capture therapy (BNCT) mediated by GB-10: a boron biodistribution study in the hamster cheek pouch oral cancer model.
- Author
-
Garabalino MA, Olaiz N, Portu A, Saint Martin G, Thorp SI, Pozzi ECC, Curotto P, Itoiz ME, Monti Hughes A, Colombo LL, Nigg DW, Trivillin VA, Marshall G, and Schwint AE
- Subjects
- Animals, Cheek, Cricetinae, Disease Models, Animal, Mesocricetus, Mouth Neoplasms, Tissue Distribution, Boron metabolism, Boron Compounds metabolism, Boron Neutron Capture Therapy methods, Isotopes metabolism
- Abstract
Boron neutron capture therapy (BNCT) is a promising cancer binary therapy modality that utilizes the nuclear capture reaction of thermal neutrons by boron-10 resulting in a localized release of high- and low-linear energy transfer (LET) radiation. Electrochemotherapy (ECT) is based on electroporation (EP) that induces opening of pores in cell membranes, allowing the entry of compounds. Because EP is applied locally to a tumor, the compound is incorporated preferentially by tumor cells. Based on the knowledge that the therapeutic success of BNCT depends centrally on the boron content in tumor and normal tissues and that EP has proven to be an excellent facilitator of tumor biodistribution of an anti-tumor agent, the aim of this study was to evaluate if EP can optimize the delivery of boronated compounds. We performed biodistribution studies and qualitative microdistribution analyses of boron employing the boron compound sodium decahydrodecaborate (GB-10) + EP in the hamster cheek pouch oral cancer model. Syrian hamsters with chemically induced exophytic squamous cell carcinomas were used. A typical EP treatment was applied to each tumor, varying the moment of application with respect to the administration of GB-10 (early or late). The results of this study showed a significant increase in the absolute and relative tumor boron concentration and optimization of the qualitative microdistribution of boron by the use of early EP + GB-10 versus GB-10 without EP. This strategy could be a tool to improve the therapeutic efficacy of BNCT/GB-10 in vivo.
- Published
- 2019
- Full Text
- View/download PDF
13. Extending neutron autoradiography technique for boron concentration measurements in hard tissues.
- Author
-
Provenzano L, Olivera MS, Saint Martin G, Rodríguez LM, Fregenal D, Thorp SI, Pozzi ECC, Curotto P, Postuma I, Altieri S, González SJ, Bortolussi S, and Portu A
- Subjects
- Animals, Autoradiography standards, Bone and Bones chemistry, Boron standards, Boron Neutron Capture Therapy, Calibration, Computer Simulation, Models, Animal, Radiometry methods, Radiometry standards, Sheep, Stochastic Processes, Tissue Distribution, Autoradiography methods, Boron analysis, Neutrons
- Abstract
The neutron autoradiography technique using polycarbonate nuclear track detectors (NTD) has been extended to quantify the boron concentration in hard tissues, an application of special interest in Boron Neutron Capture Therapy (BNCT). Chemical and mechanical processing methods to prepare thin tissue sections as required by this technique have been explored. Four different decalcification methods governed by slow and fast kinetics were tested in boron-loaded bones. Due to the significant loss of the boron content, this technique was discarded. On the contrary, mechanical manipulation to obtain bone powder and tissue sections of tens of microns thick proved reproducible and suitable, ensuring a proper conservation of the boron content in the samples. A calibration curve that relates the
10 B concentration of a bone sample and the track density in a Lexan NTD is presented. Bone powder embedded in boric acid solution with known boron concentrations between 0 and 100 ppm was used as a standard material. The samples, contained in slim Lexan cases, were exposed to a neutron fluence of 1012 cm-2 at the thermal column central facility of the RA-3 reactor (Argentina). The revealed tracks in the NTD were counted with an image processing software. The effect of track overlapping was studied and corresponding corrections were implemented in the presented calibration curve. Stochastic simulations of the track densities produced by the products of the10 B thermal neutron capture reaction for different boron concentrations in bone were performed and compared with the experimental results. The remarkable agreement between the two curves suggested the suitability of the obtained experimental calibration curve. This neutron autoradiography technique was finally applied to determine the boron concentration in pulverized and compact bone samples coming from a sheep experimental model. The obtained results for both type of samples agreed with boron measurements carried out by ICP-OES within experimental uncertainties. The fact that the histological structure of bone sections remains preserved allows for future boron microdistribution analysis., (Copyright © 2018 Elsevier Ltd. All rights reserved.)- Published
- 2018
- Full Text
- View/download PDF
14. Abscopal effect of boron neutron capture therapy (BNCT): proof of principle in an experimental model of colon cancer.
- Author
-
Trivillin VA, Pozzi ECC, Colombo LL, Thorp SI, Garabalino MA, Monti Hughes A, González SJ, Farías RO, Curotto P, Santa Cruz GA, Carando DG, and Schwint AE
- Subjects
- Animals, Colonic Neoplasms immunology, Colonic Neoplasms pathology, Disease Models, Animal, Female, Immunotherapy, Male, Neoplasm Metastasis, Rats, Boron Neutron Capture Therapy, Colonic Neoplasms radiotherapy
- Abstract
The aim of the present study was to evaluate, for the first time, the abscopal effect of boron neutron capture therapy (BNCT). Twenty-six BDIX rats were inoculated subcutaneously with 1 × 10
6 DHD/K12/TRb syngeneic colon cancer cells in the right hind flank. Three weeks post-inoculation, the right leg of 12 rats bearing the tumor nodule was treated with BPA-BNCT (BPA-Boronophenylalanine) at the RA-3 nuclear reactor located in Buenos Aires, Argentina, at an absorbed dose of 7.5 Gy to skin as the dose-limiting tissue. The remaining group of 14 tumor-bearing rats were left untreated and used as control. Two weeks post-BNCT, 1 × 106 DHD/K12/TRb cells were injected subcutaneously in the contralateral left hind flank of each of the 26 BDIX rats. Tumor volume in both legs was measured weekly for 7 weeks to determine response to BNCT in the right leg and to assess a potential influence of BNCT in the right leg on tumor development in the left leg. Within the BNCT group, a statistically significant reduction was observed in contralateral left tumor volume in animals whose right leg tumor responded to BNCT (post-treatment/pre-treatment tumor volume <1) versus animals who failed to respond (post/pre ≥1), i.e., 13 ± 15 vs 271 ± 128 mm3 . In addition, a statistically significant reduction in contralateral left leg tumor volume was observed in BNCT-responsive animals (post/pre <1) vs untreated animals, i.e., 13 ± 15 vs 254 ± 251 mm3 . The present study performed in a simple animal model provides proof of principle that the positive response of a tumor to BNCT is capable of inducing an abscopal effect.- Published
- 2017
- Full Text
- View/download PDF
15. Boron neutron capture therapy (BNCT) translational studies in the hamster cheek pouch model of oral cancer at the new "B2" configuration of the RA-6 nuclear reactor.
- Author
-
Monti Hughes A, Longhino J, Boggio E, Medina VA, Martinel Lamas DJ, Garabalino MA, Heber EM, Pozzi ECC, Itoiz ME, Aromando RF, Nigg DW, Trivillin VA, and Schwint AE
- Subjects
- Animals, Cricetinae, Disease Models, Animal, Histamine pharmacology, Mouth Neoplasms prevention & control, Neoplasms, Radiation-Induced prevention & control, Radiation-Protective Agents pharmacology, Boron Neutron Capture Therapy adverse effects, Boron Neutron Capture Therapy instrumentation, Cheek, Mouth Neoplasms etiology, Neoplasms, Radiation-Induced etiology, Nuclear Reactors, Translational Research, Biomedical
- Abstract
Boron neutron capture therapy (BNCT) is based on selective accumulation of B-10 carriers in tumor followed by neutron irradiation. We demonstrated, in 2001, the therapeutic effect of BNCT mediated by BPA (boronophenylalanine) in the hamster cheek pouch model of oral cancer, at the RA-6 nuclear reactor. Between 2007 and 2011, the RA-6 was upgraded, leading to an improvement in the performance of the BNCT beam (B2 configuration). Our aim was to evaluate BPA-BNCT radiotoxicity and tumor control in the hamster cheek pouch model of oral cancer at the new "B2" configuration. We also evaluated, for the first time in the oral cancer model, the radioprotective effect of histamine against mucositis in precancerous tissue as the dose-limiting tissue. Cancerized pouches were exposed to: BPA-BNCT; BPA-BNCT + histamine; BO: Beam only; BO + histamine; CONTROL: cancerized, no-treatment. BNCT induced severe mucositis, with an incidence that was slightly higher than in "B1" experiments (86 vs 67%, respectively). BO induced low/moderate mucositis. Histamine slightly reduced the incidence of severe mucositis induced by BPA-BNCT (75 vs 86%) and prevented mucositis altogether in BO animals. Tumor overall response was significantly higher in BNCT (94-96%) than in control (16%) and BO groups (9-38%), and did not differ significantly from the "B1" results (91%). Histamine did not compromise BNCT therapeutic efficacy. BNCT radiotoxicity and therapeutic effect at the B1 and B2 configurations of RA-6 were consistent. Histamine slightly reduced mucositis in precancerous tissue even in this overly aggressive oral cancer model, without compromising tumor control.
- Published
- 2017
- Full Text
- View/download PDF
16. Photon iso-effective dose for cancer treatment with mixed field radiation based on dose-response assessment from human and an animal model: clinical application to boron neutron capture therapy for head and neck cancer.
- Author
-
González SJ, Pozzi ECC, Monti Hughes A, Provenzano L, Koivunoro H, Carando DG, Thorp SI, Casal MR, Bortolussi S, Trivillin VA, Garabalino MA, Curotto P, Heber EM, Santa Cruz GA, Kankaanranta L, Joensuu H, and Schwint AE
- Subjects
- Animals, Carcinoma, Squamous Cell radiotherapy, Cricetinae, Humans, Precancerous Conditions radiotherapy, Radiometry, Boron Neutron Capture Therapy, Disease Models, Animal, Head and Neck Neoplasms radiotherapy, Melanoma radiotherapy, Mouth Neoplasms radiotherapy, Mucositis radiotherapy, Photons
- Abstract
Boron neutron capture therapy (BNCT) is a treatment modality that combines different radiation qualities. Since the severity of biological damage following irradiation depends on the radiation type, a quantity different from absorbed dose is required to explain the effects observed in the clinical BNCT in terms of outcome compared with conventional photon radiation therapy. A new approach for calculating photon iso-effective doses in BNCT was introduced previously. The present work extends this model to include information from dose-response assessments in animal models and humans. Parameters of the model were determined for tumour and precancerous tissue using dose-response curves obtained from BNCT and photon studies performed in the hamster cheek pouch in vivo models of oral cancer and/or pre-cancer, and from head and neck cancer radiotherapy data with photons. To this end, suitable expressions of the dose-limiting Normal Tissue Complication and Tumour Control Probabilities for the reference radiation and for the mixed field BNCT radiation were developed. Pearson's correlation coefficients and p-values showed that TCP and NTCP models agreed with experimental data (with r > 0.87 and p-values >0.57). The photon iso-effective dose model was applied retrospectively to evaluate the dosimetry in tumours and mucosa for head and neck cancer patients treated with BNCT in Finland. Photon iso-effective doses in tumour were lower than those obtained with the standard RBE-weighted model (between 10% to 45%). The results also suggested that the probabilities of tumour control derived from photon iso-effective doses are more adequate to explain the clinical responses than those obtained with the RBE-weighted values. The dosimetry in the mucosa revealed that the photon iso-effective doses were about 30% to 50% higher than the corresponding RBE-weighted values. While the RBE-weighted doses are unable to predict mucosa toxicity, predictions based on the proposed model are compatible with the observed clinical outcome. The extension of the photon iso-effective dose model has allowed, for the first time, the determination of the photon iso-effective dose for unacceptable complications in the dose-limiting normal tissue. Finally, the formalism developed in this work to compute photon-equivalent doses can be applied to other therapies that combine mixed radiation fields, such as hadron therapy.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.