1. Stability model integration for large scale solar photovoltaic system using Western electricity coordinating council model.
- Author
-
Mohd Tajudin, Mohammad Nayeim Fazumy, Hussain, Mohd Najib Mohd, Hussain, Mashitah Mohd, and Ibrahim, Intan Rahayu
- Subjects
PHOTOVOLTAIC power systems ,ELECTRICITY ,SOLAR technology ,ELECTRIC power distribution grids ,RENEWABLE energy sources ,GRIDS (Cartography) - Abstract
Due to the increased demand for renewable energy, the interest in the large-scale solar photovoltaic (LSSPV) power plant has recently grown dramatically. However, when a large amount of electricity is produced from the LSSPV power plant to the grid interconnection, the system commonly experiences instability and thus disrupt the grid system in disturbance issues such as bus fault, line-to-line fault, three-phase fault, and tripping. This sudden disturbance occurrence is tended to interrupt the stability of the system from providing balanced electrical production within the electrical grid. A dynamics response from the simulation is used to study the stability and the behavior of the photovoltaic (PV) plant into the grid interconnection by developing 118 bus system. The observation of critical clearing time (CCT) duration shows that the result from the simulation where the duration takes less than t=15 s for the system to get back to its pre-fault condition in three-phase fault and tripping in a dynamic simulation to shows that the system reaches its stability been observed through the simulation result by using from user-specific models to generic models like those advocated by the Western electricity coordinating council (WECC) in power system simulator for engineering (PSSE) software. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF