46 results on '"Pose-Utrilla, Julia"'
Search Results
2. Protein kinase D2 modulates hepatic insulin sensitivity in male mice
- Author
-
Rada, Patricia, Carceller-López, Elena, Hitos, Ana B., Gómez-Santos, Beatriz, Fernández-Hernández, Constanza, Rey, Esther, Pose-Utrilla, Julia, García-Monzón, Carmelo, González-Rodríguez, Águeda, Sabio, Guadalupe, García, Antonia, Aspichueta, Patricia, Iglesias, Teresa, and Valverde, Ángela M.
- Published
- 2024
- Full Text
- View/download PDF
3. Kidins220 sets the threshold for survival of neural stem cells and progenitors to sustain adult neurogenesis
- Author
-
del Puerto, Ana, Lopez-Fonseca, Coral, Simón-García, Ana, Martí-Prado, Beatriz, Barrios-Muñoz, Ana L., Pose-Utrilla, Julia, López-Menéndez, Celia, Alcover-Sanchez, Berta, Cesca, Fabrizia, Schiavo, Giampietro, Campanero, Miguel R., Fariñas, Isabel, Iglesias, Teresa, and Porlan, Eva
- Published
- 2023
- Full Text
- View/download PDF
4. Kidins220 deficiency causes ventriculomegaly via SNX27-retromer-dependent AQP4 degradation
- Author
-
del Puerto, Ana, Pose-Utrilla, Julia, Simón-García, Ana, López-Menéndez, Celia, Jiménez, Antonio J., Porlan, Eva, Pajuelo, Luis S. M., Cano-García, Guillermo, Martí-Prado, Beatriz, Sebastián-Serrano, Álvaro, Sánchez-Carralero, Marina P., Cesca, Fabrizia, Schiavo, Giampietro, Ferrer, Isidro, Fariñas, Isabel, Campanero, Miguel R., and Iglesias, Teresa
- Published
- 2021
- Full Text
- View/download PDF
5. Kidins220 sets the threshold for survival of neural stem cells and progenitors to sustain adult neurogenesis
- Author
-
Ministerio de Economía y Competitividad (España), Ministerio de Ciencia e Innovación (España), Agencia Estatal de Investigación (España), European Commission, Instituto de Salud Carlos III, Generalitat Valenciana, Dementia Research Institute (UK), Universidad Autónoma de Madrid, Del Puerto, Ana [0000-0002-5119-6395], Lopez-Fonseca, Coral [0009-0005-2215-8030], Simón-García, Ana [0000-0003-0639-4592], Martí-Prado, Beatriz [0000-0003-0678-9746], Pose-Utrilla, Julia [0000-0002-5009-344X], López-Menéndez, Celia [0000-0002-5967-1955], Alcover-Sanchez, Berta [0000-0001-8377-8771], Cesca, Fabrizia [0000-0003-2190-6314], Schiavo, Giampietro [0000-0002-4319-8745], Campanero, Miguel R. [0000-0003-1410-8621], Fariñas, Isabel [0000-0003-2903-4960], Iglesias, Teresa [0000-0002-4326-9005], Porlan, Eva [0000-0003-0934-9711], Del Puerto, Ana, Lopez-Fonseca, Coral, Simón-García, Ana, Martí-Prado, Beatriz, Barrios-Muñoz, Ana L., Pose-Utrilla, Julia, López-Menéndez, Celia, Alcover-Sanchez, Berta, Cesca, Fabrizia, Schiavo, Giampietro, Campanero, Miguel R., Fariñas, Isabel, Iglesias, Teresa, Porlan, Eva, Ministerio de Economía y Competitividad (España), Ministerio de Ciencia e Innovación (España), Agencia Estatal de Investigación (España), European Commission, Instituto de Salud Carlos III, Generalitat Valenciana, Dementia Research Institute (UK), Universidad Autónoma de Madrid, Del Puerto, Ana [0000-0002-5119-6395], Lopez-Fonseca, Coral [0009-0005-2215-8030], Simón-García, Ana [0000-0003-0639-4592], Martí-Prado, Beatriz [0000-0003-0678-9746], Pose-Utrilla, Julia [0000-0002-5009-344X], López-Menéndez, Celia [0000-0002-5967-1955], Alcover-Sanchez, Berta [0000-0001-8377-8771], Cesca, Fabrizia [0000-0003-2190-6314], Schiavo, Giampietro [0000-0002-4319-8745], Campanero, Miguel R. [0000-0003-1410-8621], Fariñas, Isabel [0000-0003-2903-4960], Iglesias, Teresa [0000-0002-4326-9005], Porlan, Eva [0000-0003-0934-9711], Del Puerto, Ana, Lopez-Fonseca, Coral, Simón-García, Ana, Martí-Prado, Beatriz, Barrios-Muñoz, Ana L., Pose-Utrilla, Julia, López-Menéndez, Celia, Alcover-Sanchez, Berta, Cesca, Fabrizia, Schiavo, Giampietro, Campanero, Miguel R., Fariñas, Isabel, Iglesias, Teresa, and Porlan, Eva
- Abstract
In the adult mammalian brain, neural stem cells (NSCs) located in highly restricted niches sustain the generation of new neurons that integrate into existing circuits. A reduction in adult neurogenesis is linked to ageing and neurodegeneration, whereas dysregulation of proliferation and survival of NSCs have been hypothesized to be at the origin of glioma. Thus, unravelling the molecular underpinnings of the regulated activation that NSCs must undergo to proliferate and generate new progeny is of considerable relevance. Current research has identified cues promoting or restraining NSCs activation. Yet, whether NSCs depend on external signals to survive or if intrinsic factors establish a threshold for sustaining their viability remains elusive, even if this knowledge could involve potential for devising novel therapeutic strategies. Kidins220 (Kinase D-interacting substrate of 220 kDa) is an essential effector of crucial pathways for neuronal survival and differentiation. It is dramatically altered in cancer and in neurological and neurodegenerative disorders, emerging as a regulatory molecule with important functions in human disease. Herein, we discover severe neurogenic deficits and hippocampal-based spatial memory defects accompanied by increased neuroblast death and high loss of newly formed neurons in Kidins220 deficient mice. Mechanistically, we demonstrate that Kidins220-dependent activation of AKT in response to EGF restraints GSK3 activity preventing NSCs apoptosis. We also show that NSCs with Kidins220 can survive with lower concentrations of EGF than the ones lacking this molecule. Hence, Kidins220 levels set a molecular threshold for survival in response to mitogens, allowing adult NSCs growth and expansion. Our study identifies Kidins220 as a key player for sensing the availability of growth factors to sustain adult neurogenesis, uncovering a molecular link that may help paving the way towards neurorepair.
- Published
- 2023
6. Excitotoxic targeting of Kidins220 to the Golgi apparatus precedes calpain cleavage of Rap1-activation complexes
- Author
-
López-Menéndez, Celia, Simón-García, Ana, Gamir-Morralla, Andrea, Pose-Utrilla, Julia, Luján, Rafael, Mochizuki, Naoki, Díaz-Guerra, Margarita, and Iglesias, Teresa
- Published
- 2019
- Full Text
- View/download PDF
7. Kidins220 sets the threshold for survival of neural stem cells and progenitors to sustain adult neurogenesis
- Author
-
Puerto, Ana del, primary, Martí-Prado, Beatriz, additional, Barrios-Muñoz, Ana L., additional, López-Fonseca, Coral, additional, Pose-Utrilla, Julia, additional, Alcover-Sanchez, Berta, additional, Cesca, Fabrizia, additional, Schiavo, Giampietro, additional, Campanero, Miguel R, additional, Fariñas, Isabel, additional, Iglesias, Teresa, additional, and Porlan, Eva, additional
- Published
- 2023
- Full Text
- View/download PDF
8. Kidins220 deficiency causes ventriculomegaly via SNX27-retromer-dependent AQP4 degradation
- Author
-
Ministerio de Economía y Competitividad (España), Agencia Estatal de Investigación (España), Comunidad de Madrid, Obra Social la Caixa, Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (España), Pose-Utrilla, Julia [0000-0002-5009-344X], Simón-García, Ana [0000-0003-0639-4592], López-Menéndez, Celia [0000-0002-5967-1955], Porlan, Eva [0000-0003-0934-9711], Martí-Prado, Beatriz [0000-0003-0678-9746], Sebastián-Serrano, Álvaro [0000-0002-9810-2165], Sánchez-Carralero, Marina P [0000-0002-1563-3316], Cesca, Fabrizia [0000-0003-2190-6314], Ferrer, Isidro [0000-0001-9888-8754], Fariñas, Isabel [0000-0003-2903-4960], Campanero, Miguel R [0000-0003-1410-8621], Iglesias, Teresa [0000-0002-4326-9005], Del Puerto, Ana, Pose-Utrilla, Julia, Simón-García, Ana, López-Menéndez, Celia, Jiménez, Antonio J, Porlan, Eva, Pajuelo, Luis S M, Cano-García, Guillermo, Martí-Prado, Beatriz, Sebastián-Serrano, Álvaro, Sánchez-Carralero, Marina P, Cesca, Fabrizia, Schiavo, Giampietro, Ferrer, Isidro, Fariñas, Isabel, Campanero, Miguel R, Iglesias, Teresa, Ministerio de Economía y Competitividad (España), Agencia Estatal de Investigación (España), Comunidad de Madrid, Obra Social la Caixa, Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (España), Pose-Utrilla, Julia [0000-0002-5009-344X], Simón-García, Ana [0000-0003-0639-4592], López-Menéndez, Celia [0000-0002-5967-1955], Porlan, Eva [0000-0003-0934-9711], Martí-Prado, Beatriz [0000-0003-0678-9746], Sebastián-Serrano, Álvaro [0000-0002-9810-2165], Sánchez-Carralero, Marina P [0000-0002-1563-3316], Cesca, Fabrizia [0000-0003-2190-6314], Ferrer, Isidro [0000-0001-9888-8754], Fariñas, Isabel [0000-0003-2903-4960], Campanero, Miguel R [0000-0003-1410-8621], Iglesias, Teresa [0000-0002-4326-9005], Del Puerto, Ana, Pose-Utrilla, Julia, Simón-García, Ana, López-Menéndez, Celia, Jiménez, Antonio J, Porlan, Eva, Pajuelo, Luis S M, Cano-García, Guillermo, Martí-Prado, Beatriz, Sebastián-Serrano, Álvaro, Sánchez-Carralero, Marina P, Cesca, Fabrizia, Schiavo, Giampietro, Ferrer, Isidro, Fariñas, Isabel, Campanero, Miguel R, and Iglesias, Teresa
- Abstract
Several psychiatric, neurologic and neurodegenerative disorders present increased brain ventricles volume, being hydrocephalus the disease with the major manifestation of ventriculomegaly caused by the accumulation of high amounts of cerebrospinal fluid (CSF). The molecules and pathomechanisms underlying cerebral ventricular enlargement are widely unknown. Kinase D interacting substrate of 220 kDa (KIDINS220) gene has been recently associated with schizophrenia and with a novel syndrome characterized by spastic paraplegia, intellectual disability, nystagmus and obesity (SINO syndrome), diseases frequently occurring with ventriculomegaly. Here we show that Kidins220, a transmembrane protein effector of various key neuronal signalling pathways, is a critical regulator of CSF homeostasis. We observe that both KIDINS220 and the water channel aquaporin-4 (AQP4) are markedly downregulated at the ventricular ependymal lining of idiopathic normal pressure hydrocephalus (iNPH) patients. We also find that Kidins220 deficient mice develop ventriculomegaly accompanied by water dyshomeostasis and loss of AQP4 in the brain ventricular ependymal layer and astrocytes. Kidins220 is a known cargo of the SNX27-retromer, a complex that redirects endocytosed plasma membrane proteins (cargos) back to the cell surface, thus avoiding their targeting to lysosomes for degradation. Mechanistically, we show that AQP4 is a novel cargo of the SNX27-retromer and that Kidins220 deficiency promotes a striking and unexpected downregulation of the SNX27-retromer that results in AQP4 lysosomal degradation. Accordingly, SNX27 silencing decreases AQP4 levels in wild-type astrocytes whereas SNX27 overexpression restores AQP4 content in Kidins220 deficient astrocytes. Together our data suggest that the KIDINS220-SNX27-retromer-AQP4 pathway is involved in human ventriculomegaly and open novel therapeutic perspectives.
- Published
- 2021
9. Unravelling the role of protein linase D2 in the control of insulin sensitivity
- Author
-
Rada, Patricia, Hitos, Ana B., Carceller-López, Elena, Rey, Esther, Pose-Utrilla, Julia, García-Monzón, Carmelo, Sabio, Guadalupe, Iglesias, Teresa, González-Rodríguez, Águeda, and Valverde, Ángela M.
- Abstract
Trabajo presentado en The International Liver Congress, celebrado en Londres (Inglaterra) del 22 al 26 de junio de 2022., [Background and aims]: Protein kinase 02 (PKD2) is a Ser/Thr kinase of the ca2+-Calmodulin kinase superfamily. Growing evidences support that PKD2 participates in the control of glucose homeostasis. Two previous studies, one conducted in global PKD2-deficient mie, and the other in mice lacking PKD2 in intestine, reported oppos1te results with metabolic dysfunction or protection against HFD induced obesity, respectively. However, the role of PKD2 in the liver in the context of obesity-related insulin resistance has not been addressed and it is the aim of this study. [Method]: PKD inhibition by pharmacological and genetic approaches was analyzed in primary hepatocytes and in Huh7 cells. To over express PKD2, Huh7 cells were transfected with EGFP-PKD2-CA, a constitutively active PKD2 fused to EGFP. Insulin signaling cascade was examined by treating hepatocytes with insulin (10 nM, 5-15 min). As an in vivo model of hepatic insulin resistance, mice with a liver-specific PKD2 depletion (PKD2dHep) were fed high fat diet (HFD, 20 weeks). Parameters assessing glucose homeostasis and hepatic insulin sensitivity were analyzed. PKD2 was overexpressed in liver by an injection of MV bearing EGFP-PKD2-CA and insulin sensitivity was evaluated. PKD signature was analyzed in liver biopsies from NAFLD patients. [Results]: PKD pharmacological inhibition resulted in an increased insulin sensitivity showed by a higher AKT phosphorylation after insulin stimulation in both primary mouse hepatocytes and Huh7 cells. Moreover, PKD2 knocking down by siRNA or shRNA-lentiviral particles enhanced the insulin response. Alternatively, EGP-PKD2- CA overexpression in Huh7 cells reduced AKT phosphorylat10n upon insulin stimulation compared to EGFP-transfected cells. In this line, in vivo injection of MV bearing EGFP-PKD2-CA resulted in a moderate impairment of glucose homeostasis and reduced IR and AKT phosphorylation in the liver. Importantly, HFD-fed PKD2dHe mie displayed a tendency to improve glucose tolerance and msulm sensitivity compared to control mice. These results were confirmed by analysis of AKT phosphorylation in liver extracts. Moreover, PKD immunostaining revealed that PKD2 was increased in NAFLD patients. [Conclusion]: Our results strongly suggest that PKD2 is involved in the control of hepatic insulin signaling and point PKD2 as a new
- Published
- 2022
10. Insulin regulates neurovascular coupling through astrocytes
- Author
-
Fernandez, Ana M., primary, Martinez-Rachadell, Laura, additional, Navarrete, Marta, additional, Pose-Utrilla, Julia, additional, Davila, Jose Carlos, additional, Pignatelli, Jaime, additional, Diaz-Pacheco, Sonia, additional, Guerra-Cantera, Santiago, additional, Viedma-Moreno, Emilia, additional, Palenzuela, Rocio, additional, Ruiz de Martin Esteban, Samuel, additional, Mostany, Ricardo, additional, Garcia-Caceres, Cristina, additional, Tschöp, Matthias, additional, Iglesias, Teresa, additional, de Ceballos, Maria L., additional, Gutierrez, Antonia, additional, and Torres Aleman, Ignacio, additional
- Published
- 2022
- Full Text
- View/download PDF
11. Unravelling the role of Protein Kinase D2 in the control of hepatic insulin sensitivity
- Author
-
Rada, Patricia, primary, Hitos, Ana B., additional, Rey, Esther, additional, Carceller-Lopez, Elena, additional, Pose-Utrilla, Julia, additional, Garcia-Monzon, Carmelo, additional, Sabio, Guadalupe, additional, Iglesias, Teresa, additional, González, Águeda, additional, and Valverde, Angela Martinez, additional
- Published
- 2022
- Full Text
- View/download PDF
12. Methods and compositions for the treatment of disorders characterized by a KIDINS220 dysfunction in a subject
- Author
-
Iglesias, Teresa, Campanero, Miguel R., Pose-Utrilla, Julia, Simón-García, Ana, López-Menéndez, Celia, Sánchez-Miranda, Luis, Puerto, Ana del, Iglesias, Teresa, Campanero, Miguel R., Pose-Utrilla, Julia, Simón-García, Ana, López-Menéndez, Celia, Sánchez-Miranda, Luis, and Puerto, Ana del
- Abstract
[EN] The present invention relates to retromer complex activators and compositions for use in the treatment and/or prevention of neurological and psychiatric disorders characterized by Kidins220 dysfunction in a subject. These disorders may be further characterized by ventriculomegaly and/or excitotoxicity. It also relates to methods for screening a retromer complex activator for use in the treatment and/or prevention of said disorders in a subject., [FR] La présente invention concerne des activateurs de complexes rétromère et des compositions destinés à être utilisés dans le traitement et/ou la prévention de troubles neurologiques et psychiatriques caractérisés par un dysfonctionnement de Kidins220 chez un patient. Ces troubles peuvent en outre être caractérisés par la ventriculomégalie et/ou l'excitotoxicité. L'invention concerne également des procédés de criblage d'un activateur de complexe rétromère destiné à être utilisé dans le traitement et/ou la prévention de ces troubles chez un patient.
- Published
- 2022
13. Insulin regulates neurovascular coupling through astrocytes
- Author
-
Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (España), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (España), Junta de Andalucía, European Commission, Comunidad de Madrid, Fernández, Ana M., Martinez-Rachadell, Laura, Navarrete, Marta, Pose-Utrilla, Julia, Dávila, José C., Pignatelli Garrigos, Jaime, Diaz-Pacheco, Sonia, Guerra-Cantera, Santiago, Viedma-Moreno, Emilia, Ruiz de Martin Esteban, Samuel, Mostany, Ricardo, García-Cáceres, Cristina, Tschöp, Matthias, Iglesias, Teresa, Ceballos, María L. de, Gutiérrez, A., Torres Alemán, Ignacio, Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (España), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (España), Junta de Andalucía, European Commission, Comunidad de Madrid, Fernández, Ana M., Martinez-Rachadell, Laura, Navarrete, Marta, Pose-Utrilla, Julia, Dávila, José C., Pignatelli Garrigos, Jaime, Diaz-Pacheco, Sonia, Guerra-Cantera, Santiago, Viedma-Moreno, Emilia, Ruiz de Martin Esteban, Samuel, Mostany, Ricardo, García-Cáceres, Cristina, Tschöp, Matthias, Iglesias, Teresa, Ceballos, María L. de, Gutiérrez, A., and Torres Alemán, Ignacio
- Abstract
Mice with insulin receptor (IR)-deficient astrocytes (GFAP-IR knockout [KO] mice) show blunted responses to insulin and reduced brain glucose uptake, whereas IRdeficient astrocytes show disturbed mitochondrial responses to glucose. While exploring the functional impact of disturbed mitochondrial function in astrocytes, we observed that GFAP-IR KO mice show uncoupling of brain blood flow with glucose uptake. Since IR-deficient astrocytes show higher levels of reactive oxidant species (ROS), this leads to stimulation of hypoxia-inducible factor-1¿ and, consequently, of the vascular endothelial growth factor angiogenic pathway. Indeed, GFAP-IR KO mice show disturbed brain vascularity and blood flow that is normalized by treatment with the antioxidant N-acetylcysteine (NAC). NAC ameliorated high ROS levels, normalized angiogenic signaling and mitochondrial function in IR-deficient astrocytes, and normalized neurovascular coupling in GFAP-IR KO mice. Our results indicate that by modulating glucose uptake and angiogenesis, insulin receptors in astrocytes participate in neurovascular coupling.
- Published
- 2022
14. Papel de la Proteína Quinasa D1 en la modulación del estrés oxidativo y el envejecimiento cerebral, la supervivencia neuronal y la función sináptica
- Author
-
Pose-Utrilla, Julia, Iglesias Vacas, Teresa, Ministerio de Economía y Competitividad (España), Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Consejo Superior de Investigaciones Científicas (España), and Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (España)
- Subjects
Biología ,Alzheimer ,Biomedicina - Abstract
La realización de esta Tesis Doctoral ha sido posible gracias al disfrute de un contrato Predoctoral de Personal Investigador en Formación financiado por los proyectos SAF2014-52737-P (2017-2018) y SAF2017-88885-R (2018-2020), vinculados al Consejo Superior de Investigaciones Científicas (CSIC), así como un contrato de Titulado Superior de Actividades Técnicas y Profesionales financiado por el Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (2020-2021)
- Published
- 2021
15. CPEB alteration and aberrant transcriptome-polyadenylation lead to a treatable SLC19A3 deficiency in Huntington’s disease
- Author
-
Picó, Sara, primary, Parras, Alberto, additional, Santos-Galindo, María, additional, Pose-Utrilla, Julia, additional, Castro, Margarita, additional, Fraga, Enrique, additional, Hernández, Ivó H., additional, Elorza, Ainara, additional, Anta, Héctor, additional, Wang, Nan, additional, Martí-Sánchez, Laura, additional, Belloc, Eulàlia, additional, Garcia-Esparcia, Paula, additional, Garrido, Juan J., additional, Ferrer, Isidro, additional, Macías-García, Daniel, additional, Mir, Pablo, additional, Artuch, Rafael, additional, Pérez, Belén, additional, Hernández, Félix, additional, Navarro, Pilar, additional, López-Sendón, José Luis, additional, Iglesias, Teresa, additional, Yang, X. William, additional, Méndez, Raúl, additional, and Lucas, José J., additional
- Published
- 2021
- Full Text
- View/download PDF
16. I03 CPEB alteration and aberrant transcriptome-polyadenylation unveil a treatable vitamin B1 deficiency in huntington’s disease
- Author
-
Pico, Sara, primary, Parras, Alberto, additional, Santos-Galindo, María, additional, Pose-Utrilla, Julia, additional, Castro, Margarita, additional, Fraga, Enrique, additional, Hernández, Ivó H, additional, Elorza, Ainara, additional, Anta, Héctor, additional, Wang, Nan, additional, Martí-Sánchez, Laura, additional, Belloc, Eulàlia, additional, Garcia-Esparcia, Paula, additional, Garrido, Juan J, additional, Ferrer, Isidro, additional, Macías-García, Daniel, additional, Mir, Pablo, additional, Artuch, Rafael, additional, Pérez, Belén, additional, Hernández, Félix, additional, Navarro, Pilar, additional, López-Sendón, José Luis, additional, Iglesias, Teresa, additional, William Yang, X, additional, Méndez, Raúl, additional, and Lucas, José J, additional
- Published
- 2021
- Full Text
- View/download PDF
17. Méthodes et compositions pour le traitement de troubles caractérisés par un dysfonctionnement de KIDINS220 chez un patient
- Author
-
Iglesias, Teresa, Campanero, Miguel R., Pose-Utrilla, Julia, Simón-García, Ana, López-Menéndez, Celia, Sánchez-Miranda, Luis, and Puerto, Ana del
- Abstract
[EN] The present invention relates to retromer complex activators and compositions for use in the treatment and/or prevention of neurological and psychiatric disorders characterized by Kidins220 dysfunction in a subject. These disorders may be further characterized by ventriculomegaly and/or excitotoxicity. It also relates to methods for screening a retromer complex activator for use in the treatment and/or prevention of said disorders in a subject., [FR] La présente invention concerne des activateurs de complexes rétromère et des compositions destinés à être utilisés dans le traitement et/ou la prévention de troubles neurologiques et psychiatriques caractérisés par un dysfonctionnement de Kidins220 chez un patient. Ces troubles peuvent en outre être caractérisés par la ventriculomégalie et/ou l'excitotoxicité. L'invention concerne également des procédés de criblage d'un activateur de complexe rétromère destiné à être utilisé dans le traitement et/ou la prévention de ces troubles chez un patient., Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Consorcio Centro de Investigación Biomédica En Red, A1 Solicitud de patente con informe sobre el estado de la técnica
- Published
- 2021
18. Papel de la Proteína Quinasa D1 en la modulación del estrés oxidativo y el envejecimiento cerebral, la supervivencia neuronal y la función sináptica
- Author
-
Iglesias Vacas, Teresa, Ministerio de Economía y Competitividad (España), Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Consejo Superior de Investigaciones Científicas (España), Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (España), Pose-Utrilla, Julia, Iglesias Vacas, Teresa, Ministerio de Economía y Competitividad (España), Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Consejo Superior de Investigaciones Científicas (España), Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (España), and Pose-Utrilla, Julia
- Published
- 2021
19. CPEB alteration and aberrant transcriptome-polyadenylation lead to a treatable SLC19A3 deficiency in Huntington¿s disease
- Author
-
Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (España), Instituto de Salud Carlos III, Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Economía y Empresa (España), European Commission, Fundación Botín, Fundación BBVA, Fundación Ramón Areces, Picó, Sara, Parras, Alberto, Santos-Galindo, María, Pose-Utrilla, Julia, Castro, Margarita, Fraga, Enrique, Hernández Hernández, Ivo, Elorza, Ainara, Anta, Héctor, Wang, Nan, Martí-Sánchez, Laura, Belloc, Eulàlia, García-Esparcia, Paula, Garrido Jurado, Juan José, Ferrer, Isidro, Macías García, Daniel, Mir, Pablo, Artuch, Rafael, Pérez, Belén, Hernández, Félix, Navarro Medrano, Pilar, López-Sendón, José Luis, Iglesias, Teresa, Yang, Willian, Méndez, Raúl, Lucas, José Javier, Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (España), Instituto de Salud Carlos III, Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Economía y Empresa (España), European Commission, Fundación Botín, Fundación BBVA, Fundación Ramón Areces, Picó, Sara, Parras, Alberto, Santos-Galindo, María, Pose-Utrilla, Julia, Castro, Margarita, Fraga, Enrique, Hernández Hernández, Ivo, Elorza, Ainara, Anta, Héctor, Wang, Nan, Martí-Sánchez, Laura, Belloc, Eulàlia, García-Esparcia, Paula, Garrido Jurado, Juan José, Ferrer, Isidro, Macías García, Daniel, Mir, Pablo, Artuch, Rafael, Pérez, Belén, Hernández, Félix, Navarro Medrano, Pilar, López-Sendón, José Luis, Iglesias, Teresa, Yang, Willian, Méndez, Raúl, and Lucas, José Javier
- Abstract
Huntington’s disease (HD) is a hereditary neurodegenerative disorder of the basal ganglia for which disease-modifying treatments are not yet available. Although gene-silencing therapies are currently being tested, further molecular mechanisms must be explored to identify druggable targets for HD. Cytoplasmic polyadenylation element binding proteins 1 to 4 (CPEB1 to CPEB4) are RNA binding proteins that repress or activate translation of CPE-containing transcripts by shortening or elongating their poly(A) tail. Here, we found increased CPEB1 and decreased CPEB4 protein in the striatum of patients and mouse models with HD. This correlated with a reprogramming of polyadenylation in 17.3% of the transcriptome, markedly affecting neurodegeneration-associated genes including PSEN1, MAPT, SNCA, LRRK2, PINK1, DJ1, SOD1, TARDBP, FUS, and HTT and suggesting a new molecular mechanism in neurodegenerative disease etiology. We found decreased protein content of top deadenylated transcripts, including striatal atrophy–linked genes not previously related to HD, such as KTN1 and the easily druggable SLC19A3 (the ThTr2 thiamine transporter). Mutations in SLC19A3 cause biotin-thiamine–responsive basal ganglia disease (BTBGD), a striatal disorder that can be treated with a combination of biotin and thiamine. Similar to patients with BTBGD, patients with HD demonstrated decreased thiamine in the cerebrospinal fluid. Furthermore, patients and mice with HD showed decreased striatal concentrations of thiamine pyrophosphate (TPP), the metabolically active form of thiamine. High-dose biotin and thiamine treatment prevented TPP deficiency in HD mice and attenuated the radiological, neuropathological, and motor HD-like phenotypes, revealing an easily implementable therapy that might benefit patients with HD.
- Published
- 2021
20. CPEB alteration and aberrant transcriptome-polyadenylation lead to a treatable SLC19A3 deficiency in Huntington’s disease
- Author
-
Instituto de Salud Carlos III, Ministerio de Economía y Competitividad (España), European Commission, Ministerio de Ciencia e Innovación (España), Agencia Estatal de Investigación (España), Banco Santander, Fundación Ramón Areces, Picó, Sara, Parras, Alberto, Santos-Galindo, María, Pose-Utrilla, Julia, Castro, Margarita, Fraga, Enrique, Hernández, Ivó H., Elorza, Ainara, Anta, Héctor, Wang, Nan, Martí-Sánchez, Laura, Belloc, Eulàlia, García-Esparcia, Paula, Garrido, Juan J., Ferrer, Isidro, Macías García, Daniel, Mir, Pablo, Artuch, Rafael, Pérez, Belén, Hernández, Félix, Navarro, Pilar, López-Sendón, José Luis, Iglesias, Teresa, Yang, X. William, Méndez, Raúl, Lucas, José Javier, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad (España), European Commission, Ministerio de Ciencia e Innovación (España), Agencia Estatal de Investigación (España), Banco Santander, Fundación Ramón Areces, Picó, Sara, Parras, Alberto, Santos-Galindo, María, Pose-Utrilla, Julia, Castro, Margarita, Fraga, Enrique, Hernández, Ivó H., Elorza, Ainara, Anta, Héctor, Wang, Nan, Martí-Sánchez, Laura, Belloc, Eulàlia, García-Esparcia, Paula, Garrido, Juan J., Ferrer, Isidro, Macías García, Daniel, Mir, Pablo, Artuch, Rafael, Pérez, Belén, Hernández, Félix, Navarro, Pilar, López-Sendón, José Luis, Iglesias, Teresa, Yang, X. William, Méndez, Raúl, and Lucas, José Javier
- Abstract
Huntington’s disease (HD) is a hereditary neurodegenerative disorder of the basal ganglia for which disease-modifying treatments are not yet available. Although gene-silencing therapies are currently being tested, further molecular mechanisms must be explored to identify druggable targets for HD. Cytoplasmic polyadenylation element binding proteins 1 to 4 (CPEB1 to CPEB4) are RNA binding proteins that repress or activate translation of CPE-containing transcripts by shortening or elongating their poly(A) tail. Here, we found increased CPEB1 and decreased CPEB4 protein in the striatum of patients and mouse models with HD. This correlated with a reprogramming of polyadenylation in 17.3% of the transcriptome, markedly affecting neurodegeneration-associated genes including PSEN1, MAPT, SNCA, LRRK2, PINK1, DJ1, SOD1, TARDBP, FUS, and HTT and suggesting a new molecular mechanism in neurodegenerative disease etiology. We found decreased protein content of top deadenylated transcripts, including striatal atrophy–linked genes not previously related to HD, such as KTN1 and the easily druggable SLC19A3 (the ThTr2 thiamine transporter). Mutations in SLC19A3 cause biotin-thiamine–responsive basal ganglia disease (BTBGD), a striatal disorder that can be treated with a combination of biotin and thiamine. Similar to patients with BTBGD, patients with HD demonstrated decreased thiamine in the cerebrospinal fluid. Furthermore, patients and mice with HD showed decreased striatal concentrations of thiamine pyrophosphate (TPP), the metabolically active form of thiamine. High-dose biotin and thiamine treatment prevented TPP deficiency in HD mice and attenuated the radiological, neuropathological, and motor HD-like phenotypes, revealing an easily implementable therapy that might benefit patients with HD.
- Published
- 2021
21. Kidins220 deficiency causes ventriculomegaly via SNX27-retromer-dependent AQP4 degradation
- Author
-
Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Ministerio de Economía y Competitividad (España), European Commission, Comunidad de Madrid, La Caixa, Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (España), Instituto de Salud Carlos III, Generalitat Valenciana, Puerto, Ana del, Pose-Utrilla, Julia, Simón-García, Ana, López-Menéndez, Celia, Jiménez, Antonio J., Porlan, Eva, Pajuelo, Luis S. M., Cano-García, Guillermo, Martí-Prado, Beatriz, Sebastián-Serrano, Álvaro, Sánchez-Carralero, Marina P., Cesca, Fabrizia, Schiavo, Giampietro, Ferrer, Isidro, Fariñas, Isabel, Campanero, Miguel R., Iglesias, Teresa, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Ministerio de Economía y Competitividad (España), European Commission, Comunidad de Madrid, La Caixa, Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (España), Instituto de Salud Carlos III, Generalitat Valenciana, Puerto, Ana del, Pose-Utrilla, Julia, Simón-García, Ana, López-Menéndez, Celia, Jiménez, Antonio J., Porlan, Eva, Pajuelo, Luis S. M., Cano-García, Guillermo, Martí-Prado, Beatriz, Sebastián-Serrano, Álvaro, Sánchez-Carralero, Marina P., Cesca, Fabrizia, Schiavo, Giampietro, Ferrer, Isidro, Fariñas, Isabel, Campanero, Miguel R., and Iglesias, Teresa
- Abstract
Several psychiatric, neurologic and neurodegenerative disorders present increased brain ventricles volume, being hydrocephalus the disease with the major manifestation of ventriculomegaly caused by the accumulation of high amounts of cerebrospinal fluid (CSF). The molecules and pathomechanisms underlying cerebral ventricular enlargement are widely unknown. Kinase D interacting substrate of 220 kDa (KIDINS220) gene has been recently associated with schizophrenia and with a novel syndrome characterized by spastic paraplegia, intellectual disability, nystagmus and obesity (SINO syndrome), diseases frequently occurring with ventriculomegaly. Here we show that Kidins220, a transmembrane protein effector of various key neuronal signalling pathways, is a critical regulator of CSF homeostasis. We observe that both KIDINS220 and the water channel aquaporin-4 (AQP4) are markedly downregulated at the ventricular ependymal lining of idiopathic normal pressure hydrocephalus (iNPH) patients. We also find that Kidins220 deficient mice develop ventriculomegaly accompanied by water dyshomeostasis and loss of AQP4 in the brain ventricular ependymal layer and astrocytes. Kidins220 is a known cargo of the SNX27-retromer, a complex that redirects endocytosed plasma membrane proteins (cargos) back to the cell surface, thus avoiding their targeting to lysosomes for degradation. Mechanistically, we show that AQP4 is a novel cargo of the SNX27-retromer and that Kidins220 deficiency promotes a striking and unexpected downregulation of the SNX27-retromer that results in AQP4 lysosomal degradation. Accordingly, SNX27 silencing decreases AQP4 levels in wild-type astrocytes whereas SNX27 overexpression restores AQP4 content in Kidins220 deficient astrocytes. Together our data suggest that the KIDINS220-SNX27-retromer-AQP4 pathway is involved in human ventriculomegaly and open novel therapeutic perspectives.
- Published
- 2021
22. Neuronal PKD1 activity loss produces age associated synaptic disruption and cognitive decline
- Author
-
Pose-Utrilla, Julia and Iglesias, Teresa
- Abstract
Trabajo presentado en el VII International Congress on Research and Innovation in Neurodegenerative Diseases, celebrado en Valencia (España) del 17 al 20 de septiembre de 2019.
- Published
- 2019
23. Differential regulation of Kidins220 isoforms in Huntington's disease
- Author
-
Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Ministerio de Economía y Competitividad (España), Fundación Ramón Areces, Banco Santander, Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (España), Instituto de Salud Carlos III, Wellcome Trust, European Commission, Sebastián-Serrano, Álvaro, Simón-García, Ana, Belmonte-Alfaro, Alicia, Pose-Utrilla, Julia, Santos-Galindo, María, Puerto, Ana del, García-Guerra, Lucía, Hernández, Ivó H., Schiavo, Giampietro, Campanero, Miguel R., Lucas, José Javier, Iglesias, Teresa, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Ministerio de Economía y Competitividad (España), Fundación Ramón Areces, Banco Santander, Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (España), Instituto de Salud Carlos III, Wellcome Trust, European Commission, Sebastián-Serrano, Álvaro, Simón-García, Ana, Belmonte-Alfaro, Alicia, Pose-Utrilla, Julia, Santos-Galindo, María, Puerto, Ana del, García-Guerra, Lucía, Hernández, Ivó H., Schiavo, Giampietro, Campanero, Miguel R., Lucas, José Javier, and Iglesias, Teresa
- Abstract
Huntington's disease (HD) is an inherited progressive neurodegenerative disease characterized by brain atrophy particularly in the striatum that produces motor impairment, and cognitive and psychiatric disturbances. Multiple pathogenic mechanisms have been proposed including dysfunctions in neurotrophic support and calpain-overactivation, among others. Kinase D-interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat-rich membrane spanning (ARMS), is an essential mediator of neurotrophin signaling. In adult brain, Kidins220 presents two main isoforms that differ in their carboxy-terminal length and critical protein-protein interaction domains. These variants are generated through alternative terminal exon splicing of the conventional exon 32 (Kidins220-C32) and the recently identified exon 33 (Kidins220-C33). The lack of domains encoded by exon 32 involved in key neuronal functions, including those controlling neurotrophin pathways, pointed to Kidins220-C33 as a form detrimental for neurons. However, the functional role of Kidins220-C33 in neurodegeneration or other pathologies, including HD, has not been explored. In the present work, we discover an unexpected selective downregulation of Kidins220-C33, in the striatum of HD patients, as well as in the R6/1 HD mouse model starting at early symptomatic stages. These changes are C33-specific as Kidins220-C32 variant remains unchanged. We also find the early decrease in Kidins220-C33 levels takes place in neurons, suggesting an unanticipated neuroprotective role for this isoform. Finally, using ex vivo assays and primary neurons, we demonstrate that Kidins220-C33 is downregulated by mechanisms that depend on the activation of the protease calpain. Altogether, these results strongly suggest that calpain-mediated Kidins220-C33 proteolysis modulates onset and/or progression of HD.
- Published
- 2019
24. Excitotoxic targeting of Kidins220 to the Golgi apparatus precedes calpain cleavage of Rap1-activation complexes
- Author
-
Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Junta de Comunidades de Castilla-La Mancha, Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (España), Instituto de Salud Carlos III, Comunidad de Madrid, European Commission, López-Menéndez, Celia, Simón-García, Ana, Gamir-Morralla, Andrea, Pose-Utrilla, Julia, Luján, Rafael, Mochizuki, Naoki, Díaz-Guerra, Margarita, Iglesias, Teresa, Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Junta de Comunidades de Castilla-La Mancha, Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (España), Instituto de Salud Carlos III, Comunidad de Madrid, European Commission, López-Menéndez, Celia, Simón-García, Ana, Gamir-Morralla, Andrea, Pose-Utrilla, Julia, Luján, Rafael, Mochizuki, Naoki, Díaz-Guerra, Margarita, and Iglesias, Teresa
- Abstract
Excitotoxic neuronal death induced by high concentrations of glutamate is a pathological event common to multiple acute or chronic neurodegenerative diseases. Excitotoxicity is mediated through overactivation of the N-Methyl-D-aspartate type of ionotropic glutamate receptors (NMDARs). Physiological stimulation of NMDARs triggers their endocytosis from the neuronal surface, inducing synaptic activity and survival. However almost nothing is known about the internalization of overactivated NMDARs and their interacting proteins, and how this endocytic process is connected with neuronal death has been poorly explored. Kinase D-interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat-rich membrane spanning (ARMS), is a component of NMDAR complexes essential for neuronal viability by the control of ERK activation. Here we have investigated Kidins220 endocytosis induced by NMDAR overstimulation and the participation of this internalization step in the molecular mechanisms of excitotoxicity. We show that excitotoxicity induces Kidins220 and GluN1 traffic to the Golgi apparatus (GA) before Kidins220 is degraded by the protease calpain. We also find that excitotoxicity triggers an early activation of Rap1-GTPase followed by its inactivation. Kidins220 excitotoxic endocytosis and subsequent calpain-mediated downregulation governs this late inactivation of Rap1 that is associated to decreases in ERK activity preceding neuronal death. Furthermore, we identify the molecular mechanisms involved in the excitotoxic shutoff of Kidins220/Rap1/ERK prosurvival cascade that depends on calpain processing of Rap1-activation complexes. Our data fit in a model where Kidins220 targeting to the GA during early excitotoxicity would facilitate Rap1 activation and subsequent stimulation of ERK. At later times, activation of Golgi-associated calpain, would promote the degradation of GA-targeted Kidins220 and two additional components of the specific Rap1 activation complex, PDZ-GE
- Published
- 2019
25. The role of PKD1 in aging-related neurodegeneration: Structural and functional imaging studies
- Author
-
Pose-Utrilla, Julia, García-Guerra, Lucía, Hernández, J., Puerto, Ana del, Sebastián-Serrano, Álvaro, Fernandez de la Rosa, Ruben, Garcia Garcia, Luis, Pozo, Miguel Angel, Fielitz, Jens, Campanero, Miguel R., and Iglesias, Teresa
- Abstract
Trabajo presentado en el Second Spanish Molecular Imaging Network (SMIN) Meeting, celebrado en Madrid (España) el 26 de febrero de 2018.
- Published
- 2018
26. Molecular mechanism involved in short kidins220 isoform degradation in Huntington's disease
- Author
-
Sebastián-Serrano, Álvaro, Simón-García, Ana, Belmonte-Alfaro, Alicia, Pose-Utrilla, Julia, García-Guerra, Lucía, Puerto, Ana del, Santos, María, Lucas, José Javier, and Iglesias, Teresa
- Abstract
Trabajo presentado al VI International Congress on Research and Innovation in Neurodegenerative Diseases (CIIIEN), celebrado en Santiago de Compostela (España) del 19 al 21 de septiembre de 2018.
- Published
- 2018
27. Excitotoxic inactivation of constitutive oxidative stress detoxification pathway in neurons can be rescued by PKD1
- Author
-
Pose-Utrilla, Julia and Iglesias, Teresa
- Abstract
Trabajo presentado al VI International Congress on Research and Innovation in Neurodegenerative Diseases (CIIIEN), celebrado en Santiago de Compostela (España) del 19 al 21 de septiembre de 2018.
- Published
- 2018
28. The role of PKD1 in brain injury: ROS detoxification and neuroprotection
- Author
-
Pose-Utrilla, Julia, García-Guerra, Lucía, Puerto, Ana del, Martín-Muñóz, A., Jurado-Arjona, Jerónimo, León-Reyes, Noelia S. de, Gamir-Morralla, Andrea, Sebastián-Serrano, Álvaro, Fielitz, Jens, Ferrer, Isidro, Hernández Álvarez, Félix, Campanero, Miguel R., and Iglesias, Teresa
- Subjects
Stroke ,Oxidative stress ,Neuronal death ,PKD1 ,Excitotoxicity - Abstract
Resumen del trabajo presentado al 1st PhD Research Symposium in Health Sciences and Biomedicine, celebrado en la Universidad Autónoma de Madrid el 18 de mayo de 2018.
- Published
- 2018
29. Neuroprotective role of PKD1 against ischemic and kainic acid-induced brain injury
- Author
-
García-Guerra, Lucía, Pose-Utrilla, Julia, Puerto, Ana del, Martín-Muñóz, A., Jurado-Arjona, Jerónimo, León-Reyes, Noelia S. de, Gamir-Morralla, Andrea, Sebastián-Serrano, Álvaro, Fielitz, Jens, Ferrer, Isidro, Hernández, Félix, Ávila, Jesús, Campanero, Miguel R., and Iglesias, Teresa
- Abstract
Trabajo presentado en el Second Spanish Molecular Imaging Network (SMIN) Meeting, celebrado en Madrid (España) el 26 de febrero de 2018.
- Published
- 2018
30. Differential regulation of Kidins220 isoforms in Huntington's disease
- Author
-
Sebastián‐Serrano, Álvaro, primary, Simón‐García, Ana, additional, Belmonte‐Alfaro, Alicia, additional, Pose‐Utrilla, Julia, additional, Santos‐Galindo, María, additional, del Puerto, Ana, additional, García‐Guerra, Lucía, additional, Hernández, Ivó H., additional, Schiavo, Giampietro, additional, Campanero, Miguel R., additional, Lucas, José J., additional, and Iglesias, Teresa, additional
- Published
- 2019
- Full Text
- View/download PDF
31. The loss of neuronal PKD1 activity causes an early onset of phenotypes associated with brain aging-related neurodegeneration
- Author
-
Pose-Utrilla, Julia, García-Guerra, Lucía, Hernández, Judith, Puerto, Ana del, Sebastián-Serrano, Álvaro, Fernandez de la Rosa, Ruben, Garcia Garcia, Luis, Pozo, Miguel Angel, Fielitz, Jens, Campanero, Miguel R., Iglesias, Teresa, Pose-Utrilla, Julia, García-Guerra, Lucía, Hernández, Judith, Puerto, Ana del, Sebastián-Serrano, Álvaro, Fernandez de la Rosa, Ruben, Garcia Garcia, Luis, Pozo, Miguel Angel, Fielitz, Jens, Campanero, Miguel R., and Iglesias, Teresa
- Published
- 2018
32. Mechanisms of PKD inactivation in excitotoxic brain damage: How PKD activity protects neurons from death
- Author
-
García-Guerra, Lucía, Pose-Utrilla, Julia, León-Reyes, Noelia S. de, Jurado-Arjona, Jerónimo, Martín, Abraham, Puerto, Ana del, Gamir-Morralla, Andrea, Sebastián-Serrano, Álvaro, Fielitz, Jens, Ireson, Christofer, Pérez-Álvarez, María José, Ferrer, Isidro, Hernández Álvarez, Félix, Ávila, Jesús, Lasa, Marina, Campanero, Miguel R., and Iglesias, Teresa
- Abstract
Trabajo presentado al 17 National Congress of the Spanish Society of Neuroscience (SENC), celebrado en Alicante (España) del 27 al 30 de septiembre de 2017.
- Published
- 2017
33. PKD is regulated in excitotoxic conditions
- Author
-
García-Guerra, Lucía, Pose-Utrilla, Julia, León-Reyes, Noelia S. de, Martín, Abraham, Puerto, Ana del, Gamir-Morralla, Andrea, Ireson, Christofer, and Iglesias, Teresa
- Abstract
Trabajo presentado al 1st Spanish Molecular Imaging Network (SMIN) Meeting, celebrado en Madrid el 30 de enero dew 2017.
- Published
- 2017
34. Differential regulation of Kidins220 isoforms in Huntington's disease.
- Author
-
Sebastián‐Serrano, Álvaro, Simón‐García, Ana, Belmonte‐Alfaro, Alicia, Pose‐Utrilla, Julia, Santos‐Galindo, María, del Puerto, Ana, García‐Guerra, Lucía, Hernández, Ivó H., Schiavo, Giampietro, Campanero, Miguel R., Lucas, José J., and Iglesias, Teresa
- Subjects
HUNTINGTON disease ,CALPAIN ,CEREBRAL atrophy ,PROTEIN-protein interactions ,BRAIN diseases ,NEURODEGENERATION - Abstract
Huntington's disease (HD) is an inherited progressive neurodegenerative disease characterized by brain atrophy particularly in the striatum that produces motor impairment, and cognitive and psychiatric disturbances. Multiple pathogenic mechanisms have been proposed including dysfunctions in neurotrophic support and calpain‐overactivation, among others. Kinase D‐interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat‐rich membrane spanning (ARMS), is an essential mediator of neurotrophin signaling. In adult brain, Kidins220 presents two main isoforms that differ in their carboxy‐terminal length and critical protein‐protein interaction domains. These variants are generated through alternative terminal exon splicing of the conventional exon 32 (Kidins220‐C32) and the recently identified exon 33 (Kidins220‐C33). The lack of domains encoded by exon 32 involved in key neuronal functions, including those controlling neurotrophin pathways, pointed to Kidins220‐C33 as a form detrimental for neurons. However, the functional role of Kidins220‐C33 in neurodegeneration or other pathologies, including HD, has not been explored. In the present work, we discover an unexpected selective downregulation of Kidins220‐C33, in the striatum of HD patients, as well as in the R6/1 HD mouse model starting at early symptomatic stages. These changes are C33‐specific as Kidins220‐C32 variant remains unchanged. We also find the early decrease in Kidins220‐C33 levels takes place in neurons, suggesting an unanticipated neuroprotective role for this isoform. Finally, using ex vivo assays and primary neurons, we demonstrate that Kidins220‐C33 is downregulated by mechanisms that depend on the activation of the protease calpain. Altogether, these results strongly suggest that calpain‐mediated Kidins220‐C33 proteolysis modulates onset and/or progression of HD. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
35. Author Correction: Excitotoxic inactivation of constitutive oxidative stress detoxification pathway in neurons can be rescued by PKD1
- Author
-
Pose-Utrilla, Julia, primary, García-Guerra, Lucía, additional, Del Puerto, Ana, additional, Martín, Abraham, additional, Jurado-Arjona, Jerónimo, additional, De León-Reyes, Noelia S., additional, Gamir-Morralla, Andrea, additional, Sebastián-Serrano, Álvaro, additional, García-Gallo, Mónica, additional, Kremer, Leonor, additional, Fielitz, Jens, additional, Ireson, Christofer, additional, Pérez-Álvarez, Mª José, additional, Ferrer, Isidro, additional, Hernández, Félix, additional, Ávila, Jesús, additional, Lasa, Marina, additional, Campanero, Miguel R., additional, and Iglesias, Teresa, additional
- Published
- 2018
- Full Text
- View/download PDF
36. Excitotoxic inactivation of constitutive oxidative stress detoxification pathway in neurons can be rescued by PKD1
- Author
-
Pose-Utrilla, Julia, primary, García-Guerra, Lucía, additional, Del Puerto, Ana, additional, Martín, Abraham, additional, Jurado-Arjona, Jerónimo, additional, De León-Reyes, Noelia S., additional, Gamir-Morralla, Andrea, additional, Sebastián-Serrano, Álvaro, additional, García-Gallo, Mónica, additional, Kremer, Leonor, additional, Fielitz, Jens, additional, Ireson, Christofer, additional, Pérez-Álvarez, Mª José, additional, Ferrer, Isidro, additional, Hernández, Félix, additional, Ávila, Jesús, additional, Lasa, Marina, additional, Campanero, Miguel R., additional, and Iglesias, Teresa, additional
- Published
- 2017
- Full Text
- View/download PDF
37. Insulin regulates astrocytic glucose handling through cooperation with IGF-I
- Author
-
Ministerio de Economía y Competitividad (España), Instituto de Salud Carlos III, Comunidad de Madrid, Ministerio de Ciencia e Innovación (España), European Commission, Fernández García, Ana María, Hernandez-Garzón, Edwin, Pérez-Domper, Paloma, Pérez-Álvarez, Alberto, Mederos, Sara, Matsui, Takashi, Santi, Andrea, Trueba Saiz, Ángel, García-Guerra, Lucía, Pose-Utrilla, Julia, Fielitz, Jens, Olson, Eric N., Fernandez de la Rosa, Ruben, Garcia Garcia, Luis, Pozo, Miguel Angel, Iglesias, Teresa, Araque, Alfonso, Soya, Hideaki, Perea, Gertrudis, Martín, Eduardo D., Torres Alemán, Ignacio, Ministerio de Economía y Competitividad (España), Instituto de Salud Carlos III, Comunidad de Madrid, Ministerio de Ciencia e Innovación (España), European Commission, Fernández García, Ana María, Hernandez-Garzón, Edwin, Pérez-Domper, Paloma, Pérez-Álvarez, Alberto, Mederos, Sara, Matsui, Takashi, Santi, Andrea, Trueba Saiz, Ángel, García-Guerra, Lucía, Pose-Utrilla, Julia, Fielitz, Jens, Olson, Eric N., Fernandez de la Rosa, Ruben, Garcia Garcia, Luis, Pozo, Miguel Angel, Iglesias, Teresa, Araque, Alfonso, Soya, Hideaki, Perea, Gertrudis, Martín, Eduardo D., and Torres Alemán, Ignacio
- Abstract
Brain activity requires a flux of glucose to active regions to sustain increased metabolic demands. Insulin, the main regulator of glucose handling in the body, has been traditionally considered not to intervene in this process. However, we now report that insulin modulates brain glucose metabolism by acting on astrocytes in concert with IGF-I. The cooperation of insulin and IGF-I is needed to recover neuronal activity after hypoglycemia. Analysis of underlying mechanisms show that the combined action of IGF-I and insulin synergistically stimulates a mitogen-activated protein kinase/protein kinase D pathway resulting in translocation of GLUT1 to the cell membrane through multiple protein-protein interactions involving the scaffolding protein GAIP-interacting protein C terminus and the GTPase RAC1. Our observations identify insulin-like peptides as physiological modulators of brain glucose handling, providing further support to consider the brain as a target organ in diabetes.
- Published
- 2017
38. Excitotoxic inactivation of constitutive oxidative stress detoxification pathway in neurons can be rescued by PKD1
- Author
-
Ministerio de Economía, Industria y Competitividad (España), Comunidad de Madrid, Instituto de Salud Carlos III, Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (España), Ministerio de Economía y Competitividad (España), European Commission, Consejo Superior de Investigaciones Científicas (España), Pose-Utrilla, Julia, García-Guerra, Lucía, Puerto, Ana del, Martín, Abraham, Jurado-Arjona, Jerónimo, León-Reyes, Noelia S. de, Gamir-Morralla, Andrea, Sebastián-Serrano, Álvaro, García-Gallo, Mónica, Kremer, Leonor, Fielitz, Jens, Ireson, Christofer, Pérez-Álvarez, María José, Ferrer, Isidro, Hernández Álvarez, Félix, Ávila, Jesús, Lasa, Marina, Campanero, Miguel R., Iglesias, Teresa, Ministerio de Economía, Industria y Competitividad (España), Comunidad de Madrid, Instituto de Salud Carlos III, Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (España), Ministerio de Economía y Competitividad (España), European Commission, Consejo Superior de Investigaciones Científicas (España), Pose-Utrilla, Julia, García-Guerra, Lucía, Puerto, Ana del, Martín, Abraham, Jurado-Arjona, Jerónimo, León-Reyes, Noelia S. de, Gamir-Morralla, Andrea, Sebastián-Serrano, Álvaro, García-Gallo, Mónica, Kremer, Leonor, Fielitz, Jens, Ireson, Christofer, Pérez-Álvarez, María José, Ferrer, Isidro, Hernández Álvarez, Félix, Ávila, Jesús, Lasa, Marina, Campanero, Miguel R., and Iglesias, Teresa
- Abstract
Excitotoxicity, a critical process in neurodegeneration, induces oxidative stress and neuronal death through mechanisms largely unknown. Since oxidative stress activates protein kinase D1 (PKD1) in tumor cells, we investigated the effect of excitotoxicity on neuronal PKD1 activity. Unexpectedly, we find that excitotoxicity provokes an early inactivation of PKD1 through a dephosphorylation-dependent mechanism mediated by protein phosphatase-1 (PP1) and dual specificity phosphatase-1 (DUSP1). This step turns off the IKK/NF-¿B/SOD2 antioxidant pathway. Neuronal PKD1 inactivation by pharmacological inhibition or lentiviral silencing in vitro, or by genetic inactivation in neurons in vivo, strongly enhances excitotoxic neuronal death. In contrast, expression of an active dephosphorylation-resistant PKD1 mutant potentiates the IKK/NF-¿B/SOD2 oxidative stress detoxification pathway and confers neuroprotection from in vitro and in vivo excitotoxicity. Our results indicate that PKD1 inactivation underlies excitotoxicity-induced neuronal death and suggest that PKD1 inactivation may be critical for the accumulation of oxidation-induced neuronal damage during aging and in neurodegenerative disorders.
- Published
- 2017
39. PKD1 as a possible therapeutic target in neurodegenerative diseases
- Author
-
Pose-Utrilla, Julia, García-Guerra, Lucía, Jurado-Arjona, Jerónimo, Gamir-Morralla, Andrea, Ávila, Jesús, and Iglesias, Teresa
- Abstract
Resumen del póster presentado al 3rd Symposium on Biomedical Research: "Advances and Perspectives in Neuroscience", celebrado en la Universidad Autónoma de Madrid el 22 de abril de 2016.-- et al., Recent studies implicate excitotoxicity in a variety of neuropathological conditions, suggesting that neurodegenerative diseases with distinct genetic etiologies may share excitotoxicity as a common pathogenic pathway. Excessive activation of glutamate receptors, both NMDA and AMPA/KA subtypes leads to a number of deleterious consequences, including impairment of calcium buffering, generation of free radicals, activation of the mitochondrial permeability transition and resulting in neuronal apoptosis and necrosis. PKD1 is a serine-threonine protein kinase that is involved in multiple biological processes. Because PKD1 has been implicated in ROS-detoxification and survival in cancer cells we hypothesized that this isoform could confer neuroprotection under excitotoxic conditions. We first investigated the possible regulation of PKD in response to overstimulation of NMDA and AMPA/KA receptors. We found a fast PKC- and Srcdependent activation of the kinase followed by a PP1-dependent inactivation during excitotoxicity. We also found that pharmacological inhibition or silencing of PKD1 decreased neuronal survival, supporting the fact that PKD inactivation is linked to neuronal death. To analyse the possible neuroprotective effects of PKD1 we generated a constitutively active mutant and cloned it in a lentiviral vector under the control of the synapsin promoter for its neurospecific expression. Transduction with this virus strongly protected neurons from excitotoxic insults by molecular mechanisms that involve potentiation of IKK/NFkB-pathway that in turn increased MnSOD levels and decreased ROS production. Together, our results demonstrate that PKD1 signaling plays a survival and detoxifications role in cortical neurons and therefore, selective and neurospecific PKD1 activators could constitute potent tools to induce neuroprotection in neurodegenerative diseases.
- Published
- 2016
40. Protein kinase D interacts with neuronal nitric oxide synthase and phosphorylates the activatory residue serine
- Author
-
Sánchez-Ruiloba, Lucía, Aicart-Ramos, Clara, García-Guerra, Lucía, Pose-Utrilla, Julia, Rodríguez-Crespo, Ignacio, and Iglesias, Teresa
- Subjects
Neuronal Nitric Oxide Synthase ,Enzyme ,Medicina ,Neurodegeneration ,Biología y Biomedicina / Biología - Abstract
Neuronal Nitric Oxide Synthase (nNOS) is the biosynthetic enzyme responsible for nitric oxide (NO) production in muscles and in the nervous system. This constitutive enzyme, unlike its endothelial and inducible counterparts, presents an Nterminal PDZ domain known to display a preference for PDZ-binding motifs bearing acidic residues at -2 position. In a previous work, we discovered that the C-terminal end of two members of protein kinase D family (PKD1 and PKD2) constitutes a PDZ-ligand. PKD1 has been shown to regulate multiple cellular processes and, when activated, becomes autophosphorylated at Ser916, a residue located at -2 position of its PDZ-binding motif. Since nNOS and PKD are spatially enriched in postsynaptic densities and dendrites, the main objective of our study was to determine whether PKD1 activation could result in a direct interaction with nNOS through their respective PDZ-ligand and PDZ domain, and to analyze the functional consequences of this interaction. Herein we demonstrate that PKD1 associates with nNOS in neurons and in transfected cells, and that kinase activation enhances PKD1-nNOS co-immunoprecipitation and subcellular colocalization. However, transfection of mammalian cells with PKD1 mutants and yeast two hybrid assays showed that the association of these two enzymes does not depend on PKD1 PDZ-ligand but its pleckstrin homology domain. Furthermore, this domain was able to pull-down nNOS from brain extracts and bind to purified nNOS, indicating that it mediates a direct PKD1-nNOS interaction. In addition, using mass spectrometry we demonstrate that PKD1 specifically phosphorylates nNOS in the activatory residue Ser1412, and that this phosphorylation increases nNOS activity and NO production in living cells. In conclusion, these novel findings reveal a crucial role of PKD1 in the regulation of nNOS activation and synthesis of NO, a mediator involved in physiological neuronal signaling or neurotoxicity under pathological conditions such as ischemic stroke or neurodegeneration, This work was supported by the Ministerio de Economía y Competitividad [SAF2011-26233 to T.I., BFU2009-10442 and BFU2012-37934 to I.R-C.]; Comunidad de Madrid [S2010/BMD-2331-Neurodegmodels-CM to T.I.]; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas – CIBERNED, Instituto de Salud Carlos III, to T.I. Postdoctoral fellows L.S-R. and L.G-G. have been funded by research contracts from CIBERNED; Clara Aicart-Ramos is a recipient of a FPU predoctoral fellowship from Ministerio de Economía y Competitividad
- Published
- 2014
41. Insulin Regulates Astrocytic Glucose Handling Through Cooperation With IGF-I
- Author
-
Fernandez, Ana M., primary, Hernandez-Garzón, Edwin, additional, Perez-Domper, Paloma, additional, Perez-Alvarez, Alberto, additional, Mederos, Sara, additional, Matsui, Takashi, additional, Santi, Andrea, additional, Trueba-Saiz, Angel, additional, García-Guerra, Lucía, additional, Pose-Utrilla, Julia, additional, Fielitz, Jens, additional, Olson, Eric N., additional, Fernandez de la Rosa, Ruben, additional, Garcia Garcia, Luis, additional, Pozo, Miguel Angel, additional, Iglesias, Teresa, additional, Araque, Alfonso, additional, Soya, Hideaki, additional, Perea, Gertrudis, additional, Martin, Eduardo D., additional, and Torres Aleman, Ignacio, additional
- Published
- 2016
- Full Text
- View/download PDF
42. Protein kinase D interacts with neuronal nitric oxide synthase and phosphorylates the activatory residue serine1412
- Author
-
Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (España), Comunidad de Madrid, Ministerio de Economía y Competitividad (España), Instituto de Salud Carlos III, Sánchez-Ruiloba, Lucía, Aicart-Ramos, Clara, García-Guerra, Lucía, Pose-Utrilla, Julia, Rodríguez-Crespo, Ignacio, Iglesias, Teresa, Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (España), Comunidad de Madrid, Ministerio de Economía y Competitividad (España), Instituto de Salud Carlos III, Sánchez-Ruiloba, Lucía, Aicart-Ramos, Clara, García-Guerra, Lucía, Pose-Utrilla, Julia, Rodríguez-Crespo, Ignacio, and Iglesias, Teresa
- Abstract
Neuronal Nitric Oxide Synthase (nNOS) is the biosynthetic enzyme responsible for nitric oxide (·NO) production in muscles and in the nervous system. This constitutive enzyme, unlike its endothelial and inducible counterparts, presents an N-terminal PDZ domain known to display a preference for PDZ-binding motifs bearing acidic residues at -2 position. In a previous work, we discovered that the C-terminal end of two members of protein kinase D family (PKD1 and PKD2) constitutes a PDZ-ligand. PKD1 has been shown to regulate multiple cellular processes and, when activated, becomes autophosphorylated at Ser 916, a residue located at -2 position of its PDZ-binding motif. Since nNOS and PKD are spatially enriched in postsynaptic densities and dendrites, the main objective of our study was to determine whether PKD1 activation could result in a direct interaction with nNOS through their respective PDZ-ligand and PDZ domain, and to analyze the functional consequences of this interaction. Herein we demonstrate that PKD1 associates with nNOS in neurons and in transfected cells, and that kinase activation enhances PKD1-nNOS co-immunoprecipitation and subcellular colocalization. However, transfection of mammalian cells with PKD1 mutants and yeast two hybrid assays showed that the association of these two enzymes does not depend on PKD1 PDZ-ligand but its pleckstrin homology domain. Furthermore, this domain was able to pull-down nNOS from brain extracts and bind to purified nNOS, indicating that it mediates a direct PKD1-nNOS interaction. In addition, using mass spectrometry we demonstrate that PKD1 specifically phosphorylates nNOS in the activatory residue Ser 1412, and that this phosphorylation increases nNOS activity and ·NO production in living cells. In conclusion, these novel findings reveal a crucial role of PKD1 in the regulation of nNOS activation and synthesis of ·NO, a mediator involved in physiological neuronal signaling or neurotoxicity under pathological conditions s
- Published
- 2014
43. Insulin Regulates Astrocytic Glucose Handling Through Cooperation With IGF-I.
- Author
-
Fernandez, Ana M., Hernandez-Garzón, Edwin, Perez-Domper, Paloma, Perez-Alvarez, Alberto, Mederos, Sara, Matsui, Takashi, Santi, Andrea, Trueba-Saiz, Angel, García-Guerra, Lucía, Pose-Utrilla, Julia, Fielitz, Jens, Olson, Eric N., de la Rosa, Ruben Fernandez, Garcia, Luis Garcia, Pozo, Miguel Angel, Iglesias, Teresa, Araque, Alfonso, Soya, Hideaki, Perea, Gertrudis, and Martin, Eduardo D.
- Subjects
PHYSIOLOGICAL effects of insulin ,ASTROCYTES ,SOMATOMEDIN C ,TREATMENT of diabetes ,MITOGEN-activated protein kinases ,GLUCOSE metabolism ,HYPOGLYCEMIA ,PHYSIOLOGY ,BIOLOGICAL transport ,CELL metabolism ,ANIMALS ,CARRIER proteins ,GENES ,GLYCOGEN ,IMMUNOASSAY ,INSULIN ,LACTIC acid ,MICE ,NEURONS ,POLYMERASE chain reaction ,SOMATOMEDIN ,POSITRON emission tomography - Abstract
Brain activity requires a flux of glucose to active regions to sustain increased metabolic demands. Insulin, the main regulator of glucose handling in the body, has been traditionally considered not to intervene in this process. However, we now report that insulin modulates brain glucose metabolism by acting on astrocytes in concert with IGF-I. The cooperation of insulin and IGF-I is needed to recover neuronal activity after hypoglycemia. Analysis of underlying mechanisms show that the combined action of IGF-I and insulin synergistically stimulates a mitogen-activated protein kinase/protein kinase D pathway resulting in translocation of GLUT1 to the cell membrane through multiple protein-protein interactions involving the scaffolding protein GAIP-interacting protein C terminus and the GTPase RAC1. Our observations identify insulin-like peptides as physiological modulators of brain glucose handling, providing further support to consider the brain as a target organ in diabetes. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
44. Protein Kinase D Interacts with Neuronal Nitric Oxide Synthase and Phosphorylates the Activatory Residue Serine1412
- Author
-
Sánchez-Ruiloba, Lucía, primary, Aicart-Ramos, Clara, additional, García-Guerra, Lucía, additional, Pose-Utrilla, Julia, additional, Rodríguez-Crespo, Ignacio, additional, and Iglesias, Teresa, additional
- Published
- 2014
- Full Text
- View/download PDF
45. Protein Kinase D Interacts with Neuronal Nitric Oxide Synthase and Phosphorylates the Activatory Residue Serine1412.
- Author
-
Sánchez-Ruiloba, Lucía, Aicart-Ramos, Clara, García-Guerra, Lucía, Pose-Utrilla, Julia, Rodríguez-Crespo, Ignacio, and Iglesias, Teresa
- Subjects
PROTEIN kinases ,PROTEIN-protein interactions ,NEURONS ,NITRIC-oxide synthases ,PHOSPHORYLATION ,BIOSYNTHESIS - Abstract
Neuronal Nitric Oxide Synthase (nNOS) is the biosynthetic enzyme responsible for nitric oxide (·NO) production in muscles and in the nervous system. This constitutive enzyme, unlike its endothelial and inducible counterparts, presents an N-terminal PDZ domain known to display a preference for PDZ-binding motifs bearing acidic residues at -2 position. In a previous work, we discovered that the C-terminal end of two members of protein kinase D family (PKD1 and PKD2) constitutes a PDZ-ligand. PKD1 has been shown to regulate multiple cellular processes and, when activated, becomes autophosphorylated at Ser
916 , a residue located at -2 position of its PDZ-binding motif. Since nNOS and PKD are spatially enriched in postsynaptic densities and dendrites, the main objective of our study was to determine whether PKD1 activation could result in a direct interaction with nNOS through their respective PDZ-ligand and PDZ domain, and to analyze the functional consequences of this interaction. Herein we demonstrate that PKD1 associates with nNOS in neurons and in transfected cells, and that kinase activation enhances PKD1-nNOS co-immunoprecipitation and subcellular colocalization. However, transfection of mammalian cells with PKD1 mutants and yeast two hybrid assays showed that the association of these two enzymes does not depend on PKD1 PDZ-ligand but its pleckstrin homology domain. Furthermore, this domain was able to pull-down nNOS from brain extracts and bind to purified nNOS, indicating that it mediates a direct PKD1-nNOS interaction. In addition, using mass spectrometry we demonstrate that PKD1 specifically phosphorylates nNOS in the activatory residue Ser1412 , and that this phosphorylation increases nNOS activity and ·NO production in living cells. In conclusion, these novel findings reveal a crucial role of PKD1 in the regulation of nNOS activation and synthesis of ·NO, a mediator involved in physiological neuronal signaling or neurotoxicity under pathological conditions such as ischemic stroke or neurodegeneration. [ABSTRACT FROM AUTHOR]- Published
- 2014
- Full Text
- View/download PDF
46. Protein Kinase D Interacts with Neuronal Nitric Oxide Synthase and Phosphorylates the Activatory Residue Serine1412.
- Author
-
Sánchez-Ruiloba, Lucía, Aicart-Ramos, Clara, García-Guerra, Lucía, Pose-Utrilla, Julia, Rodríguez-Crespo, Ignacio, and Iglesias, Teresa
- Subjects
- *
PROTEIN kinases , *PROTEIN-protein interactions , *NEURONS , *NITRIC-oxide synthases , *PHOSPHORYLATION , *BIOSYNTHESIS - Abstract
Neuronal Nitric Oxide Synthase (nNOS) is the biosynthetic enzyme responsible for nitric oxide (·NO) production in muscles and in the nervous system. This constitutive enzyme, unlike its endothelial and inducible counterparts, presents an N-terminal PDZ domain known to display a preference for PDZ-binding motifs bearing acidic residues at -2 position. In a previous work, we discovered that the C-terminal end of two members of protein kinase D family (PKD1 and PKD2) constitutes a PDZ-ligand. PKD1 has been shown to regulate multiple cellular processes and, when activated, becomes autophosphorylated at Ser916, a residue located at -2 position of its PDZ-binding motif. Since nNOS and PKD are spatially enriched in postsynaptic densities and dendrites, the main objective of our study was to determine whether PKD1 activation could result in a direct interaction with nNOS through their respective PDZ-ligand and PDZ domain, and to analyze the functional consequences of this interaction. Herein we demonstrate that PKD1 associates with nNOS in neurons and in transfected cells, and that kinase activation enhances PKD1-nNOS co-immunoprecipitation and subcellular colocalization. However, transfection of mammalian cells with PKD1 mutants and yeast two hybrid assays showed that the association of these two enzymes does not depend on PKD1 PDZ-ligand but its pleckstrin homology domain. Furthermore, this domain was able to pull-down nNOS from brain extracts and bind to purified nNOS, indicating that it mediates a direct PKD1-nNOS interaction. In addition, using mass spectrometry we demonstrate that PKD1 specifically phosphorylates nNOS in the activatory residue Ser1412, and that this phosphorylation increases nNOS activity and ·NO production in living cells. In conclusion, these novel findings reveal a crucial role of PKD1 in the regulation of nNOS activation and synthesis of ·NO, a mediator involved in physiological neuronal signaling or neurotoxicity under pathological conditions such as ischemic stroke or neurodegeneration. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.