9 results on '"Porinchu D"'
Search Results
2. The distribution and abundance of chironomids in high-latitude Eurasian lakes with respect to temperature and continentality: development and application of new chironomid-based climate-inference models in northern Russia
- Author
-
Self, A.E., Brooks, S.J., Birks, H.J.B., Nazarova, L., Porinchu, D., Odland, A., Yang, H., and Jones, V.J.
- Published
- 2011
- Full Text
- View/download PDF
3. The distribution and abundance of chironomids in high-latitude Eurasian lakes with respect to temperature and continentality: development and application of new chironomid-based climate-inference models in northern Russia
- Author
-
Nazarova, Larisa, Self, A., Brooks, S., Birks, H. J. B., Porinchu, D., Odland, A., Yang, H., Jones, V. J., Nazarova, Larisa, Self, A., Brooks, S., Birks, H. J. B., Porinchu, D., Odland, A., Yang, H., and Jones, V. J.
- Published
- 2011
4. The distribution and abundance of chironomids in high-latitude Eurasian lakes with respect to temperature and continentality: development and application of new chironomid-based climate-inference models in northern Russia
- Author
-
Self, A., Brooks, S. J., Birks, H. J. B., Nazarova, Larisa, Porinchu, D., Odland, A., Yang, H., Jones, V., Self, A., Brooks, S. J., Birks, H. J. B., Nazarova, Larisa, Porinchu, D., Odland, A., Yang, H., and Jones, V.
- Abstract
The large landmass of northern Russia has the potential to influence global climate through amplification of climate change. Reconstructing the climate in this region over millennial timescales is crucial for understanding the processes that affect the climate system. Chironomids, preserved in lake sediments, have the potential to produce high resolution, low error, quantitative summer air temperature reconstructions. Canonical correspondence analysis (CCA) of modern surface sediments from 100 high-latitude lakes, located in northern European Russia to central Siberia, showed chironomid distribution was primarily driven by July air temperatures. The strong relationship enabled the development of chironomid-inference model based on 81 lake and 89 taxa to reconstruct July air temperature. Analysis of a range of chironomid-inferred temperature model suggest the best to be a two component weighted averaging and partial least squares (WA-PLS model) with r2jack = 0.92 and RMSEP = 0.89°C. Comparison of species responses to July temperature with the Norwegian training set showed the temperature optima of individual species was 1-3°C in the Russian data regardless of modelling technique. This suggests that chironomid-based inference models should only be applied to sediment cores collected within the geographic source area of the training set. The differing responses between the Norwegian and Russian faunas led to the development of a 149 lake, 120 taxa chironomid-continentality inference model. The 2-component WA-PLS model was the minimal adequate model with r2jack = 0.73 and RMSEP = 9.9. Recent warming in the Arctic has been spatial and seasonal heterogeneous; in many areas warming is more pronounced in the spring and autumn leading to a lengthening of the summer, while summer temperatures have remained relatively stable. A continentality model has the potential to detect these seasonal changes in climate. The Russian inference model also improves the representation of a n
- Published
- 2011
5. Holocene thermal maximum in the western Arctic (0–180°W)
- Author
-
Kaufman, D. S., Ager, T. A., Anderson, N. J., Anderson, P. M., Andrews, J. T., Bartlein, P. J., Brubaker, L. B., Coats, L. L., Cwynar, L. C., Duvall, M. L., Dyke, A. S., Edwards, M. E., Eisner, W. R., Gajewski, K., Geirsdóttir, A., Hu, F. S., Jennings, A. E., Kaplan, M. R., Kewin, M. W., Lozhkin, A. V., MacDonald, G. M., Miller, G. H., Mock, C. J., Oswald, W. W., Otto-Bliesner, B. L., Porinchu, D. F., Rühland, K., Smol, J. P., Steig, E. J., Wolfe, B. B., Kaufman, D. S., Ager, T. A., Anderson, N. J., Anderson, P. M., Andrews, J. T., Bartlein, P. J., Brubaker, L. B., Coats, L. L., Cwynar, L. C., Duvall, M. L., Dyke, A. S., Edwards, M. E., Eisner, W. R., Gajewski, K., Geirsdóttir, A., Hu, F. S., Jennings, A. E., Kaplan, M. R., Kewin, M. W., Lozhkin, A. V., MacDonald, G. M., Miller, G. H., Mock, C. J., Oswald, W. W., Otto-Bliesner, B. L., Porinchu, D. F., Rühland, K., Smol, J. P., Steig, E. J., and Wolfe, B. B.
- Abstract
The spatio-temporal pattern of peak Holocene warmth (Holocene thermal maximum, HTM) is traced over 140 sites across the Western Hemisphere of the Arctic (0–180°W; north of ∼60°N). Paleoclimate inferences based on a wide variety of proxy indicators provide clear evidence for warmer-than-present conditions at 120 of these sites. At the 16 terrestrial sites where quantitative estimates have been obtained, local HTM temperatures (primarily summer estimates) were on average 1.6±0.8°C higher than present (approximate average of the 20th century), but the warming was time-transgressive across the western Arctic. As the precession-driven summer insolation anomaly peaked 12–10 ka (thousands of calendar years ago), warming was concentrated in northwest North America, while cool conditions lingered in the northeast. Alaska and northwest Canada experienced the HTM between ca 11 and 9 ka, about 4000 yr prior to the HTM in northeast Canada. The delayed warming in Quebec and Labrador was linked to the residual Laurentide Ice Sheet, which chilled the region through its impact on surface energy balance and ocean circulation. The lingering ice also attests to the inherent asymmetry of atmospheric and oceanic circulation that predisposes the region to glaciation and modulates the pattern of climatic change. The spatial asymmetry of warming during the HTM resembles the pattern of warming observed in the Arctic over the last several decades. Although the two warmings are described at different temporal scales, and the HTM was additionally affected by the residual Laurentide ice, the similarities suggest there might be a preferred mode of variability in the atmospheric circulation that generates a recurrent pattern of warming under positive radiative forcing. Unlike the HTM, however, future warming will not be counterbalanced by the cooling effect of a residual North American ice sheet.
- Published
- 2004
- Full Text
- View/download PDF
6. Temperature change as a driver of spatial patterns and long-term trends in chironomid (Insecta: Diptera) diversity
- Author
-
Engels S., Medeiros A., Axford Y., Brooks S., Heiri O., Luoto T., Nazarova L., Porinchu D., Quinlan R., Self A., Engels S., Medeiros A., Axford Y., Brooks S., Heiri O., Luoto T., Nazarova L., Porinchu D., Quinlan R., and Self A.
- Abstract
© 2019 John Wiley & Sons Ltd Anthropogenic activities have led to a global decline in biodiversity, and monitoring studies indicate that both insect communities and wetland ecosystems are particularly affected. However, there is a need for long-term data (over centennial or millennial timescales) to better understand natural community dynamics and the processes that govern the observed trends. Chironomids (Insecta: Diptera: Chironomidae) are often the most abundant insects in lake ecosystems, sensitive to environmental change, and, because their larval exoskeleton head capsules preserve well in lake sediments, they provide a unique record of insect community dynamics through time. Here, we provide the results of a metadata analysis of chironomid diversity across a range of spatial and temporal scales. First, we analyse spatial trends in chironomid diversity using Northern Hemispheric data sets overall consisting of 837 lakes. Our results indicate that in most of our data sets, summer temperature (Tjul) is strongly associated with spatial trends in modern-day chironomid diversity. We observe a strong increase in chironomid alpha diversity with increasing Tjul in regions with present-day Tjul between 2.5 and 14°C. In some areas with Tjul > 14°C, chironomid diversity stabilizes or declines. Second, we demonstrate that the direction and amplitude of change in alpha diversity in a compilation of subfossil chironomid records spanning the last glacial–interglacial transition (~15,000–11,000 years ago) are similar to those observed in our modern data. A compilation of Holocene records shows that during phases when the amplitude of temperature change was small, site-specific factors had a greater influence on the chironomid fauna obscuring the chironomid diversity–temperature relationship. Our results imply expected overall chironomid diversity increases in colder regions such as the Arctic under sustained global warming, but with complex and not necessarily predictable resp
7. Publisher Correction: A global database of Holocene paleotemperature records.
- Author
-
Kaufman D, McKay N, Routson C, Erb M, Davis B, Heiri O, Jaccard S, Tierney J, Dätwyler C, Axford Y, Brussel T, Cartapanis O, Chase B, Dawson A, de Vernal A, Engels S, Jonkers L, Marsicek J, Moffa-Sánchez P, Morrill C, Orsi A, Rehfeld K, Saunders K, Sommer PS, Thomas E, Tonello M, Tóth M, Vachula R, Andreev A, Bertrand S, Biskaborn B, Bringué M, Brooks S, Caniupán M, Chevalier M, Cwynar L, Emile-Geay J, Fegyveresi J, Feurdean A, Finsinger W, Fortin MC, Foster L, Fox M, Gajewski K, Grosjean M, Hausmann S, Heinrichs M, Holmes N, Ilyashuk B, Ilyashuk E, Juggins S, Khider D, Koinig K, Langdon P, Larocque-Tobler I, Li J, Lotter A, Luoto T, Mackay A, Magyari E, Malevich S, Mark B, Massaferro J, Montade V, Nazarova L, Novenko E, Pařil P, Pearson E, Peros M, Pienitz R, Płóciennik M, Porinchu D, Potito A, Rees A, Reinemann S, Roberts S, Rolland N, Salonen S, Self A, Seppä H, Shala S, St-Jacques JM, Stenni B, Syrykh L, Tarrats P, Taylor K, van den Bos V, Velle G, Wahl E, Walker I, Wilmshurst J, Zhang E, and Zhilich S
- Abstract
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
- Published
- 2020
- Full Text
- View/download PDF
8. Author Correction: A global database of Holocene paleotemperature records.
- Author
-
Kaufman D, McKay N, Routson C, Erb M, Davis B, Heiri O, Jaccard S, Tierney J, Dätwyler C, Axford Y, Brussel T, Cartapanis O, Chase B, Dawson A, de Vernal A, Engels S, Jonkers L, Marsicek J, Moffa-Sánchez P, Morrill C, Orsi A, Rehfeld K, Saunders K, Sommer PS, Thomas E, Tonello M, Tóth M, Vachula R, Andreev A, Bertrand S, Biskaborn B, Bringué M, Brooks S, Caniupán M, Chevalier M, Cwynar L, Emile-Geay J, Fegyveresi J, Feurdean A, Finsinger W, Fortin MC, Foster L, Fox M, Gajewski K, Grosjean M, Hausmann S, Heinrichs M, Holmes N, Ilyashuk B, Ilyashuk E, Juggins S, Khider D, Koinig K, Langdon P, Larocque-Tobler I, Li J, Lotter A, Luoto T, Mackay A, Magyari E, Malevich S, Mark B, Massaferro J, Montade V, Nazarova L, Novenko E, Pařil P, Pearson E, Peros M, Pienitz R, Płóciennik M, Porinchu D, Potito A, Rees A, Reinemann S, Roberts S, Rolland N, Salonen S, Self A, Seppä H, Shala S, St-Jacques JM, Stenni B, Syrykh L, Tarrats P, Taylor K, van den Bos V, Velle G, Wahl E, Walker I, Wilmshurst J, Zhang E, and Zhilich S
- Abstract
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
- Published
- 2020
- Full Text
- View/download PDF
9. A global database of Holocene paleotemperature records.
- Author
-
Kaufman D, McKay N, Routson C, Erb M, Davis B, Heiri O, Jaccard S, Tierney J, Dätwyler C, Axford Y, Brussel T, Cartapanis O, Chase B, Dawson A, de Vernal A, Engels S, Jonkers L, Marsicek J, Moffa-Sánchez P, Morrill C, Orsi A, Rehfeld K, Saunders K, Sommer PS, Thomas E, Tonello M, Tóth M, Vachula R, Andreev A, Bertrand S, Biskaborn B, Bringué M, Brooks S, Caniupán M, Chevalier M, Cwynar L, Emile-Geay J, Fegyveresi J, Feurdean A, Finsinger W, Fortin MC, Foster L, Fox M, Gajewski K, Grosjean M, Hausmann S, Heinrichs M, Holmes N, Ilyashuk B, Ilyashuk E, Juggins S, Khider D, Koinig K, Langdon P, Larocque-Tobler I, Li J, Lotter A, Luoto T, Mackay A, Magyari E, Malevich S, Mark B, Massaferro J, Montade V, Nazarova L, Novenko E, Pařil P, Pearson E, Peros M, Pienitz R, Płóciennik M, Porinchu D, Potito A, Rees A, Reinemann S, Roberts S, Rolland N, Salonen S, Self A, Seppä H, Shala S, St-Jacques JM, Stenni B, Syrykh L, Tarrats P, Taylor K, van den Bos V, Velle G, Wahl E, Walker I, Wilmshurst J, Zhang E, and Zhilich S
- Abstract
A comprehensive database of paleoclimate records is needed to place recent warming into the longer-term context of natural climate variability. We present a global compilation of quality-controlled, published, temperature-sensitive proxy records extending back 12,000 years through the Holocene. Data were compiled from 679 sites where time series cover at least 4000 years, are resolved at sub-millennial scale (median spacing of 400 years or finer) and have at least one age control point every 3000 years, with cut-off values slackened in data-sparse regions. The data derive from lake sediment (51%), marine sediment (31%), peat (11%), glacier ice (3%), and other natural archives. The database contains 1319 records, including 157 from the Southern Hemisphere. The multi-proxy database comprises paleotemperature time series based on ecological assemblages, as well as biophysical and geochemical indicators that reflect mean annual or seasonal temperatures, as encoded in the database. This database can be used to reconstruct the spatiotemporal evolution of Holocene temperature at global to regional scales, and is publicly available in Linked Paleo Data (LiPD) format.
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.