1. Improving Spoken Language Modeling with Phoneme Classification: A Simple Fine-tuning Approach
- Author
-
Poli, Maxime, Chemla, Emmanuel, and Dupoux, Emmanuel
- Subjects
Computer Science - Computation and Language ,Computer Science - Sound ,Electrical Engineering and Systems Science - Audio and Speech Processing - Abstract
Recent progress in Spoken Language Modeling has shown that learning language directly from speech is feasible. Generating speech through a pipeline that operates at the text level typically loses nuances, intonations, and non-verbal vocalizations. Modeling directly from speech opens up the path to more natural and expressive systems. On the other hand, speech-only systems require up to three orders of magnitude more data to catch up to their text-based counterparts in terms of their semantic abilities. We show that fine-tuning speech representation models on phoneme classification leads to more context-invariant representations, and language models trained on these units achieve comparable lexical comprehension to ones trained on hundred times more data., Comment: Accepted at EMNLP 2024 main conference. 9 pages, 4 figures
- Published
- 2024