339 results on '"Poletti, D."'
Search Results
2. LiteBIRD Science Goals and Forecasts. A Case Study of the Origin of Primordial Gravitational Waves using Large-Scale CMB Polarization
- Author
-
Campeti, P., Komatsu, E., Baccigalupi, C., Ballardini, M., Bartolo, N., Carones, A., Errard, J., Finelli, F., Flauger, R., Galli, S., Galloni, G., Giardiello, S., Hazumi, M., Henrot-Versillé, S., Hergt, L. T., Kohri, K., Leloup, C., Lesgourgues, J., Macias-Perez, J., Martínez-González, E., Matarrese, S., Matsumura, T., Montier, L., Namikawa, T., Paoletti, D., Poletti, D., Remazeilles, M., Shiraishi, M., van Tent, B., Tristram, M., Vacher, L., Vittorio, N., Weymann-Despres, G., Anand, A., Aumont, J., Aurlien, R., Banday, A. J., Barreiro, R. B., Basyrov, A., Bersanelli, M., Blinov, D., Bortolami, M., Brinckmann, T., Calabrese, E., Carralot, F., Casas, F. J., Clermont, L., Columbro, F., Conenna, G., Coppolecchia, A., Cuttaia, F., D'Alessandro, G., de Bernardis, P., De Petris, M., Della Torre, S., Di Giorgi, E., Diego-Palazuelos, P., Eriksen, H. K., Franceschet, C., Fuskeland, U., Galloway, M., Georges, M., Gerbino, M., Gervasi, M., Ghigna, T., Gimeno-Amo, C., Gjerløw, E., Gruppuso, A., Gudmundsson, J., Krachmalnicoff, N., Lamagna, L., Lattanzi, M., Lembo, M., Lonappan, A. I., Masi, S., Massa, M., Micheli, S., Moggi, A., Monelli, M., Morgante, G., Mot, B., Mousset, L., Nagata, R., Natoli, P., Novelli, A., Obata, I., Pagano, L., Paiella, A., Pavlidou, V., Piacentini, F., Pinchera, M., Pisano, G., Puglisi, G., Raffuzzi, N., Ritacco, A., Rizzieri, A., Ruiz-Granda, M., Savini, G., Scott, D., Signorelli, G., Stever, S. L., Stutzer, N., Sullivan, R. M., Tartari, A., Tassis, K., Terenzi, L., Thompson, K. L., Vielva, P., Wehus, I. K., and Zhou, Y.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,General Relativity and Quantum Cosmology - Abstract
We study the possibility of using the $LiteBIRD$ satellite $B$-mode survey to constrain models of inflation producing specific features in CMB angular power spectra. We explore a particular model example, i.e. spectator axion-SU(2) gauge field inflation. This model can source parity-violating gravitational waves from the amplification of gauge field fluctuations driven by a pseudoscalar "axionlike" field, rolling for a few e-folds during inflation. The sourced gravitational waves can exceed the vacuum contribution at reionization bump scales by about an order of magnitude and can be comparable to the vacuum contribution at recombination bump scales. We argue that a satellite mission with full sky coverage and access to the reionization bump scales is necessary to understand the origin of the primordial gravitational wave signal and distinguish among two production mechanisms: quantum vacuum fluctuations of spacetime and matter sources during inflation. We present the expected constraints on model parameters from $LiteBIRD$ satellite simulations, which complement and expand previous studies in the literature. We find that $LiteBIRD$ will be able to exclude with high significance standard single-field slow-roll models, such as the Starobinsky model, if the true model is the axion-SU(2) model with a feature at CMB scales. We further investigate the possibility of using the parity-violating signature of the model, such as the $TB$ and $EB$ angular power spectra, to disentangle it from the standard single-field slow-roll scenario. We find that most of the discriminating power of $LiteBIRD$ will reside in $BB$ angular power spectra rather than in $TB$ and $EB$ correlations., Comment: 22 pages, 13 figures. Submitted to JCAP
- Published
- 2023
3. Tensor-to-scalar ratio forecasts for extended LiteBIRD frequency configurations
- Author
-
Fuskeland, U., Aumont, J., Aurlien, R., Baccigalupi, C., Banday, A. J., Eriksen, H. K., Errard, J., Génova-Santos, R. T., Hasebe, T., Hubmayr, J., Imada, H., Krachmalnicoff, N., Lamagna, L., Pisano, G., Poletti, D., Remazeilles, M., Thompson, K. L., Vacher, L., Wehus, I. K., Azzoni, S., Ballardini, M., Barreiro, R. B., Bartolo, N., Basyrov, A., Beck, D., Bersanelli, M., Bortolami, M., Brilenkov, M., Calabrese, E., Carones, A., Casas, F. J., Cheung, K., Chluba, J., Clark, S. E., Clermont, L., Columbro, F., Coppolecchia, A., D'Alessandro, G., de Bernardis, P., de Haan, T., de la Hoz, E., De Petris, M., Della Torre, S., Diego-Palazuelos, P., Finelli, F., Franceschet, C., Galloni, G., Galloway, M., Gerbino, M., Gervasi, M., Ghigna, T., Giardiello, S., Gjerløw, E., Gruppuso, A., Hargrave, P., Hattori, M., Hazumi, M., Hergt, L. T., Herman, D., Herranz, D., Hivon, E., Hoang, T. D., Kohri, K., Lattanzi, M., Lee, A. T., Leloup, C., Levrier, F., Lonappan, A. I., Luzzi, G., Maffei, B., Martínez-González, E., Masi, S., Matarrese, S., Matsumura, T., Migliaccio, M., Montier, L., Morgante, G., Mot, B., Mousset, L., Nagata, R., Namikawa, T., Nati, F., Natoli, P., Nerval, S., Novelli, A., Pagano, L., Paiella, A., Paoletti, D., Pascual-Cisneros, G., Patanchon, G., Pelgrims, V., Piacentini, F., Piccirilli, G., Polenta, G., Puglisi, G., Raffuzzi, N., Ritacco, A., Rubino-Martin, J. A., Savini, G., Scott, D., Sekimoto, Y., Shiraishi, M., Signorelli, G., Stever, S. L., Stutzer, N., Sullivan, R. M., Takakura, H., Terenzi, L., Thommesen, H., Tristram, M., Tsuji, M., Vielva, P., Weller, J., Westbrook, B., Weymann-Despres, G., Wollack, E. J., and Zannoni, M.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
LiteBIRD is a planned JAXA-led CMB B-mode satellite experiment aiming for launch in the late 2020s, with a primary goal of detecting the imprint of primordial inflationary gravitational waves. Its current baseline focal-plane configuration includes 15 frequency bands between 40 and 402 GHz, fulfilling the mission requirements to detect the amplitude of gravitational waves with the total uncertainty on the tensor-to-scalar ratio, $\delta r$, down to $\delta r<0.001$. A key aspect of this performance is accurate astrophysical component separation, and the ability to remove polarized thermal dust emission is particularly important. In this paper we note that the CMB frequency spectrum falls off nearly exponentially above 300 GHz relative to the thermal dust SED, and a relatively minor high frequency extension can therefore result in even lower uncertainties and better model reconstructions. Specifically, we compare the baseline design with five extended configurations, while varying the underlying dust modeling, in each of which the HFT (High-Frequency Telescope) frequency range is shifted logarithmically towards higher frequencies, with an upper cutoff ranging between 400 and 600 GHz. In each case, we measure the tensor-to-scalar ratio $r$ uncertainty and bias using both parametric and minimum-variance component-separation algorithms. When the thermal dust sky model includes a spatially varying spectral index and temperature, we find that the statistical uncertainty on $r$ after foreground cleaning may be reduced by as much as 30--50 % by extending the upper limit of the frequency range from 400 to 600 GHz, with most of the improvement already gained at 500 GHz. We also note that a broader frequency range leads to better ability to discriminate between models through higher $\chi^2$ sensitivity. (abridged), Comment: 18 pages, 13 figures. Published in A&A
- Published
- 2023
- Full Text
- View/download PDF
4. The POLARBEAR-2 and Simons Array Focal Plane Fabrication Status
- Author
-
Westbrook, B., Ade, P. A. R., Aguilar, M., Akiba, Y., Arnold, K., Baccigalupi, C., Barron, D., Beck, D., Beckman, S., Bender, A. N., Bianchini, F., Boettger, D., Borrill, J., Chapman, S., Chinone, Y., Coppi, G., Crowley, K., Cukierman, A., de, T., Dünner, R., Dobbs, M., Elleflot, T., Errard, J., Fabbian, G., Feeney, S. M., Feng, C., Fuller, G., Galitzki, N., Gilbert, A., Goeckner-Wald, N., Groh, J., Halverson, N. W., Hamada, T., Hasegawa, M., Hazumi, M., Hill, C. A., Holzapfel, W., Howe, L., Inoue, Y., Jaehnig, G., Jaffe, A., Jeong, O., Kaneko, D., Katayama, N., Keating, B., Keskitalo, R., Kisner, T., Krachmalnicoff, N., Kusaka, A., Le, M., Lee, A. T., Leon, D., Linder, E., Lowry, L., Madurowicz, A., Mak, D., Matsuda, F., May, A., Miller, N. J., Minami, Y., Montgomery, J., Navaroli, M., Nishino, H., Peloton, J., Pham, A., Piccirillo, L., Plambeck, D., Poletti, D., Puglisi, G., Raum, C., Rebeiz, G., Reichardt, C. L., Richards, P. L., Roberts, H., Ross, C., Rotermund, K. M., Segawa, Y., Sherwin, B., Silva-Feaver, M., Siritanasak, P., Stompor, R., Suzuki, A., Tajima, O., Takakura, S., Takatori, S., Tanabe, D., Tat, R., Teply, G. P., Tikhomirov, A., Tomaru, T., Tsai, C., Whitehorn, N., and Zahn, A.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present on the status of POLARBEAR-2 A (PB2-A) focal plane fabrication. The PB2-A is the first of three telescopes in the Simon Array (SA), which is an array of three cosmic microwave background (CMB) polarization sensitive telescopes located at the POLARBEAR (PB) site in Northern Chile. As the successor to the PB experiment, each telescope and receiver combination is named as PB2-A, PB2-B, and PB2-C. PB2-A and -B will have nearly identical receivers operating at 90 and 150 GHz while PB2-C will house a receiver operating at 220 and 270 GHz. Each receiver contains a focal plane consisting of seven close-hex packed lenslet coupled sinuous antenna transition edge sensor bolometer arrays. Each array contains 271 di-chroic optical pixels each of which have four TES bolometers for a total of 7588 detectors per receiver. We have produced a set of two types of candidate arrays for PB2-A. The first we call Version 11 (V11) and uses a silicon oxide (SiOx) for the transmission lines and cross-over process for orthogonal polarizations. The second we call Version 13 (V13) and uses silicon nitride (SiNx) for the transmission lines and cross-under process for orthogonal polarizations. We have produced enough of each type of array to fully populate the focal plane of the PB2-A receiver. The average wirebond yield for V11 and V13 arrays is 93.2% and 95.6% respectively. The V11 arrays had a superconducting transition temperature (Tc) of 452 +/- 15 mK, a normal resistance (Rn) of 1.25 +/- 0.20 Ohms, and saturations powers of 5.2 +/- 1.0 pW and 13 +/- 1.2 pW for the 90 and 150 GHz bands respectively. The V13 arrays had a superconducting transition temperature (Tc) of 456 +/-6 mK, a normal resistance (Rn) of 1.1 +/- 0.2 Ohms, and saturations powers of 10.8 +/- 1.8 pW and 22.9 +/- 2.6 pW for the 90 and 150 GHz bands respectively.
- Published
- 2022
- Full Text
- View/download PDF
5. Improved upper limit on degree-scale CMB B-mode polarization power from the 670 square-degree POLARBEAR survey
- Author
-
The POLARBEAR Collaboration, Adachi, S., Adkins, T., Faúndez, M. A. O. Aguilar, Arnold, K. S., Baccigalupi, C., Barron, D., Chapman, S., Cheung, K., Chinone, Y., Crowley, K. T., Elleflot, T., Errard, J., Fabbian, G., Feng, C., Fujino, T., Galitzki, N., Halverson, N. W., Hasegawa, M., Hazumi, M., Hirose, H., Howe, L., Ito, J., Jeong, O., Kaneko, D., Katayama, N., Keating, B., Kisner, T., Krachmalnicoff, N., Kusaka, A., Lee, A. T., Linder, E., Lonappan, A. I., Lowry, L. N., Matsuda, F., Matsumura, T., Minami, Y., Murata, M., Nishino, H., Nishinomiya, Y., Poletti, D., Reichardt, C. L., Ross, C., Segawa, Y., Siritanasak, P., Stompor, R., Suzuki, A., Tajima, O., Takakura, S., Takatori, S., Tanabe, D., Teply, G., Yamada, K., and Zhou, Y.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We report an improved measurement of the degree-scale cosmic microwave background $B$-mode angular-power spectrum over 670 square-degree sky area at 150 GHz with POLARBEAR. In the original analysis of the data, errors in the angle measurement of the continuously rotating half-wave plate, a polarization modulator, caused significant data loss. By introducing an angle-correction algorithm, the data volume is increased by a factor of 1.8. We report a new analysis using the larger data set. We find the measured $B$-mode spectrum is consistent with the $\Lambda$CDM model with Galactic dust foregrounds. We estimate the contamination of the foreground by cross-correlating our data and Planck 143, 217, and 353 GHz measurements, where its spectrum is modeled as a power law in angular scale and a modified blackbody in frequency. We place an upper limit on the tensor-to-scalar ratio $r$ < 0.33 at 95% confidence level after marginalizing over the foreground parameters., Comment: 16 pages, 9 figures, 8 tables, Published in ApJ
- Published
- 2022
- Full Text
- View/download PDF
6. Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave Background Polarization Survey
- Author
-
LiteBIRD Collaboration, Allys, E., Arnold, K., Aumont, J., Aurlien, R., Azzoni, S., Baccigalupi, C., Banday, A. J., Banerji, R., Barreiro, R. B., Bartolo, N., Bautista, L., Beck, D., Beckman, S., Bersanelli, M., Boulanger, F., Brilenkov, M., Bucher, M., Calabrese, E., Campeti, P., Carones, A., Casas, F. J., Catalano, A., Chan, V., Cheung, K., Chinone, Y., Clark, S. E., Columbro, F., D'Alessandro, G., de Bernardis, P., de Haan, T., de la Hoz, E., De Petris, M., Della Torre, S., Diego-Palazuelos, P., Dobbs, M., Dotani, T., Duval, J. M., Elleflot, T., Eriksen, H. K., Errard, J., Essinger-Hileman, T., Finelli, F., Flauger, R., Franceschet, C., Fuskeland, U., Galloway, M., Ganga, K., Gerbino, M., Gervasi, M., Génova-Santos, R. T., Ghigna, T., Giardiello, S., Gjerløw, E., Grain, J., Grupp, F., Gruppuso, A., Gudmundsson, J. E., Halverson, N. W., Hargrave, P., Hasebe, T., Hasegawa, M., Hazumi, M., Henrot-Versillé, S., Hensley, B., Hergt, L. T., Herman, D., Hivon, E., Hlozek, R. A., Hornsby, A. L., Hoshino, Y., Hubmayr, J., Ichiki, K., Iida, T., Imada, H., Ishino, H., Jaehnig, G., Katayama, N., Kato, A., Keskitalo, R., Kisner, T., Kobayashi, Y., Kogut, A., Kohri, K., Komatsu, E., Komatsu, K., Konishi, K., Krachmalnicoff, N., Kuo, C. L., Lamagna, L., Lattanzi, M., Lee, A. T., Leloup, C., Levrier, F., Linder, E., Luzzi, G., Macias-Perez, J., Maciaszek, T., Maffei, B., Maino, D., Mandelli, S., Martínez-González, E., Masi, S., Massa, M., Matarrese, S., Matsuda, F. T., Matsumura, T., Mele, L., Migliaccio, M., Minami, Y., Moggi, A., Montgomery, J., Montier, L., Morgante, G., Mot, B., Nagano, Y., Nagasaki, T., Nagata, R., Nakano, R., Namikawa, T., Nati, F., Natoli, P., Nerval, S., Noviello, F., Odagiri, K., Oguri, S., Ohsaki, H., Pagano, L., Paiella, A., Paoletti, D., Passerini, A., Patanchon, G., Piacentini, F., Piat, M., Pisano, G., Polenta, G., Poletti, D., Prouvé, T., Puglisi, G., Rambaud, D., Raum, C., Realini, S., Reinecke, M., Remazeilles, M., Ritacco, A., Roudil, G., Rubino-Martin, J. A., Russell, M., Sakurai, H., Sakurai, Y., Sasaki, M., Scott, D., Sekimoto, Y., Shinozaki, K., Shiraishi, M., Shirron, P., Signorelli, G., Spinella, F., Stever, S., Stompor, R., Sugiyama, S., Sullivan, R. M., Suzuki, A., Svalheim, T. L., Switzer, E., Takaku, R., Takakura, H., Takase, Y., Tartari, A., Terao, Y., Thermeau, J., Thommesen, H., Thompson, K. L., Tomasi, M., Tominaga, M., Tristram, M., Tsuji, M., Tsujimoto, M., Vacher, L., Vielva, P., Vittorio, N., Wang, W., Watanuki, K., Wehus, I. K., Weller, J., Westbrook, B., Wilms, J., Winter, B., Wollack, E. J., Yumoto, J., and Zannoni, M.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. The Japan Aerospace Exploration Agency (JAXA) selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with an expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD is planned to orbit the Sun-Earth Lagrangian point L2, where it will map the cosmic microwave background (CMB) polarization over the entire sky for three years, with three telescopes in 15 frequency bands between 34 and 448 GHz, to achieve an unprecedented total sensitivity of 2.2$\mu$K-arcmin, with a typical angular resolution of 0.5$^\circ$ at 100 GHz. The primary scientific objective of LiteBIRD is to search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. We provide an overview of the LiteBIRD project, including scientific objectives, mission and system requirements, operation concept, spacecraft and payload module design, expected scientific outcomes, potential design extensions and synergies with other projects., Comment: 155 pages, accepted for publication in PTEP
- Published
- 2022
- Full Text
- View/download PDF
7. Improved Upper Limit on Degree-scale CMB B-mode Polarization Power from the 670 Square-degree POLARBEAR Survey
- Author
-
Adachi, S, Adkins, T, Faúndez, MAO Aguilar, Arnold, KS, Baccigalupi, C, Barron, D, Chapman, S, Cheung, K, Chinone, Y, Crowley, KT, Elleflot, T, Errard, J, Fabbian, G, Feng, C, Fujino, T, Galitzki, N, Halverson, NW, Hasegawa, M, Hazumi, M, Hirose, H, Howe, L, Ito, J, Jeong, O, Kaneko, D, Katayama, N, Keating, B, Kisner, T, Krachmalnicoff, N, Kusaka, A, Lee, AT, Linder, E, Lonappan, AI, Lowry, LN, Matsuda, F, Matsumura, T, Minami, Y, Murata, M, Nishino, H, Nishinomiya, Y, Poletti, D, Reichardt, CL, Ross, C, Segawa, Y, Siritanasak, P, Stompor, R, Suzuki, A, Tajima, O, Takakura, S, Takatori, S, Tanabe, D, Teply, G, Yamada, K, and Zhou, Y
- Subjects
Particle and High Energy Physics ,Physical Sciences ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Physical Chemistry (incl. Structural) ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
We report an improved measurement of the degree-scale cosmic microwave background B-mode angular-power spectrum over 670 deg2 sky area at 150 GHz with Polarbear. In the original analysis of the data, errors in the angle measurement of the continuously rotating half-wave plate, a polarization modulator, caused significant data loss. By introducing an angle-correction algorithm, the data volume is increased by a factor of 1.8. We report a new analysis using the larger data set. We find the measured B-mode spectrum is consistent with the ΛCDM model with Galactic dust foregrounds. We estimate the contamination of the foreground by cross-correlating our data and Planck 143, 217, and 353 GHz measurements, where its spectrum is modeled as a power law in angular scale and a modified blackbody in frequency. We place an upper limit on the tensor-to-scalar ratio r < 0.33 at 95% confidence level after marginalizing over the foreground parameters.
- Published
- 2022
8. In-flight polarization angle calibration for LiteBIRD: blind challenge and cosmological implications
- Author
-
collaboration, The LiteBIRD, Krachmalnicoff, N, Matsumura, T, de la Hoz, E, Basak, S, Gruppuso, A, Minami, Y, Baccigalupi, C, Komatsu, E, Martínez-González, E, Vielva, P, Aumont, J, Aurlien, R, Azzoni, S, Banday, AJ, Barreiro, RB, Bartolo, N, Bersanelli, M, Calabrese, E, Carones, A, Casas, FJ, Cheung, K, Chinone, Y, Columbro, F, de Bernardis, P, Diego-Palazuelos, P, Errard, J, Finelli, F, Fuskeland, U, Galloway, M, Genova-Santos, RT, Gerbino, M, Ghigna, T, Giardiello, S, Gjerløw, E, Hazumi, M, Henrot-Versillé, S, Kisner, T, Lamagna, L, Lattanzi, M, Levrier, F, Luzzi, G, Maino, D, Masi, S, Migliaccio, M, Montier, L, Morgante, G, Mot, B, Nagata, R, Nati, F, Natoli, P, Pagano, L, Paiella, A, Paoletti, D, Patanchon, G, Piacentini, F, Polenta, G, Poletti, D, Puglisi, G, Remazeilles, M, Rubino-Martin, J, Sasaki, M, Shiraishi, M, Signorelli, G, Stever, S, Tartari, A, Tristram, M, Tsuji, M, Vacher, L, Wehus, IK, and Zannoni, M
- Subjects
Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Nuclear & Particles Physics - Abstract
We present a demonstration of the in-flight polarization angle calibration for the JAXA/ISAS second strategic large class mission, LiteBIRD, and estimate its impact on the measurement of the tensor-to-scalar ratio parameter, r, using simulated data. We generate a set of simulated sky maps with CMB and polarized foreground emission, and inject instrumental noise and polarization angle offsets to the 22 (partially overlapping) LiteBIRD frequency channels. Our in-flight angle calibration relies on nulling the EB cross correlation of the polarized signal in each channel. This calibration step has been carried out by two independent groups with a blind analysis, allowing an accuracy of the order of a few arc-minutes to be reached on the estimate of the angle offsets. Both the corrected and uncorrected multi-frequency maps are propagated through the foreground cleaning step, with the goal of computing clean CMB maps. We employ two component separation algorithms, the Bayesian-Separation of Components and Residuals Estimate Tool (B-SeCRET), and the Needlet Internal Linear Combination (NILC). We find that the recovered CMB maps obtained with algorithms that do not make any assumptions about the foreground properties, such as NILC, are only mildly affected by the angle miscalibration. However, polarization angle offsets strongly bias results obtained with the parametric fitting method. Once the miscalibration angles are corrected by EB nulling prior to the component separation, both component separation algorithms result in an unbiased estimation of the r parameter. While this work is motivated by the conceptual design study for LiteBIRD, its framework can be broadly applied to any CMB polarization experiment. In particular, the combination of simulation plus blind analysis provides a robust forecast by taking into account not only detector sensitivity but also systematic effects.
- Published
- 2022
9. Overview of the Medium and High Frequency Telescopes of the LiteBIRD satellite mission
- Author
-
Montier, L., Mot, B., de Bernardis, P., Maffei, B., Pisano, G., Columbro, F., Gudmundsson, J. E., Henrot-Versillé, S., Lamagna, L., Montgomery, J., Prouvé, T., Russell, M., Savini, G., Stever, S., Thompson, K. L., Tsujimoto, M., Tucker, C., Westbrook, B., Ade, P. A. R., Adler, A., Allys, E., Arnold, K., Auguste, D., Aumont, J., Aurlien, R., Austermann, J., Baccigalupi, C., Banday, A. J., Banerji, R., Barreiro, R. B., Basak, S., Beall, J., Beck, D., Beckman, S., Bermejo, J., Bersanelli, M., Bonis, J., Borrill, J., Boulanger, F., Bounissou, S., Brilenkov, M., Brown, M., Bucher, M., Calabrese, E., Campeti, P., Carones, A., Casas, F. J., Challinor, A., Chan, V., Cheung, K., Chinone, Y., Cliche, J. F., Colombo, L., Cubas, J., Cukierman, A., Curtis, D., D'Alessandro, G., Dachlythra, N., De Petris, M., Dickinson, C., Diego-Palazuelos, P., Dobbs, M., Dotani, T., Duband, L., Duff, S., Duval, J. M., Ebisawa, K., Elleflot, T., Eriksen, H. K., Errard, J., Essinger-Hileman, T., Finelli, F., Flauger, R., Franceschet, C., Fuskeland, U., Galloway, M., Ganga, K., Gao, J. R., Genova-Santos, R., Gerbino, M., Gervasi, M., Ghigna, T., Gjerløw, E., Gradziel, M. L., Grain, J., Grupp, F., Gruppuso, A., de Haan, T., Halverson, N. W., Hargrave, P., Hasebe, T., Hasegawa, M., Hattori, M., Hazumi, M., Herman, D., Herranz, D., Hill, C. A., Hilton, G., Hirota, Y., Hivon, E., Hlozek, R. A., Hoshino, Y., de la Hoz, E., Hubmayr, J., Ichiki, K., Iida, T., Imada, H., Ishimura, K., Ishino, H., Jaehnig, G., Kaga, T., Kashima, S., Katayama, N., Kato, A., Kawasaki, T., Keskitalo, R., Kisner, T., Kobayashi, Y., Kogiso, N., Kogut, A., Kohri, K., Komatsu, E., Komatsu, K., Konishi, K., Krachmalnicoff, N., Kreykenbohm, I., Kuo, C. L., Kushino, A., Lanen, J. V., Lattanzi, M., Lee, A. T., Leloup, C., Levrier, F., Linder, E., Louis, T., Luzzi, G., Maciaszek, T., Maino, D., Maki, M., Mandelli, S., Martinez-Gonzalez, E., Masi, S., Matsumura, T., Mennella, A., Migliaccio, M., Minami, Y., Mitsuda, K., Morgante, G., Murata, Y., Murphy, J. A., Nagai, M., Nagano, Y., Nagasaki, T., Nagata, R., Nakamura, S., Namikawa, T., Natoli, P., Nerval, S., Nishibori, T., Nishino, H., O'Sullivan, C., Ogawa, H., Oguri, S., Ohsaki, H., Ohta, I. S., Okada, N., Pagano, L., Paiella, A., Paoletti, D., Patanchon, G., Peloton, J., Piacentini, F., Polenta, G., Poletti, D., Puglisi, G., Rambaud, D., Raum, C., Realini, S., Reinecke, M., Remazeilles, M., Ritacco, A., Roudil, G., Rubino-Martin, J. A., Sakurai, H., Sakurai, Y., Sandri, M., Sasaki, M., Scott, D., Seibert, J., Sekimoto, Y., Sherwin, B., Shinozaki, K., Shiraishi, M., Shirron, P., Signorelli, G., Smecher, G., Stompor, R., Sugai, H., Sugiyama, S., Suzuki, A., Suzuki, J., Svalheim, T. L., Switzer, E., Takaku, R., Takakura, H., Takakura, S., Takase, Y., Takeda, Y., Tartari, A., Taylor, E., Terao, Y., Thommesen, H., Thorne, B., Toda, T., Tomasi, M., Tominaga, M., Trappe, N., Tristram, M., Tsuji, M., Ullom, J., Vermeulen, G., Vielva, P., Villa, F., Vissers, M., Vittorio, N., Wehus, I., Weller, J., Wilms, J., Winter, B., Wollack, E. J., Yamasaki, N. Y., Yoshida, T., Yumoto, J., Zannoni, M., and Zonca, A.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the Universe, through the measurements of their imprint onto the polarization of the cosmic microwave background (CMB). These measurements, requiring unprecedented sensitivity, will be performed over the full sky, at large angular scales, and over 15 frequency bands from 34GHz to 448GHz. The LiteBIRD instruments consist of three telescopes, namely the Low-, Medium- and High-Frequency Telescope (respectively LFT, MFT and HFT). We present in this paper an overview of the design of the Medium-Frequency Telescope (89-224GHz) and the High-Frequency Telescope (166-448GHz), the so-called MHFT, under European responsibility, which are two cryogenic refractive telescopes cooled down to 5K. They include a continuous rotating half-wave plate as the first optical element, two high-density polyethylene (HDPE) lenses and more than three thousand transition-edge sensor (TES) detectors cooled to 100mK. We provide an overview of the concept design and the remaining specific challenges that we have to face in order to achieve the scientific goals of LiteBIRD., Comment: SPIE Conference
- Published
- 2021
- Full Text
- View/download PDF
10. LiteBIRD: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization
- Author
-
Hazumi, M., Ade, P. A. R., Adler, A., Allys, E., Arnold, K., Auguste, D., Aumont, J., Aurlien, R., Austermann, J., Baccigalupi, C., Banday, A. J., Banjeri, R., Barreiro, R. B., Basak, S., Beall, J., Beck, D., Beckman, S., Bermejo, J., de Bernardis, P., Bersanelli, M., Bonis, J., Borrill, J., Boulanger, F., Bounissou, S., Brilenkov, M., Brown, M., Bucher, M., Calabrese, E., Campeti, P., Carones, A., Casas, F. J., Challinor, A., Chan, V., Cheung, K., Chinone, Y., Cliche, J. F., Colombo, L., Columbro, F., Cubas, J., Cukierman, A., Curtis, D., D'Alessandro, G., Dachlythra, N., De Petris, M., Dickinson, C., Diego-Palazuelos, P., Dobbs, M., Dotani, T., Duband, L., Duff, S., Duval, J. M., Ebisawa, K., Elleflot, T., Eriksen, H. K., Errard, J., Essinger-Hileman, T., Finelli, F., Flauger, R., Franceschet, C., Fuskeland, U., Galloway, M., Ganga, K., Gao, J. R., Genova-Santos, R., Gerbino, M., Gervasi, M., Ghigna, T., Gjerløw, E., Gradziel, M. L., Grain, J., Grupp, F., Gruppuso, A., Gudmundsson, J. E., de Haan, T., Halverson, N. W., Hargrave, P., Hasebe, T., Hasegawa, M., Hattori, M., Henrot-Versillé, S., Herman, D., Herranz, D., Hill, C. A., Hilton, G., Hirota, Y., Hivon, E., Hlozek, R. A., Hoshino, Y., de la Hoz, E., Hubmayr, J., Ichiki, K., Iida, T., Imada, H., Ishimura, K., Ishino, H., Jaehnig, G., Kaga, T., Kashima, S., Katayama, N., Kato, A., Kawasaki, T., Keskitalo, R., Kisner, T., Kobayashi, Y., Kogiso, N., Kogut, A., Kohri, K., Komatsu, E., Komatsu, K., Konishi, K., Krachmalnicoff, N., Kreykenbohm, I., Kuo, C. L., Kushino, A., Lamagna, L., Lanen, J. V., Lattanzi, M., Lee, A. T., Leloup, C., Levrier, F., Linder, E., Louis, T., Luzzi, G., Maciaszek, T., Maffei, B., Maino, D., Maki, M., Mandelli, S., Martinez-Gonzalez, E., Masi, S., Matsumura, T., Mennella, A., Migliaccio, M., Minami, Y., Mitsuda, K., Montgomery, J., Montier, L., Morgante, G., Mot, B., Murata, Y., Murphy, J. A., Nagai, M., Nagano, Y., Nagasaki, T., Nagata, R., Nakamura, S., Namikawa, T., Natoli, P., Nerval, S., Nishibori, T., Nishino, H., Noviello, F., O'Sullivan, C., Ogawa, H., Oguri, S., Ohsaki, H., Ohta, I. S., Okada, N., Pagano, L., Paiella, A., Paoletti, D., Patanchon, G., Peloton, J., Piacentini, F., Pisano, G., Polenta, G., Poletti, D., Prouvé, T., Puglisi, G., Rambaud, D., Raum, C., Realini, S., Reinecke, M., Remazeilles, M., Ritacco, A., Roudil, G., Rubino-Martin, J. A., Russell, M., Sakurai, H., Sakurai, Y., Sandri, M., Sasaki, M., Savini, G., Scott, D., Seibert, J., Sekimoto, Y., Sherwin, B., Shinozaki, K., Shiraishi, M., Shirron, P., Signorelli, G., Smecher, G., Stever, S., Stompor, R., Sugai, H., Sugiyama, S., Suzuki, A., Suzuki, J., Svalheim, T. L., Switzer, E., Takaku, R., Takakura, H., Takakura, S., Takase, Y., Takeda, Y., Tartari, A., Taylor, E., Terao, Y., Thommesen, H., Thompson, K. L., Thorne, B., Toda, T., Tomasi, M., Tominaga, M., Trappe, N., Tristram, M., Tsuji, M., Tsujimoto, M., Tucker, C., Ullom, J., Vermeulen, G., Vielva, P., Villa, F., Vissers, M., Vittorio, N., Wehus, I., Weller, J., Westbrook, B., Wilms, J., Winter, B., Wollack, E. J., Yamasaki, N. Y., Yoshida, T., Yumoto, J., Zannoni, M., and Zonca, A.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,General Relativity and Quantum Cosmology ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology - Abstract
LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 micro K-arcmin with a typical angular resolution of 0.5 deg. at 100GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes., Comment: 20 pages, 9 figures
- Published
- 2021
- Full Text
- View/download PDF
11. Concept Design of Low Frequency Telescope for CMB B-mode Polarization satellite LiteBIRD
- Author
-
Sekimoto, Y., Ade, P. A. R., Adler, A., Allys, E., Arnold, K., Auguste, D., Aumont, J., Aurlien, R., Austermann, J., Baccigalupi, C., Banday, A. J., Banerji, R., Barreiro, R. B., Basak, S., Beall, J., Beck, D., Beckman, S., Bermejo, J., de Bernardis, P., Bersanelli, M., Bonis, J., Borrill, J., Boulanger, F., Bounissou, S., Brilenkov, M., Brown, M., Bucher, M., Calabrese, E., Campeti, P., Carones, A., Casas, F. J., Challinor, A., Chan, V., Cheung, K., Chinone, Y., Cliche, J. F., Colombo, L., Columbro, F., Cubas, J., Cukierman, A., Curtis, D., D'Alessandro, G., Dachlythra, N., De Petris, M., Dickinson, C., Diego-Palazuelos, P., Dobbs, M., Dotani, T., Duband, L., Duff, S., Duval, J. M., Ebisawa, K., Elleflot, T., Eriksen, H. K., Errard, J., Essinger-Hileman, T., Finelli, F., Flauger, R., Franceschet, C., Fuskeland, U., Galloway, M., Ganga, K., Gao, J. R., Genova-Santos, R., Gerbino, M., Gervasi, M., Ghigna, T., Gjerløw, E., Gradziel, M. L., Grain, J., Grupp, F., Gruppuso, A., Gudmundsson, J. E., de Haan, T., Halverson, N. W., Hargrave, P., Hasebe, T., Hasegawa, M., Hattori, M., Hazumi, M., Henrot-Versillé, S., Herman, D., Herranz, D., Hill, C. A., Hilton, G., Hirota, Y., Hivon, E., Hlozek, R. A., Hoshino, Y., de la Hoz, E., Hubmayr, J., Ichiki, K., iida, T., Imada, H., Ishimura, K., Ishino, H., Jaehnig, G., Kaga, T., Kashima, S., Katayama, N., Kato, A., Kawasaki, T., Keskitalo, R., Kisner, T., Kobayashi, Y., Kogiso, N., Kogut, A., Kohri, K., Komatsu, E., Komatsu, K., Konishi, K., Krachmalnicoff, N., Kreykenbohm, I., Kuo, C. L., Kushino, A., Lamagna, L., Lanen, J. V., Lattanzi, M., Lee, A. T., Leloup, C., Levrier, F., Linder, E., Louis, T., Luzzi, G., Maciaszek, T., Maffei, B., Maino, D., Maki, M., Mandelli, S., Martinez-Gonzalez, E., Masi, S., Matsumura, T., Mennella, A., Migliaccio, M., Minanmi, Y., Mitsuda, K., Montgomery, J., Montier, L., Morgante, G., Mot, B., Murata, Y., Murphy, J. A., Nagai, M., Nagano, Y., Nagasaki, T., Nagata, R., Nakamura, S., Namikawa, T., Natoli, P., Nerval, S., Nishibori, T., Nishino, H., O'Sullivan, C., Ogawa, H., Oguri, S., Ohsaki, H., Ohta, I. S., Okada, N., Pagano, L., Paiella, A., Paoletti, D., Patanchon, G., Peloton, J., Piacentini, F., Pisano, G., Polenta, G., Poletti, D., Prouvé, T., Puglisi, G., Rambaud, D., Raum, C., Realini, S., Reinecke, M., Remazeilles, M., Ritacco, A., Roudil, G., Rubino-Martin, J. A., Russell, M., Sakurai, H., Sakurai, Y., Sandri, M., Sasaki, M., Savini, G., Scott, D., Seibert, J., Sherwin, B., Shinozaki, K., Shiraishi, M., Shirron, P., Signorelli, G., Smecher, G., Stever, S., Stompor, R., Sugai, H., Sugiyama, S., Suzuki, A., Suzuki, J., Svalheim, T. L., Switzer, E., Takaku, R., Takakura, H., Takakura, S., Takase, Y., Takeda, Y., Tartari, A., Taylor, E., Terao, Y., Thommesen, H., Thompson, K. L., Thorne, B., Toda, T., Tomasi, M., Tominaga, M., Trappe, N., Tristram, M., Tsuji, M., Tsujimoto, M., Tucker, C., Ullom, J., Vermeulen, G., Vielva, P., Villa, F., Vissers, M., Vittorio, N., Wehus, I., Weller, J., Westbrook, B., Wilms, J., Winter, B., Wollack, E. J., Yamasaki, N. Y., Yoshida, T., Yumoto, J., Zannoni, M., and Zonca, A.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
LiteBIRD has been selected as JAXA's strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) $B$-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of $-56$ dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34--161 GHz), one of LiteBIRD's onboard telescopes. It has a wide field-of-view ($18^\circ \times 9^\circ$) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90$^\circ$ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at $5\,$K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented., Comment: 21 pages, 14 figures
- Published
- 2021
- Full Text
- View/download PDF
12. The large scale polarization explorer (LSPE) for CMB measurements: performance forecast
- Author
-
The LSPE collaboration, Addamo, G., Ade, P. A. R., Baccigalupi, C., Baldini, A. M., Battaglia, P. M., Battistelli, E. S., Baù, A., de Bernardis, P., Bersanelli, M., Biasotti, M., Boscaleri, A., Caccianiga, B., Caprioli, S., Cavaliere, F., Cei, F., Cleary, K. A., Columbro, F., Coppi, G., Coppolecchia, A., Cuttaia, F., D'Alessandro, G., De Gasperis, G., De Petris, M., Fafone, V., Farsian, F., Barusso, L. Ferrari, Fontanelli, F., Franceschet, C., Gaier, T. C., Galli, L., Gatti, F., Genova-Santos, R., Gerbino, M., Gervasi, M., Ghigna, T., Grosso, D., Gruppuso, A., Gualtieri, R., Incardona, F., Jones, M. E., Kangaslahti, P., Krachmalnicoff, N., Lamagna, L., Lattanzi, M., López-Caraballo, C. H., Lumia, M., Mainini, R., Maino, D., Mandelli, S., Maris, M., Masi, S., Matarrese, S., May, A., Mele, L., Mena, P., Mennella, A., Molina, R., Molinari, D., Morgante, G., Natale, U., Nati, F., Natoli, P., Pagano, L., Paiella, A., Panico, F., Paonessa, F., Paradiso, S., Passerini, A., Perez-de-Taoro, M., Peverini, O. A., Piacentini, F., Piccirillo, L., Pisano, G., Poletti, D., Presta, G., Realini, S., Reyes, N., Rubino-Martin, J. A., Sandri, M., Sartor, S., Pezzotta, F., Polenta, G., Rocchi, A., Schillaci, A., Signorelli, G., Siri, B., Soria, M., Spinella, F., Tapia, V., Tartari, A., Taylor, A. C., Terenzi, L., Tomasi, M., Tommasi, E., Tucker, C., Vaccaro, D., Vigano, D. M., Villa, F., Virone, G., Vittorio, N., Volpe, A., Watkins, R. E. J., Zacchei, A., and Zannoni, M.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
[Abridged] The measurement of the polarization of the Cosmic Microwave Background radiation is one of the current frontiers in cosmology. In particular, the detection of the primordial B-modes, could reveal the presence of gravitational waves in the early Universe. The detection of such component is at the moment the most promising technique to probe the inflationary theory describing the very early evolution of the Universe. We present the updated performance forecast of the Large Scale Polarization Explorer (LSPE), a program dedicated to the measurement of the CMB polarization. LSPE is composed of two instruments: Strip, a radiometer-based telescope on the ground in Tenerife, and SWIPE (Short-Wavelength Instrument for the Polarization Explorer) a bolometer-based instrument designed to fly on a winter arctic stratospheric long-duration balloon. The program is among the few dedicated to observation of the Northern Hemisphere, while most of the international effort is focused into ground-based observation in the Southern Hemisphere. Measurements are currently scheduled in Winter 2021/22 for SWIPE, with a flight duration up to 15 days, and in Summer 2021 with two years observations for Strip. We describe the main features of the two instruments, identifying the most critical aspects of the design, in terms of impact into performance forecast. We estimate the expected sensitivity of each instrument and propagate their combined observing power to the sensitivity to cosmological parameters, including the effect of scanning strategy, component separation, residual foregrounds and partial sky coverage. We also set requirements on the control of the most critical systematic effects and describe techniques to mitigate their impact. LSPE can reach a sensitivity in tensor-to-scalar ratio of $\sigma_r<0.01$, and improve constrains on other cosmological parameters., Comment: Submitted to JCAP. Abstract abridged for arXiv submission
- Published
- 2020
- Full Text
- View/download PDF
13. A measurement of the CMB E-mode angular power spectrum at subdegree scales from 670 square degrees of POLARBEAR data
- Author
-
Adachi, S., Faúndez, M. A. O. Aguilar, Arnold, K., Baccigalupi, C., Barron, D., Beck, D., Bianchini, F., Chapman, S., Cheung, K., Chinone, Y., Crowley, K., Dobbs, M., Bouhargani, H. El, Elleflot, T., Errard, J., Fabbian, G., Feng, C., Fujino, T., Galitzki, N., Goeckner-Wald, N., Groh, J., Hall, G., Hasegawa, M., Hazumi, M., Hirose, H., Jaffe, A. H., Jeong, O., Kaneko, D., Katayama, N., Keating, B., Kikuchi, S., Kisner, T., Kusaka, A., Lee, A. T., Leon, D., Linder, E., Lowry, L. N., Matsuda, F., Matsumura, T., Minami, Y., Navaroli, M., Nishino, H., Pham, A. T. P., Poletti, D., Reichardt, C. L., Segawa, Y., Siritanasak, P., Tajima, O., Takakura, S., Takatori, S., Tanabe, D., Teply, G. P., Tsai, C., Vergès, C., Westbrook, B., and Zhou, Y.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We report a measurement of the E-mode polarization power spectrum of the cosmic microwave background (CMB) using 150 GHz data taken from July 2014 to December 2016 with the POLARBEAR experiment. We reach an effective polarization map noise level of $32\,\mu\mathrm{K}$-$\mathrm{arcmin}$ across an observation area of 670 square degrees. We measure the EE power spectrum over the angular multipole range $500 \leq \ell <3000$, tracing the third to seventh acoustic peaks with high sensitivity. The statistical uncertainty on E-mode bandpowers is $\sim 2.3 \mu {\rm K}^2$ at $\ell \sim 1000$ with a systematic uncertainty of 0.5$\mu {\rm K}^2$. The data are consistent with the standard $\Lambda$CDM cosmological model with a probability-to-exceed of 0.38. We combine recent CMB E-mode measurements and make inferences about cosmological parameters in $\Lambda$CDM as well as in extensions to $\Lambda$CDM. Adding the ground-based CMB polarization measurements to the Planck dataset reduces the uncertainty on the Hubble constant by a factor of 1.2 to $H_0 = 67.20 \pm 0.57 {\rm km\,s^{-1} \,Mpc^{-1}}$. When allowing the number of relativistic species ($N_{eff}$) to vary, we find $N_{eff} = 2.94 \pm 0.16$, which is in good agreement with the standard value of 3.046. Instead allowing the primordial helium abundance ($Y_{He}$) to vary, the data favor $Y_{He} = 0.248 \pm 0.012$. This is very close to the expectation of 0.2467 from Big Bang Nucleosynthesis. When varying both $Y_{He}$ and $N_{eff}$, we find $N_{eff} = 2.70 \pm 0.26$ and $Y_{He} = 0.262 \pm 0.015$., Comment: 15 pages, 5 figures, submitted to ApJ
- Published
- 2020
- Full Text
- View/download PDF
14. Progress report on the Large Scale Polarization Explorer
- Author
-
Lamagna, L., Addamo, G., Ade, P. A. R., Baccigalupi, C., Baldini, A. M., Battaglia, P. M., Battistelli, E., Baù, A., Bersanelli, M., Biasotti, M., Boragno, C., Boscaleri, A., Caccianiga, B., Caprioli, S., Cavaliere, F., Cei, F., Cleary, K. A., Columbro, F., Coppi, G., Coppolecchia, A., Corsini, D., Cuttaia, F., D'Alessandro, G., de Bernardis, P., De Gasperis, G., De Petris, M., Del Torto, F., Fafone, V., Farooqui, Z., Farsian, F., Fontanelli, F., Franceschet, C., Gaier, T. C., Gatti, F., Genova-Santos, R., Gervasi, M., Ghigna, T., Grassi, M., Grosso, D., Gualtieri, R., Incardona, F., Jones, M., Kangaslahti, P., Krachmalnicoff, N., Mainini, R., Maino, D., Mandelli, S., Maris, M., Masi, S., Matarrese, S., May, A., Mena, P., Mennella, A., Molina, R., Molinari, D., Morgante, G., Nati, F., Natoli, P., Pagano, L., Paiella, A., Paonessa, F., Passerini, A., Perez-de-Taoro, M., Peverini, O. A., Pezzotta, F., Piacentini, F., Piccirillo, L., Pisano, G., Polastri, L., Polenta, G., Poletti, D., Presta, G., Realini, S., Reyes, N., Rocchi, A., Rubiño-Martin, J. A., Sandri, M., Sartor, S., Schillaci, A., Signorelli, G., Siri, B., Soria, M., Spinella, F., Tapia, V., Tartari, A., Taylor, A., Terenzi, L., Tomasi, M., Tommasi, E., Tucker, C., Vaccaro, D., Vigano, D. M., Villa, F., Virone, G., Vittorio, N., Volpe, A., Watkins, B., Zacchei, A., and Zannoni, M.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Large Scale Polarization Explorer (LSPE) is a cosmology program for the measurement of large scale curl-like features (B-modes) in the polarization of the Cosmic Microwave Background. Its goal is to constrain the background of inflationary gravity waves traveling through the universe at the time of matter-radiation decoupling. The two instruments of LSPE are meant to synergically operate by covering a large portion of the northern microwave sky. LSPE/STRIP is a coherent array of receivers planned to be operated from the Teide Observatory in Tenerife, for the control and characterization of the low-frequency polarized signals of galactic origin; LSPE/SWIPE is a balloon-borne bolometric polarimeter based on 330 large throughput multi-moded detectors, designed to measure the CMB polarization at 150 GHz and to monitor the polarized emission by galactic dust above 200 GHz. The combined performance and the expected level of systematics mitigation will allow LSPE to constrain primordial B-modes down to a tensor/scalar ratio of $10^{-2}$. We here report the status of the STRIP pre-commissioning phase and the progress in the characterization of the key subsystems of the SWIPE payload (namely the cryogenic polarization modulation unit and the multi-moded TES pixels) prior to receiver integration., Comment: 8 pages, 5 figures, Accepted for publication in Journal of Low Temperature Physics
- Published
- 2020
- Full Text
- View/download PDF
15. Updated design of the CMB polarization experiment satellite LiteBIRD
- Author
-
Sugai, H., Ade, P. A. R., Akiba, Y., Alonso, D., Arnold, K., Aumont, J., Austermann, J., Baccigalupi, C., Banday, A. J., Banerji, R., Barreiro, R. B., Basak, S., Beall, J., Beckman, S., Bersanelli, M., Borrill, J., Boulanger, F., Brown, M. L., Bucher, M., Buzzelli, A., Calabrese, E., Casas, F. J., Challinor, A., Chan, V., Chinone, Y., Cliche, J. -F., Columbro, F., Cukierman, A., Curtis, D., Danto, P., de Bernardis, P., de Haan, T., De Petris, M., Dickinson, C., Dobbs, M., Dotani, T., Duband, L., Ducout, A., Duff, S., Duivenvoorden, A., Duval, J. -M., Ebisawa, K., Elleflot, T., Enokida, H., Eriksen, H. K., Errard, J., Essinger-Hileman, T., Finelli, F., Flauger, R., Franceschet, C., Fuskeland, U., Ganga, K., Gao, J. -R., Génova-Santos, R., Ghigna, T., Gomez, A., Gradziel, M. L., Grain, J., Grupp, F., Gruppuso, A., Gudmundsson, J. E., Halverson, N. W., Hargrave, P., Hasebe, T., Hasegawa, M., Hattori, M., Hazumi, M., Henrot-Versille, S., Herranz, D., Hill, C., Hilton, G., Hirota, Y., Hivon, E., Hlozek, R., Hoang, D. -T., Hubmayr, J., Ichiki, K., Iida, T., Imada, H., Ishimura, K., Ishino, H., Jaehnig, G. C., Jones, M., Kaga, T., Kashima, S., Kataoka, Y., Katayama, N., Kawasaki, T., Keskitalo, R., Kibayashi, A., Kikuchi, T., Kimura, K., Kisner, T., Kobayashi, Y., Kogiso, N., Kogut, A., Kohri, K., Komatsu, E., Komatsu, K., Konishi, K., Krachmalnicoff, N., Kuo, C. L., Kurinsky, N., Kushino, A., Kuwata-Gonokami, M., Lamagna, L., Lattanzi, M., Lee, A. T., Linder, E., Maffei, B., Maino, D., Maki, M., Mangilli, A., Martínez-González, E., Masi, S., Mathon, R., Matsumura, T., Mennella, A., Migliaccio, M., Minami, Y., Mistuda, K., Molinari, D., Montier, L., Morgante, G., Mot, B., Murata, Y., Murphy, J. A., Nagai, M., Nagata, R., Nakamura, S., Namikawa, T., Natoli, P., Nerva, S., Nishibori, T., Nishino, H., Nomura, Y., Noviello, F., O'Sullivan, C., Ochi, H., Ogawa, H., Ohsaki, H., Ohta, I., Okada, N., Pagano, L., Paiella, A., Paoletti, D., Patanchon, G., Piacentini, F., Pisano, G., Polenta, G., Poletti, D., Prouvé, T., Puglisi, G., Rambaud, D., Raum, C., Realini, S., Remazeilles, M., Roudil, G., Rubiño-Martín, J. A., Russell, M., Sakurai, H., Sakurai, Y., Sandri, M., Savini, G., Scott, D., Sekimoto, Y., Sherwin, B. D., Shinozaki, K., Shiraishi, M., Shirron, P., Signorelli, G., Smecher, G., Spizzi, P., Stever, S. L., Stompor, R., Sugiyama, S., Suzuki, A., Suzuki, J., Switzer, E., Takaku, R., Takakura, H., Takakura, S., Takeda, Y., Taylor, A., Taylor, E., Terao, Y., Thompson, K. L., Thorne, B., Tomasi, M., Tomida, H., Trappe, N., Tristram, M., Tsuji, M., Tsujimoto, M., Tucker, C., Ullom, J., Uozumi, S., Utsunomiya, S., Van Lanen, J., Vermeulen, G., Vielva, P., Villa, F., Vissers, M., Vittorio, N., Voisin, F., Walker, I., Watanabe, N., Wehus, I., Weller, J., Westbrook, B., Winter, B., Wollack, E., Yamamoto, R., Yamasaki, N. Y., Yanagisawa, M., Yoshida, T., Yumoto, J., Zannoni, M., and Zonca, A.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Recent developments of transition-edge sensors (TESs), based on extensive experience in ground-based experiments, have been making the sensor techniques mature enough for their application on future satellite CMB polarization experiments. LiteBIRD is in the most advanced phase among such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY) with JAXA's H3 rocket. It will accommodate more than 4000 TESs in focal planes of reflective low-frequency and refractive medium-and-high-frequency telescopes in order to detect a signature imprinted on the cosmic microwave background (CMB) by the primordial gravitational waves predicted in cosmic inflation. The total wide frequency coverage between 34GHz and 448GHz enables us to extract such weak spiral polarization patterns through the precise subtraction of our Galaxy's foreground emission by using spectral differences among CMB and foreground signals. Telescopes are cooled down to 5Kelvin for suppressing thermal noise and contain polarization modulators with transmissive half-wave plates at individual apertures for separating sky polarization signals from artificial polarization and for mitigating from instrumental 1/f noise. Passive cooling by using V-grooves supports active cooling with mechanical coolers as well as adiabatic demagnetization refrigerators. Sky observations from the second Sun-Earth Lagrangian point, L2, are planned for three years. An international collaboration between Japan, USA, Canada, and Europe is sharing various roles. In May 2019, the Institute of Space and Astronautical Science (ISAS), JAXA selected LiteBIRD as the strategic large mission No. 2., Comment: Journal of Low Temperature Physics, in press
- Published
- 2020
- Full Text
- View/download PDF
16. The Simons Observatory: Gain, bandpass and polarization-angle calibration requirements for B-mode searches
- Author
-
Abitbol, MH, Alonso, D, Simon, SM, Lashner, J, Crowley, KT, Ali, AM, Azzoni, S, Baccigalupi, C, Barron, D, Brown, ML, Calabrese, E, Carron, J, Chinone, Y, Chluba, J, Coppi, G, Crowley, KD, Devlin, M, Dunkley, J, Errard, J, Fanfani, V, Galitzki, N, Gerbino, M, Hill, JC, Johnson, BR, Jost, B, Keating, B, Krachmalnicoff, N, Kusaka, A, Lee, AT, Louis, T, Madhavacheril, MS, McCarrick, H, McMahon, J, Meerburg, PD, Nati, F, Nishino, H, Page, LA, Poletti, D, Puglisi, G, Randall, MJ, Rotti, A, Spisak, J, Suzuki, A, Teply, GP, Verges, C, Wollack, EJ, Xu, Z, and Zannoni, M
- Subjects
CMBR experiments ,CMBR polarisation ,gravitational waves and CMBR polarization ,cosmological parameters from CMBR ,astro-ph.CO ,astro-ph.IM ,Nuclear & Particles Physics ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
We quantify the calibration requirements for systematic uncertainties for next-generation ground-based observatories targeting the large-angle B-mode polarization of the Cosmic Microwave Background, with a focus on the Simons Observatory (SO). We explore uncertainties on gain calibration, bandpass center frequencies, and polarization angles, including the frequency variation of the latter across the bandpass. We find that gain calibration and bandpass center frequencies must be known to percent levels or less to avoid biases on the tensor-to-scalar ratio r on the order of Δ r∼10-3, in line with previous findings. Polarization angles must be calibrated to the level of a few tenths of a degree, while their frequency variation between the edges of the band must be known to O(10) degrees. Given the tightness of these calibration requirements, we explore the level to which residual uncertainties on these systematics would affect the final constraints on r if included in the data model and marginalized over. We find that the additional parameter freedom does not degrade the final constraints on r significantly, broadening the error bar by O(10%) at most. We validate these results by reanalyzing the latest publicly available data from the collaboration within an extended parameter space covering both cosmological, foreground and systematic parameters. Finally, our results are discussed in light of the instrument design and calibration studies carried out within SO.
- Published
- 2021
17. Sensitivity Modeling for LiteBIRD
- Author
-
Hasebe, T., Ade, P. A. R., Adler, A., Allys, E., Alonso, D., Arnold, K., Auguste, D., Aumont, J., Aurlien, R., Austermann, J., Azzoni, S., Baccigalupi, C., Banday, A. J., Banerji, R., Barreiro, R. B., Bartolo, N., Basak, S., Battistelli, E., Bautista, L., Beall, J., Beck, D., Beckman, S., Benabed, K., Bermejo-Ballesteros, J., Bersanelli, M., Bonis, J., Borrill, J., Bouchet, F., Boulanger, F., Bounissou, S., Brilenkov, M., Brown, M. L., Bucher, M., Calabrese, E., Calvo, M., Campeti, P., Carones, A., Casas, F. J., Catalano, A., Challinor, A., Chan, V., Cheung, K., Chinone, Y., Cliche, J., Columbro, F., Coulton, W., Cubas, J., Cukierman, A., Curtis, D., D’Alessandro, G., Dachlythra, K., de Bernardis, P., de Haan, T., de la Hoz, E., De Petris, M., Torre, S. Della, Dickinson, C., Diego-Palazuelos, P., Dobbs, M., Dotani, T., Douillet, D., Duband, L., Ducout, A., Duff, S., Duval, J. M., Ebisawa, K., Elleflot, T., Eriksen, H. K., Errard, J., Essinger-Hileman, T., Finelli, F., Flauger, R., Franceschet, C., Fuskeland, U., Galli, S., Galloway, M., Ganga, K., Gao, J. R., Genova-Santos, R. T., Gerbino, M., Gervasi, M., Ghigna, T., Giardiello, S., Gjerløw, E., Gradziel, M. L., Grain, J., Grandsire, L., Grupp, F., Gruppuso, A., Gudmundsson, J. E., Halverson, N. W., Hamilton, J., Hargrave, P., Hasegawa, M., Hattori, M., Hazumi, M., Henrot-Versillé, S., Hergt, L. T., Herman, D., Herranz, D., Hill, C. A., Hilton, G., Hivon, E., Hlozek, R. A., Hoang, T. D., Hornsby, A. L., Hoshino, Y., Hubmayr, J., Ichiki, K., Iida, T., Imada, H., Ishimura, K., Ishino, H., Jaehnig, G., Jones, M., Kaga, T., Kashima, S., Katayama, N., Kato, A., Kawasaki, T., Keskitalo, R., Kisner, T., Kobayashi, Y., Kogiso, N., Kogut, A., Kohri, K., Komatsu, E., Komatsu, K., Konishi, K., Krachmalnicoff, N., Kreykenbohm, I., Kuo, C. L., Kushino, A., Lamagna, L., Lanen, J. V., Laquaniello, G., Lattanzi, M., Lee, A. T., Leloup, C., Levrier, F., Linder, E., Louis, T., Luzzi, G., Macias-Perez, J., Maciaszek, T., Maffei, B., Maino, D., Maki, M., Mandelli, S., Maris, M., Martínez-González, E., Masi, S., Massa, M., Matarrese, S., Matsuda, F. T., Matsumura, T., Mele, L., Mennella, A., Migliaccio, M., Minami, Y., Mitsuda, K., Moggi, A., Monfardini, A., Montgomery, J., Montier, L., Morgante, G., Mot, B., Murata, Y., Murphy, J. A., Nagai, M., Nagano, Y., Nagasaki, T., Nagata, R., Nakamura, S., Nakano, R., Namikawa, T., Nati, F., Natoli, P., Nerval, S., Nishibori, T., Nishino, H., Noviello, F., O’Sullivan, C., Odagiri, K., Ogawa, H., Ogawa, H., Oguri, S., Ohsaki, H., Ohta, I. S., Okada, N., Okada, N., Pagano, L., Paiella, A., Paoletti, D., Passerini, A., Patanchon, G., Pelgrim, V., Peloton, J., Piacentini, F., Piat, M., Pisano, G., Polenta, G., Poletti, D., Prouvé, T., Puglisi, G., Rambaud, D., Raum, C., Realini, S., Reinecke, M., Remazeilles, M., Ritacco, A., Roudil, G., Rubino-Martin, J., Russell, M., Sakurai, H., Sakurai, Y., Sandri, M., Sasaki, M., Savini, G., Scott, D., Seibert, J., Sekimoto, Y., Sherwin, B., Shinozaki, K., Shiraishi, M., Shirron, P., Signorelli, G., Smecher, G., Spinella, F., Stever, S., Stompor, R., Sugiyama, S., Sullivan, R., Suzuki, A., Suzuki, J., Svalheim, T. L., Switzer, E., Takaku, R., Takakura, H., Takakura, S., Takase, Y., Takeda, Y., Tartari, A., Tavagnacco, D., Taylor, A., Taylor, E., Terao, Y., Thermeau, J., Thommesen, H., Thompson, K. L., Thorne, B., Toda, T., Tomasi, M., Tominaga, M., Trappe, N., Tristram, M., Tsuji, M., Tsujimoto, M., Tucker, C., Ullom, J., Vacher, L., Vermeulen, G., Vielva, P., Villa, F., Vissers, M., Vittorio, N., Wandelt, B., Wang, W., Watanuki, K., Wehus, I. K., Weller, J., Westbrook, B., Wilms, J., Winter, B., Wollack, E. J., Yamasaki, N. Y., Yoshida, T., Yumoto, J., Zacchei, A., Zannoni, M., and Zonca, A.
- Published
- 2022
- Full Text
- View/download PDF
18. Needlet thresholding methods in component separation
- Author
-
Oppizzi, F., Renzi, A., Liguori, M., Hansen, F. K., Marinucci, D., Baccigalupi, C., Bertacca, D., and Poletti, D.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Foreground components in the Cosmic Microwave Background (CMB) are sparse in a needlet representation, due to their specific morphological features (anisotropy, non-Gaussianity). This leads to the possibility of applying needlet thresholding procedures as a component separation tool. In this work, we develop algorithms based on different needlet-thresholding schemes and use them as extensions of existing, well-known component separation techniques, namely ILC and template-fitting. We test soft- and hard-thresholding schemes, using different procedures to set the optimal threshold level. We find that thresholding can be useful as a denoising tool for internal templates in experiments with few frequency channels, in conditions of low signal-to-noise. We also compare our method with other denoising techniques, showing that thresholding achieves the best performance in terms of reconstruction accuracy and data compression while preserving the map resolution. The best results in our tests are in particular obtained when considering template-fitting in an LSPE like experiment, especially for B-mode spectra., Comment: 23 pages, 8 figures
- Published
- 2019
- Full Text
- View/download PDF
19. A Measurement of the Degree Scale CMB B-mode Angular Power Spectrum with POLARBEAR
- Author
-
Adachi, S., Faúndez, M. A. O. Aguilar, Arnold, K., Baccigalupi, C., Barron, D., Beck, D., Beckman, S., Bianchini, F., Boettger, D., Borrill, J., Carron, J., Chapman, S., Cheung, K., Chinone, Y., Crowley, K., Cukierman, A., Dobbs, M., Bouhargani, H. El, Elleflot, T., Errard, J., Fabbian, G., Feng, C., Fujino, T., Galitzki, N., Goeckner-Wald, N., Groh, J., Hall, G., Halverson, N., Hamada, T., Hasegawa, M., Hazumi, M., Hill, C. A., Howe, L., Inoue, Y., Jaehnig, G., Jeong, O., Kaneko, D., Katayama, N., Keating, B., Keskitalo, R., Kikuchi, S., Kisner, T., Krachmalnicoff, N., Kusaka, A., Lee, A. T., Leon, D., Linder, E., Lowry, L. N., Mangu, A., Matsuda, F., Minami, Y., Navaroli, M., Nishino, H., Pham, A. T. P., Poletti, D., Puglisi, G., Reichardt, C. L., Segawa, Y., Silva-Feaver, M., Siritanasak, P., Stebor, N., Stompor, R., Suzuki, A., Tajima, O., Takakura, S., Takatori, S., Tanabe, D., Teply, G. P., Tsai, C., Verges, C., Westbrook, B., and Zhou, Y.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present a measurement of the $B$-mode polarization power spectrum of the cosmic microwave background (CMB) using taken from July 2014 to December 2016 with the POLARBEAR experiment. The CMB power spectra are measured using observations at 150 GHz with an instantaneous array sensitivity of $\mathrm{NET}_\mathrm{array}=23\, \mu \mathrm{K} \sqrt{\mathrm{s}}$ on a 670 square degree patch of sky centered at (RA, Dec)=($+0^\mathrm{h}12^\mathrm{m}0^\mathrm{s},-59^\circ18^\prime$). A continuously rotating half-wave plate is used to modulate polarization and to suppress low-frequency noise. We achieve $32\,\mu\mathrm{K}$-$\mathrm{arcmin}$ effective polarization map noise with a knee in sensitivity of $\ell = 90$, where the inflationary gravitational wave signal is expected to peak. The measured $B$-mode power spectrum is consistent with a $\Lambda$CDM lensing and single dust component foreground model over a range of multipoles $50 \leq \ell \leq 600$. The data disfavor zero $C_\ell^{BB}$ at $2.2\sigma$ using this $\ell$ range of POLARBEAR data alone. We cross-correlate our data with Planck high frequency maps and find the low-$\ell$ $B$-mode power in the combined dataset to be consistent with thermal dust emission. We place an upper limit on the tensor-to-scalar ratio $r < 0.90$ at 95% confidence level after marginalizing over foregrounds.
- Published
- 2019
- Full Text
- View/download PDF
20. Internal delensing of Cosmic Microwave Background polarization B-modes with the POLARBEAR experiment
- Author
-
Adachi, S., Faúndez, M. A. O. Aguilar, Akiba, Y., Ali, A., Arnold, K., Baccigalupi, C., Barron, D., Beck, D., Bianchini, F., Borrill, J., Carron, J., Cheung, K., Chinone, Y., Crowley, K., Bouhargani, H. El, Elleflot, T., Errard, J., Fabbian, G., Feng, C., Fujino, T., Goeckner-Wald, N., Hasegawa, M., Hazumi, M., Hill, C. A., Howe, L., Katayama, N., Keating, B., Kikuchi, S., Kusaka, A., Lee, A. T., Leon, D., Linder, E., Lowry, L. N., Matsuda, F., Matsumura, T., Minami, Y., Namikawa, T., Navaroli, M., Nishino, H., Peloton, J., Pham, A. T. P., Poletti, D., Puglisi, G., Reichardt, C. L., Segawa, Y., Sherwin, B. D., Silva-Feaver, M., Siritanasak, P., Stompor, R., Tajima, O., Takatori, S., Tanabe, D., Teply, G. P., and Vergès, C.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,General Relativity and Quantum Cosmology - Abstract
Using only cosmic microwave background polarization data from the POLARBEAR experiment, we measure $B$-mode polarization delensing on subdegree scales at more than $5\sigma$ significance. We achieve a 14% $B$-mode power variance reduction, the highest to date for internal delensing, and improve this result to 2% by applying for the first time an iterative maximum a posteriori delensing method. Our analysis demonstrates the capability of internal delensing as a means of improving constraints on inflationary models, paving the way for the optimal analysis of next-generation primordial $B$-mode experiments., Comment: Matches version published in Physical Review Letters
- Published
- 2019
- Full Text
- View/download PDF
21. Cross-correlation of POLARBEAR CMB Polarization Lensing with High-$z$ Sub-mm Herschel-ATLAS galaxies
- Author
-
Faundez, M. Aguilar, Arnold, K., Baccigalupi, C., Barron, D., Beck, D., Bianchini, F., Boettger, D., Borrill, J., Carron, J., Cheung, K., Chinone, Y., Bouhargani, H. El, Elleflot, T., Errard, J., Fabbian, G., Feng, C., Galitzki, N., Goeckner-Wald, N., Hasegawa, M., Hazumi, M., Howe, L., Kaneko, D., Katayama, N., Keating, B., Krachmalnicoff, N., Kusaka, A., Lee, A. T., Leon, D., Linder, E., Lowry, L. N., Matsuda, F., Minami, Y., Navaroli, M., Nishino, H., Pham, A. T. P., Poletti, D., Puglisi, G., Reichardt, C. L., Sherwin, B. D., Silva-Feaver, M., Stompor, R., Suzuki, A., Tajima, O., Takakura, S., Takatori, S., Teply, G. P., Tsai, C., and Verges, C.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
We report a 4.8$\sigma$ measurement of the cross-correlation signal between the cosmic microwave background (CMB) lensing convergence reconstructed from measurements of the CMB polarization made by the POLARBEAR experiment and the infrared-selected galaxies of the Herschel-ATLAS survey. This is the first measurement of its kind. We infer a best-fit galaxy bias of $b = 5.76 \pm 1.25$, corresponding to a host halo mass of $\log_{10}(M_h/M_\odot) =13.5^{+0.2}_{-0.3}$ at an effective redshift of $z \sim 2$ from the cross-correlation power spectrum. Residual uncertainties in the redshift distribution of the sub-mm galaxies are subdominant with respect to the statistical precision. We perform a suite of systematic tests, finding that instrumental and astrophysical contaminations are small compared to the statistical error. This cross-correlation measurement only relies on CMB polarization information that, differently from CMB temperature maps, is less contaminated by galactic and extra-galactic foregrounds, providing a clearer view of the projected matter distribution. This result demonstrates the feasibility and robustness of this approach for future high-sensitivity CMB polarization experiments., Comment: 14 pages, 6 figures, updated to match published version on ApJ
- Published
- 2019
- Full Text
- View/download PDF
22. A measurement of the CMB e-mode angular power spectrum at subdegree scales from 670 square degrees of polarbear data
- Author
-
Adachi, S, Aguilar Faúndez, MAO, Arnold, K, Baccigalupi, C, Barron, D, Beck, D, Bianchini, F, Chapman, S, Cheung, K, Chinone, Y, Crowley, K, Dobbs, M, El Bouhargani, H, Elleflot, T, Errard, J, Fabbian, G, Feng, C, Fujino, T, Galitzki, N, Goeckner-Wald, N, Groh, J, Hall, G, Hasegawa, M, Hazumi, M, Hirose, H, Jaffe, AH, Jeong, O, Kaneko, D, Katayama, N, Keating, B, Kikuchi, S, Kisner, T, Kusaka, A, Lee, AT, Leon, D, Linder, E, Lowry, LN, Matsuda, F, Matsumura, T, Minami, Y, Navaroli, M, Nishino, H, Pham, ATP, Poletti, D, Reichardt, CL, Segawa, Y, Siritanasak, P, Tajima, O, Takakura, S, Takatori, S, Tanabe, D, Teply, GP, Tsai, C, Vergès, C, Westbrook, B, and Zhou, Y
- Subjects
Cosmic microwave background radiation ,astro-ph.CO ,Astronomy & Astrophysics ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Physical Chemistry ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Physical Chemistry (incl. Structural) - Abstract
We report a measurement of the E-mode polarization power spectrum of the cosmic microwave background (CMB) using 150 GHz data taken from 2014 July to 2016 December with the POLARBEAR experiment. We reach an effective polarization map noise level of 32 mK-arcmin across an observation area of 670 square degrees. We measure the EE power spectrum over the angular multipole range 500 ≤ ℓ < 3000, tracing the third to seventh acoustic peaks with high sensitivity. The statistical uncertainty on E-mode bandpowers is ∼2.3 μK2 at ℓ ∼ 1000, with a systematic uncertainty of 0.5 mK2. The data are consistent with the standard ΛCDM cosmological model with a probability-to-exceed of 0.38. We combine recent CMB E-mode measurements and make inferences about cosmological parameters in ΛCDM as well as in extensions to ΛCDM. Adding the ground-based CMB polarization measurements to the Planck data set reduces the uncertainty on the Hubble constant by a factor of 1.2 to H0 = 67.20 ±0.57 km s- Mpc- 1 1. When allowing the number of relativistic species (Neff ) to vary, we find Neff = 2.94 ±0.16, which is in good agreement with the standard value of 3.046. Instead allowing the primordial helium abundance (YHe) to vary, the data favor YHe = 0.248 ±0.012. This is very close to the expectation of 0.2467 from big bang nucleosynthesis. When varying both YHe and Neff , we find Neff = 2.70 ±0.26 and YHe = 0.262 ±0.015.
- Published
- 2020
23. A Measurement of the Degree-scale CMB B-mode Angular Power Spectrum with Polarbear
- Author
-
Adachi, S, Aguilar Faúndez, MAO, Arnold, K, Baccigalupi, C, Barron, D, Beck, D, Beckman, S, Bianchini, F, Boettger, D, Borrill, J, Carron, J, Chapman, S, Cheung, K, Chinone, Y, Crowley, K, Cukierman, A, Dobbs, M, Bouhargani, HE, Elleflot, T, Errard, J, Fabbian, G, Feng, C, Fujino, T, Galitzki, N, Goeckner-Wald, N, Groh, J, Hall, G, Halverson, N, Hamada, T, Hasegawa, M, Hazumi, M, Hill, CA, Howe, L, Inoue, Y, Jaehnig, G, Jeong, O, Kaneko, D, Katayama, N, Keating, B, Keskitalo, R, Kikuchi, S, Kisner, T, Krachmalnicoff, N, Kusaka, A, Lee, AT, Leon, D, Linder, E, Lowry, LN, Mangu, A, Matsuda, F, Minami, Y, Navaroli, M, Nishino, H, Pham, ATP, Poletti, D, Puglisi, G, Reichardt, CL, Segawa, Y, Silva-Feaver, M, Siritanasak, P, Stebor, N, Stompor, R, Suzuki, A, Tajima, O, Takakura, S, Takatori, S, Tanabe, D, Teply, GP, Tsai, C, Verges, C, Westbrook, B, and Zhou, Y
- Subjects
Cosmic microwave background radiation ,Cosmic inflation ,Cosmology ,Observational cosmology ,astro-ph.CO ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Physical Chemistry ,Astronomy & Astrophysics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Physical Chemistry (incl. Structural) - Abstract
We present a measurement of the B-mode polarization power spectrum of the cosmic microwave background (CMB) using data taken from 2014 July to 2016 December with the Polarbear experiment. The CMB power spectra are measured using observations at 150 GHz with an instantaneous array sensitivity of NETarray=23μ K√s on a 670 square degree patch of sky centered at (R.A., decl.) = (+0h12m0s, -59°18′). A continuously rotating half-wave plate is used to modulate polarization and to suppress low-frequency noise. We achieve 32 μK arcmin effective polarization map noise with a knee in sensitivity of ℓ = 90, where the inflationary gravitational-wave signal is expected to peak. The measured B-mode power spectrum is consistent with a ΛCDM lensing and single dust component foreground model over a range of multipoles 50 ≤ ℓ ≤ 600. The data disfavor zero CℓBB at 2.2σ using this ℓ range of Polarbear data alone. We cross-correlate our data with Planck full mission 143, 217, and 353 GHz frequency maps and find the low-ℓ B-mode power in the combined data set to be consistent with thermal dust emission. We place an upper limit on the tensor-to-scalar ratio r < 0.90 at the 95% confidence level after marginalizing over foregrounds.
- Published
- 2020
24. Measurement of the cosmic microwave background polarization lensing power spectrum from two years of polarbear data
- Author
-
Faúndez, MA, Arnold, K, Baccigalupi, C, Barron, D, Beck, D, Beckman, S, Bianchini, F, Carron, J, Cheung, K, Chinone, Y, Bouhargani, HE, Elleflot, T, Errard, J, Fabbian, G, Feng, C, Fujino, T, Goeckner-Wald, N, Hamada, T, Hasegawa, M, Hazumi, M, Hill, CA, Hirose, H, Jeong, O, Katayama, N, Keating, B, Kikuchi, S, Kusaka, A, Lee, AT, Leon, D, Linder, E, Lowry, LN, Matsuda, F, Matsumura, T, Minami, Y, Navaroli, M, Nishino, H, Pham, ATP, Poletti, D, Puglisi, G, Reichardt, CL, Segawa, Y, Sherwin, BD, Silva-Feaver, M, Siritanasak, P, Stompor, R, Suzuki, A, Tajima, O, Takatori, S, Tanabe, D, Teply, GP, and Tsai, C
- Subjects
Cosmic microwave background radiation ,Gravitational lensing ,Cosmology ,astro-ph.CO ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Physical Chemistry ,Astronomy & Astrophysics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Physical Chemistry (incl. Structural) - Abstract
We present a measurement of the gravitational lensing deflection power spectrum reconstructed with two seasons of cosmic microwave background polarization data from the Polarbear experiment. Observations were taken at 150 GHz from 2012 to 2014 and surveyed three patches of sky totaling 30 square degrees. We test the consistency of the lensing spectrum with a cold dark matter cosmology and reject the no-lensing hypothesis at a confidence of 10.9σ, including statistical and systematic uncertainties. We observe a value of A L = 1.33 ± 0.32 (statistical) ±0.02 (systematic) ±0.07 (foreground) using all polarization lensing estimators, which corresponds to a 24% accurate measurement of the lensing amplitude. Compared to the analysis of the first-year data, we have improved the breadth of both the suite of null tests and the error terms included in the estimation of systematic contamination.
- Published
- 2020
25. Internal Delensing of Cosmic Microwave Background Polarization B-Modes with the POLARBEAR Experiment
- Author
-
Adachi, S, Faúndez, MAO Aguilar, Akiba, Y, Ali, A, Arnold, K, Baccigalupi, C, Barron, D, Beck, D, Bianchini, F, Borrill, J, Carron, J, Cheung, K, Chinone, Y, Crowley, K, Bouhargani, H El, Elleflot, T, Errard, J, Fabbian, G, Feng, C, Fujino, T, Goeckner-Wald, N, Hasegawa, M, Hazumi, M, Hill, CA, Howe, L, Katayama, N, Keating, B, Kikuchi, S, Kusaka, A, Lee, AT, Leon, D, Linder, E, Lowry, LN, Matsuda, F, Matsumura, T, Minami, Y, Namikawa, T, Navaroli, M, Nishino, H, Peloton, J, Pham, ATP, Poletti, D, Puglisi, G, Reichardt, CL, Segawa, Y, Sherwin, BD, Silva-Feaver, M, Siritanasak, P, Stompor, R, Tajima, O, Takatori, S, Tanabe, D, Teply, GP, and Vergès, C
- Subjects
Particle and High Energy Physics ,Physical Sciences ,POLARBEAR Collaboration ,astro-ph.CO ,astro-ph.IM ,gr-qc ,Mathematical Sciences ,Engineering ,General Physics ,Mathematical sciences ,Physical sciences - Abstract
Using only cosmic microwave background polarization data from the polarbear experiment, we measure B-mode polarization delensing on subdegree scales at more than 5σ significance. We achieve a 14% B-mode power variance reduction, the highest to date for internal delensing, and improve this result to 22% by applying for the first time an iterative maximum a posteriori delensing method. Our analysis demonstrates the capability of internal delensing as a means of improving constraints on inflationary models, paving the way for the optimal analysis of next-generation primordial B-mode experiments.
- Published
- 2020
26. Optical Characterization of OMT-Coupled TES Bolometers for LiteBIRD
- Author
-
Hubmayr, J., Ade, P. A. R., Adler, A., Allys, E., Alonso, D., Arnold, K., Auguste, D., Aumont, J., Aurlien, R., Austermann, J. E., Azzoni, S., Baccigalupi, C., Banday, A. J., Banerji, R., Barreiro, R. B., Bartolo, N., Basak, S., Battistelli, E., Bautista, L., Beall, J. A., Beck, D., Beckman, S., Benabed, K., Bermejo-Ballesteros, J., Bersanelli, M., Bonis, J., Borrill, J., Bouchet, F., Boulanger, F., Bounissou, S., Brilenkov, M., Brown, M. L., Bucher, M., Calabrese, E., Calvo, M., Campeti, P., Carones, A., Casas, F. J., Catalano, A., Challinor, A., Chan, V., Cheung, K., Chinone, Y., Chiocchetta, C., Clark, S. E., Clermont, L., Clesse, S., Cliche, J., Columbro, F., Connors, J. A., Coppolecchia, A., Coulton, W., Cubas, J., Cukierman, A., Curtis, D., Cuttaia, F., D’Alessandro, G., Dachlythra, K., de Bernardis, P., de Haan, T., de la Hoz, E., De Petris, M., Della Torre, S., Daz Garca, J. J., Dickinson, C., Diego-Palazuelos, P., Dobbs, M., Dotani, T., Douillet, D., Doumayrou, E., Duband, L., Ducout, A., Duff, S. M., Duval, J. M., Ebisawa, K., Elleflot, T., Eriksen, H. K., Errard, J., Essinger-Hileman, T., Farrens, S., Finelli, F., Flauger, R., Fleury-Frenette, K., Franceschet, C., Fuskeland, U., Galli, L., Galli, S., Galloway, M., Ganga, K., Gao, J. R., Genova-Santos, R. T., Georges, M., Gerbino, M., Gervasi, M., Ghigna, T., Giardiello, S., Gjerlw, E., Gonzles, R. Gonzlez, Gradziel, M. L., Grain, J., Grandsire, L., Grupp, F., Gruppuso, A., Gudmundsson, J. E., Halverson, N. W., Hamilton, J., Hargrave, P., Hasebe, T., Hasegawa, M., Hattori, M., Hazumi, M., Henrot-Versill, S., Hensley, B., Herman, D., Herranz, D., Hilton, G. C., Hivon, E., Hlozek, R. A., Hoang, D., Hornsby, A. L., Hoshino, Y., Ichiki, K., Iida, T., Ikemoto, T., Imada, H., Ishimura, K., Ishino, H., Jaehnig, G., Jones, M., Kaga, T., Kashima, S., Katayama, N., Kato, A., Kawasaki, T., Keskitalo, R., Kintziger, C., Kisner, T., Kobayashi, Y., Kogiso, N., Kogut, A., Kohri, K., Komatsu, E., Komatsu, K., Konishi, K., Krachmalnicoff, N., Kreykenbohm, I., Kuo, C. L., Kushino, A., Lamagna, L., Lanen, J. V., Laquaniello, G., Lattanzi, M., Lee, A. T., Leloup, C., Levrier, F., Linder, E., Link, M. J., Lonappan, A. I., Louis, T., Luzzi, G., Macias-Perez, J., Maciaszek, T., Maffei, B., Maino, D., Maki, M., Mandelli, S., Maris, M., Marquet, B., Martnez-Gonzlez, E., Martire, F. A., Masi, S., Massa, M., Masuzawa, M., Matarrese, S., Matsuda, F. T., Matsumura, T., Mele, L., Mennella, A., Migliaccio, M., Minami, Y., Mitsuda, K., Moggi, A., Monelli, M., Monfardini, A., Montgomery, J., Montier, L., Morgante, G., Mot, B., Murata, Y., Murphy, J. A., Nagai, M., Nagano, Y., Nagasaki, T., Nagata, R., Nakamura, S., Nakano, R., Namikawa, T., Nati, F., Natoli, P., Nerval, S., Neto Godry Farias, N., Nishibori, T., Nishino, H., Noviello, F., O’Neil, G. C., O’Sullivan, C., Odagiri, K., Ochi, H., Ogawa, H., Ogawa, H., Oguri, S., Ohsaki, H., Ohta, I. S., Okada, N., Pagano, L., Paiella, A., Paoletti, D., Pascual Cisneros, G., Passerini, A., Patanchon, G., Pelgrim, V., Peloton, J., Pettorino, V., Piacentini, F., Piat, M., Piccirilli, G., Pinsard, F., Pisano, G., Plesseria, J., Polenta, G., Poletti, D., Prouv, T., Puglisi, G., Rambaud, D., Raum, C., Realini, S., Reinecke, M., Reintsema, C. D., Remazeilles, M., Ritacco, A., Rosier, P., Roudil, G., Rubino-Martin, J., Russell, M., Sakurai, H., Sakurai, Y., Sandri, M., Sasaki, M., Savini, G., Scott, D., Seibert, J., Sekimoto, Y., Sherwin, B., Shinozaki, K., Shiraishi, M., Shirron, P., Shitvov, A., Signorelli, G., Smecher, G., Spinella, F., Starck, J., Stever, S., Stompor, R., Sudiwala, R., Sugiyama, S., Sullivan, R., Suzuki, A., Suzuki, J., Suzuki, T., Svalheim, T. L., Switzer, E., Takaku, R., Takakura, H., Takakura, S., Takase, Y., Takeda, Y., Tartari, A., Tavagnacco, D., Taylor, A., Taylor, E., Terao, Y., Terenzi, L., Thermeau, J., Thommesen, H., Thompson, K. L., Thorne, B., Toda, T., Tomasi, M., Tominaga, M., Trappe, N., Tristram, M., Tsuji, M., Tsujimoto, M., Tucker, C., Ueki, R., Ullom, J. N., Umemori, K., Vacher, L., Van Lanen, J., Vermeulen, G., Vielva, P., Villa, F., Vissers, M. R., Vittorio, N., Wandelt, B., Wang, W., Wehus, I. K., Weller, J., Westbrook, B., Weymann-Despres, G., Wilms, J., Winter, B., Wollack, E. J., Yamasaki, N. Y., Yoshida, T., Yumoto, J., Watanuki, K., Zacchei, A., Zannoni, M., and Zonca, A.
- Published
- 2022
- Full Text
- View/download PDF
27. A SQUID controller unit for space-based TES sensor readout
- Author
-
Zannoni, M., Passerini, A., Signorelli, G., Cliche, J.-F., Coppi, G., Bo, P. Dal, Torre, S. Della, Giorgi, E. Di, Dobbs, M., Galli, L., Gervasi, M., Limonta, A., Massa, M., Moggi, A., Montgomery, J., Nati, F., Nicolò, D., Pinchera, M., Poletti, D., Smecher, G., Spinella, F., and Tartari, A.
- Published
- 2023
- Full Text
- View/download PDF
28. Cross-correlation of CMB Polarization Lensing with High-z Submillimeter Herschel-ATLAS Galaxies
- Author
-
Faúndez, M Aguilar, Arnold, K, Baccigalupi, C, Barron, D, Beck, D, Bianchini, F, Boettger, D, Borrill, J, Carron, J, Cheung, K, Chinone, Y, Bouhargani, H El, Elleflot, T, Errard, J, Fabbian, G, Feng, C, Galitzki, N, Goeckner-Wald, N, Hasegawa, M, Hazumi, M, Howe, L, Kaneko, D, Katayama, N, Keating, B, Krachmalnicoff, N, Kusaka, A, Lee, AT, Leon, D, Linder, E, Lowry, LN, Matsuda, F, Minami, Y, Navaroli, M, Nishino, H, Pham, ATP, Poletti, D, Puglisi, G, Reichardt, CL, Sherwin, BD, Silva-Feaver, M, Stompor, R, Suzuki, A, Tajima, O, Takakura, S, Takatori, S, Teply, GP, Tsai, C, and Vergès, C
- Subjects
Particle and High Energy Physics ,Physical Sciences ,astro-ph.CO ,astro-ph.GA ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Physical Chemistry (incl. Structural) ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
We report a 4.8σ measurement of the cross-correlation signal between the cosmic microwave background (CMB) lensing convergence reconstructed from measurements of the CMB polarization made by the Polarbear experiment and the infrared-selected galaxies of the Herschel-ATLAS survey. This is the first measurement of its kind. We infer a best-fit galaxy bias of b=5.76\pm 1.25, corresponding to a host halo mass log10(Mh M⊙. =13.5+0.2-0.3 of at an effective redshift of z ∼ 2 from the cross-correlation power spectrum. Residual uncertainties in the redshift distribution of the submillimeter galaxies are subdominant with respect to the statistical precision. We perform a suite of systematic tests, finding that instrumental and astrophysical contaminations are small compared to the statistical error. This cross-correlation measurement only relies on CMB polarization information that, differently from CMB temperature maps, is less contaminated by galactic and extragalactic foregrounds, providing a clearer view of the projected matter distribution. This result demonstrates the feasibility and robustness of this approach for future high-sensitivity CMB polarization experiments.
- Published
- 2019
29. Evidence for the Cross-correlation between Cosmic Microwave Background Polarization Lensing from Polarbear and Cosmic Shear from Subaru Hyper Suprime-Cam
- Author
-
Namikawa, T, Chinone, Y, Miyatake, H, Oguri, M, Takahashi, R, Kusaka, A, Katayama, N, Adachi, S, Aguilar, M, Aihara, H, Ali, A, Armstrong, R, Arnold, K, Baccigalupi, C, Barron, D, Beck, D, Beckman, S, Bianchini, F, Boettger, D, Borrill, J, Cheung, K, Corbett, L, Crowley, KT, Bouhargani, H El, Elleflot, T, Errard, J, Fabbian, G, Feng, C, Galitzki, N, Goeckner-Wald, N, Groh, J, Hamada, T, Hasegawa, M, Hazumi, M, Hill, CA, Howe, L, Jeong, O, Kaneko, D, Keating, B, Lee, AT, Leon, D, Linder, E, Lowry, LN, Mangu, A, Matsuda, F, Minami, Y, Miyazaki, S, Murayama, H, Navaroli, M, Nishino, H, Nishizawa, AJ, Pham, ATP, Poletti, D, Puglisi, G, Reichardt, CL, Sherwin, BD, Silva-Feaver, M, Siritanasak, P, Speagle, JS, Stompor, R, Suzuki, A, Tait, PJ, Tajima, O, Takada, M, Takakura, S, Takatori, S, Tanabe, D, Tanaka, M, Teply, GP, Tsai, C, Vergés, C, Westbrook, B, and Zhou, Y
- Subjects
Particle and High Energy Physics ,Physical Sciences ,cosmic background radiation ,cosmology: observations ,gravitational lensing: weak ,polarization ,astro-ph.CO ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Physical Chemistry (incl. Structural) ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
We present the first measurement of cross-correlation between the lensing potential, reconstructed from cosmic microwave background (CMB) polarization data, and the cosmic shear field from galaxy shapes. This measurement is made using data from the Polarbear CMB experiment and the Subaru Hyper Suprime-Cam (HSC) survey. By analyzing an 11 deg2 overlapping region, we reject the null hypothesis at 3.5σ and constrain the amplitude of the cross-spectrum to , where is the amplitude normalized with respect to the Planck 2018 prediction, based on the flat Λ cold dark matter cosmology. The first measurement of this cross-spectrum without relying on CMB temperature measurements is possible owing to the deep Polarbear map with a noise level of ∼6 μK arcmin, as well as the deep HSC data with a high galaxy number density of . We present a detailed study of the systematics budget to show that residual systematics in our results are negligibly small, which demonstrates the future potential of this cross-correlation technique.
- Published
- 2019
30. Measurements of Tropospheric Ice Clouds with a Ground-based CMB Polarization Experiment, POLARBEAR
- Author
-
Takakura, S, Aguilar-Faúndez, MAO, Akiba, Y, Arnold, K, Baccigalupi, C, Barron, D, Beck, D, Bianchini, F, Boettger, D, Borrill, J, Cheung, K, Chinone, Y, Elleflot, T, Errard, J, Fabbian, G, Feng, C, Goeckner-Wald, N, Hamada, T, Hasegawa, M, Hazumi, M, Howe, L, Kaneko, D, Katayama, N, Keating, B, Keskitalo, R, Kisner, T, Krachmalnicoff, N, Kusaka, A, Lee, AT, Lowry, LN, Matsuda, FT, May, AJ, Minami, Y, Navaroli, M, Nishino, H, Piccirillo, L, Poletti, D, Puglisi, G, Reichardt, CL, Segawa, Y, Silva-Feaver, M, Siritanasak, P, Suzuki, A, Tajima, O, Takatori, S, Tanabe, D, Teply, GP, and Tsai, C
- Subjects
Space Sciences ,Particle and High Energy Physics ,Astronomical Sciences ,Physical Sciences ,atmospheric effects ,scattering ,cosmology: observations ,cosmic background radiation ,polarization ,astro-ph.IM ,astro-ph.CO ,physics.ao-ph ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Physical Chemistry (incl. Structural) ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
The polarization of the atmosphere has been a long-standing concern for ground-based experiments targeting cosmic microwave background (CMB) polarization. Ice crystals in upper tropospheric clouds scatter thermal radiation from the ground and produce a horizontally polarized signal. We report a detailed analysis of the cloud signal using a ground-based CMB experiment, Polarbear, located at the Atacama desert in Chile and observing at 150 GHz. We observe horizontally polarized temporal increases of low-frequency fluctuations ("polarized bursts," hereafter) of ≲0.1 K when clouds appear in a webcam monitoring the telescope and the sky. The hypothesis of no correlation between polarized bursts and clouds is rejected with >24σ statistical significance using three years of data. We consider many other possibilities including instrumental and environmental effects, and find no reasons other than clouds that can explain the data better. We also discuss the impact of the cloud polarization on future ground-based CMB polarization experiments.
- Published
- 2019
31. The POLARBEAR-2 and Simons Array Focal Plane Fabrication Status
- Author
-
Westbrook, B, Ade, PAR, Aguilar, M, Akiba, Y, Arnold, K, Baccigalupi, C, Barron, D, Beck, D, Beckman, S, Bender, AN, Bianchini, F, Boettger, D, Borrill, J, Chapman, S, Chinone, Y, Coppi, G, Crowley, K, Cukierman, A, de Haan, T, Dünner, R, Dobbs, M, Elleflot, T, Errard, J, Fabbian, G, Feeney, SM, Feng, C, Fuller, G, Galitzki, N, Gilbert, A, Goeckner-Wald, N, Groh, J, Halverson, NW, Hamada, T, Hasegawa, M, Hazumi, M, Hill, CA, Holzapfel, W, Howe, L, Inoue, Y, Jaehnig, G, Jaffe, A, Jeong, O, Kaneko, D, Katayama, N, Keating, B, Keskitalo, R, Kisner, T, Krachmalnicoff, N, Kusaka, A, Le Jeune, M, Lee, AT, Leon, D, Linder, E, Lowry, L, Madurowicz, A, Mak, D, Matsuda, F, May, A, Miller, NJ, Minami, Y, Montgomery, J, Navaroli, M, Nishino, H, Peloton, J, Pham, A, Piccirillo, L, Plambeck, D, Poletti, D, Puglisi, G, Raum, C, Rebeiz, G, Reichardt, CL, Richards, PL, Roberts, H, Ross, C, Rotermund, KM, Segawa, Y, Sherwin, B, Silva-Feaver, M, Siritanasak, P, Stompor, R, Suzuki, A, Tajima, O, Takakura, S, Takatori, S, Tanabe, D, Tat, R, Teply, GP, Tikhomirov, A, Tomaru, T, Tsai, C, Whitehorn, N, and Zahn, A
- Subjects
Physical Sciences ,Classical Physics ,Condensed Matter Physics ,CMB ,Fabrication ,Instrumentation ,Detectors ,Transition edge sensor ,Sinuous antenna ,Polarization ,Inflation ,Mathematical Physics ,General Physics ,Classical physics ,Condensed matter physics - Abstract
We present on the status of POLARBEAR-2 A (PB2-A) focal plane fabrication. The PB2-A is the first of three telescopes in the Simons Array, which is an array of three cosmic microwave background polarization-sensitive telescopes located at the POLARBEAR site in Northern Chile. As the successor to the PB experiment, each telescope and receiver combination is named as PB2-A, PB2-B, and PB2-C. PB2-A and -B will have nearly identical receivers operating at 90 and 150 GHz while PB2-C will house a receiver operating at 220 and 270 GHz. Each receiver contains a focal plane consisting of seven close-hex packed lenslet-coupled sinuous antenna transition edge sensor bolometer arrays. Each array contains 271 dichroic optical pixels, each of which has four TES bolometers for a total of 7588 detectors per receiver. We have produced a set of two types of candidate arrays for PB2-A. The first we call Version 11 (V11) uses a silicon oxide (SiOx) for the transmission lines and crossover process for orthogonal polarizations. The second we call Version 13 (V13) uses silicon nitride (SiNx) for the transmission lines and cross-under process for orthogonal polarizations. We have produced enough of each type of array to fully populate the focal plane of the PB2-A receiver. The average wirebond yield for V11 and V13 arrays is 93.2% and 95.6%, respectively. The V11 arrays had a superconducting transition temperature (Tc) of 452±15 mK, a normal resistance (Rn) of 1.25±0.20Ω, and saturation powers of 5.2 ± 1.0 pW and 13 ± 1.2 pW for the 90 and 150 GHz bands, respectively. The V13 arrays had a superconducting transition temperature (Tc) of 456 ± 6 mK, a normal resistance (Rn) of 1.1±0.2Ω, and saturation powers of 10.8 ± 1.8 pW and 22.9 ± 2.6 pW for the 90 and 150 GHz bands, respectively. Production and characterization of arrays for PB2-B are ongoing and are expected to be completed by the summer of 2018. We have fabricated the first three candidate arrays for PB2-C but do not have any characterization results to present at this time.
- Published
- 2018
32. Kinetic Monte Carlo Approach to Non-equilibrium Bosonic Systems
- Author
-
Liew, T. C. H., Flayac, H., Poletti, D., Savenko, I. G., and Laussy, F. P.
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics - Abstract
We consider the use of a Kinetic Monte Carlo approach for the description of non-equilibrium bosonic systems, taking non-resonantly excited exciton-polariton condensates and bosonic cascade lasers as examples. In the former case, the considered approach allows the study of the cross-over between incoherent and coherent regimes, which represents the formation of a quasi-condensate that forms purely from the action of energy relaxation processes rather than interactions between the condensing particles themselves. In the latter case, we show that a bosonic cascade can theoretically develop an output coherent state., Comment: 8 pages, 5 figures
- Published
- 2017
- Full Text
- View/download PDF
33. A Measurement of the Cosmic Microwave Background $B$-Mode Polarization Power Spectrum at Sub-Degree Scales from 2 years of POLARBEAR Data
- Author
-
The POLARBEAR Collaboration, Ade, P. A. R., Aguilar, M., Akiba, Y., Arnold, K., Baccigalupi, C., Barron, D., Beck, D., Bianchini, F., Boettger, D., Borrill, J., Chapman, S., Chinone, Y., Crowley, K., Cukierman, A., Dobbs, M., Ducout, A., Dünner, R., Elleflot, T., Errard, J., Fabbian, G., Feeney, S. M., Feng, C., Fujino, T., Galitzki, N., Gilbert, A., Goeckner-Wald, N., Groh, J., Hamada, T., Hall, G., Halverson, N. W., Hasegawa, M., Hazumi, M., Hill, C., Howe, L., Inoue, Y., Jaehnig, G. C., Jaffe, A. H., Jeong, O., Kaneko, D., Katayama, N., Keating, B., Keskitalo, R., Kisner, T., Krachmalnicoff, N., Kusaka, A., Jeune, M. Le, Lee, A. T., Leitch, E. M., Leon, D., Linder, E., Lowry, L., Matsuda, F., Matsumura, T., Minami, Y., Montgomery, J., Navaroli, M., Nishino, H., Paar, H., Peloton, J., Pham, A. T. P., Poletti, D., Puglisi, G., Reichardt, C. L., Richards, P. L., Ross, C., Segawa, Y., Sherwin, B. D., Silva-Feaver, M., Siritanasak, P., Stebor, N., Stompor, R., Suzuki, A., Tajima, O., Takakura, S., Takatori, S., Tanabe, D., Teply, G. P., Tomaru, T., Tucker, C., Whitehorn, N., and Zahn, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We report an improved measurement of the cosmic microwave background (CMB) $B$-mode polarization power spectrum with the POLARBEAR experiment at 150 GHz. By adding new data collected during the second season of observations (2013-2014) to re-analyzed data from the first season (2012-2013), we have reduced twofold the band-power uncertainties. The band powers are reported over angular multipoles $500 \leq \ell \leq 2100$, where the dominant $B$-mode signal is expected to be due to the gravitational lensing of $E$-modes. We reject the null hypothesis of no $B$-mode polarization at a confidence of 3.1$\sigma$ including both statistical and systematic uncertainties. We test the consistency of the measured $B$-modes with the $\Lambda$ Cold Dark Matter ($\Lambda$CDM) framework by fitting for a single lensing amplitude parameter $A_L$ relative to the Planck best-fit model prediction. We obtain $A_L = 0.60 ^{+0.26} _{-0.24} ({\rm stat}) ^{+0.00} _{-0.04}({\rm inst}) \pm 0.14 ({\rm foreground}) \pm 0.04 ({\rm multi})$, where $A_{L}=1$ is the fiducial $\Lambda$CDM value, and the details of the reported uncertainties are explained later in the manuscript., Comment: 16 pages, 10 figures. Minor changes to match the published version. For data and figures, see http://bolo.berkeley.edu/polarbear/data/polarbear_BB_2017/
- Published
- 2017
- Full Text
- View/download PDF
34. POLARBEAR-2: an instrument for CMB polarization measurements
- Author
-
Inoue, Y., Ade, P., Akiba, Y., Aleman, C., Arnold, K., Baccigalupi, C., Barch, B., Barron, D., Bender, A., Boettger, D., Borrill, J., Chapman, S., Chinone, Y., Cukierman, A., de Haan, T., Dobbs, M. A., Ducout, A., Dunner, R., Elleflot, T., Errard, J., Fabbian, G., Feeney, S., Feng, C., Fuller, G., Gilbert, A. J., Goeckner-Wald, N., Groh, J., Hall, G., Halverson, N., Hamada, T., Hasegawa, M., Hattori, K., Hazumi, M., Hill, C., Holzapfel, W. L., Hori, Y., Howe, L., Irie, F., Jaehnig, G., Jaffe, A., Jeongh, O., Katayama, N., Kaufman, J. P., Kazemzadeh, K., Keating, B. G., Kermish, Z., Keskital, R., Kisner, T., Kusaka, A., Jeune, M. Le, Lee, A. T., Leon, D., Linder, E. V., Lowry, L., Matsuda, F., Matsumura, T., Miller, N., Mizukami, K., Montgomery, J., Navaroli, M., Nishino, H., Paar, H., Peloton, J., Poletti, D., Puglisi, G., Raum, C. R., Rebeiz, G. M., Reichardt, C. L., Richards, P. L., Ross, C., Rotermund, K. M., Segaw, Y., Sherwin, B. D., Shirley, I., Siritanasak, P., Stebor, N., Suzuki, R. Stompor A., Tajima, O., Takada, S., Takatori, S., Teply, G. P., Tikhomirol, A., Tomaru, T., Whitehorn, N., Zahn, A., and Zahn, O.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
POLARBEAR-2 (PB-2) is a cosmic microwave background (CMB) polarization experiment that will be located in the Atacama highland in Chile at an altitude of 5200 m. Its science goals are to measure the CMB polarization signals originating from both primordial gravitational waves and weak lensing. PB-2 is designed to measure the tensor to scalar ratio, r, with precision {\sigma}(r) < 0.01, and the sum of neutrino masses, {\Sigma}m{\nu}, with {\sigma}({\Sigma}m{\nu}) < 90 meV. To achieve these goals, PB-2 will employ 7588 transition-edge sensor bolometers at 95 GHz and 150 GHz, which will be operated at the base temperature of 250 mK. Science observations will begin in 2017., Comment: 9pages,8figures
- Published
- 2016
- Full Text
- View/download PDF
35. The POLARBEAR-2 and the Simons Array Experiment
- Author
-
Suzuki, A., Ade, P., Akiba, Y., Aleman, C., Arnold, K., Baccigalupi, C., Barch, B., Barron, D., Bender, A., Boettger, D., Borrill, J., Chapman, S., Chinone, Y., Cukierman, A., Dobbs, M., Ducout, A., Dunner, R., Elleflot, T., Errard, J., Fabbian, G., Feeney, S., Feng, C., Fujino, T., Fuller, G., Gilbert, A., Goeckner-Wald, N., Groh, J., De Haan, T., Hall, G., Halverson, N., Hamada, T., Hasegawa, M., Hattori, K., Hazumi, M., Hill, C., Holzapfel, W., Hori, Y., Howe, L., Inoue, Y., Irie, F., Jaehnig, G., Jaffe, A., Jeong, O., Katayama, N., Kaufman, J., Kazemzadeh, K., Keating, B., Kermish, Z., Keskitalo, R., Kisner, T., Kusaka, A., Jeune, M. Le, Lee, A., Leon, D., Linder, E., Lowry, L., Matsuda, F., Matsumura, T., Miller, N., Mizukami, K., Montgomery, J., Navaroli, M., Nishino, H., Peloton, J., Poletti, D., Rebeiz, G., Raum, C., Reichardt, C., Richards, P., Ross, C., Rotermund, K., Segawa, Y., Sherwin, B., Shirley, I., Siritanasak, P., Stebor, N., Stompor, R., Suzuki, J., Tajima, O., Takada, S., Takakura, S., Takatori, S., Tikhomirov, A., Tomaru, T., Westbrook, B., Whitehorn, N., Yamashita, T., Zahn, A., and Zahn, O.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present an overview of the design and status of the \Pb-2 and the Simons Array experiments. \Pb-2 is a Cosmic Microwave Background polarimetry experiment which aims to characterize the arc-minute angular scale B-mode signal from weak gravitational lensing and search for the degree angular scale B-mode signal from inflationary gravitational waves. The receiver has a 365~mm diameter focal plane cooled to 270~milli-Kelvin. The focal plane is filled with 7,588 dichroic lenslet-antenna coupled polarization sensitive Transition Edge Sensor (TES) bolometric pixels that are sensitive to 95~GHz and 150~GHz bands simultaneously. The TES bolometers are read-out by SQUIDs with 40 channel frequency domain multiplexing. Refractive optical elements are made with high purity alumina to achieve high optical throughput. The receiver is designed to achieve noise equivalent temperature of 5.8~$\mu$K$_{CMB}\sqrt{s}$ in each frequency band. \Pb-2 will deploy in 2016 in the Atacama desert in Chile. The Simons Array is a project to further increase sensitivity by deploying three \Pb-2 type receivers. The Simons Array will cover 95~GHz, 150~GHz and 220~GHz frequency bands for foreground control. The Simons Array will be able to constrain tensor-to-scalar ratio and sum of neutrino masses to $\sigma(r) = 6\times 10^{-3}$ at $r = 0.1$ and $\sum m_\nu (\sigma =1)$ to 40 meV., Comment: Accepted to Journal of Low Temperature Physics LTD16 Special Issue, Low Temperature Detector 16 Conference Proceedings, 5 pages, 1 figure
- Published
- 2015
- Full Text
- View/download PDF
36. A Measurement of the Cosmic Microwave Background B-mode Polarization Power Spectrum at Subdegree Scales from Two Years of POLARBEAR Data
- Author
-
Ade, PAR, Aguilar, M, Akiba, Y, Arnold, K, Baccigalupi, C, Barron, D, Beck, D, Bianchini, F, Boettger, D, Borrill, J, Chapman, S, Chinone, Y, Crowley, K, Cukierman, A, Dunner, R, Dobbs, M, Ducout, A, Elleflot, T, Errard, J, Fabbian, G, Feeney, SM, Feng, C, Fujino, T, Galitzki, N, Gilbert, A, Goeckner-Wald, N, Groh, JC, Hall, G, Halverson, N, Hamada, T, Hasegawa, M, Hazumi, M, Hill, CA, Howe, L, Inoue, Y, Jaehnig, G, Jaffe, AH, Jeong, O, Kaneko, D, Katayama, N, Keating, B, Keskitalo, R, Kisner, T, Krachmalnicoff, N, Kusaka, A, Le Jeune, M, Lee, AT, Leitch, EM, Leon, D, Linder, E, Lowry, L, Matsuda, F, Matsumura, T, Minami, Y, Montgomery, J, Navaroli, M, Nishino, H, Paar, H, Peloton, J, Pham, ATP, Poletti, D, Puglisi, G, Reichardt, CL, Richards, PL, Ross, C, Segawa, Y, Sherwin, BD, Silva-Feaver, M, Siritanasak, P, Stebor, N, Stompor, R, Suzuki, A, Tajima, O, Takakura, S, Takatori, S, Tanabe, D, Teply, GP, Tomaru, T, Tucker, C, Whitehorn, N, and Zahn, A
- Subjects
cosmic background radiation ,cosmology: observations ,large-scale structure of universe - Published
- 2017
37. Erratum: “A Measurement of the Cosmic Microwave Background B-Mode Polarization Power Spectrum at Sub-degree Scales with POLARBEAR” (2014, ApJ, 794, 171)
- Author
-
Ade, The Polarbear Collaboration PAR, Akiba, Y, Anthony, AE, Arnold, K, Atlas, M, Barron, D, Boettger, D, Borrill, J, Chapman, S, Chinone, Y, Dobbs, M, Elleflot, T, Errard, J, Fabbian, G, Feng, C, Flanigan, D, Gilbert, A, Grainger, W, Halverson, NW, Hasegawa, M, Hattori, K, Hazumi, M, Holzapfel, WL, Hori, Y, Howard, J, Hyland, P, Inoue, Y, Jaehnig, GC, Jaffe, AH, Keating, B, Kermish, Z, Keskitalo, R, Kisner, T, Le Jeune, M, Lee, AT, Leitch, EM, Linder, E, Lungu, M, Matsuda, F, Matsumura, T, Meng, X, Miller, NJ, Morii, H, Moyerman, S, Myers, MJ, Navaroli, M, Nishino, H, Orlando, A, Paar, H, Peloton, J, Poletti, D, Quealy, E, Rebeiz, G, Reichardt, CL, Richards, PL, Ross, C, Schanning, I, Schenck, DE, Sherwin, BD, Shimizu, A, Shimmin, C, Shimon, M, Siritanasak, P, Smecher, G, Spieler, H, Stebor, N, Steinbach, B, Stompor, R, Suzuki, A, Takakura, S, Tomaru, T, Wilson, B, Yadav, A, and Zahn, O
- Subjects
Particle and High Energy Physics ,Physical Sciences ,cosmic background radiation ,cosmology: observations ,large-scale structure of universe ,astro-ph.CO ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Physical Chemistry (incl. Structural) ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
We report an improved measurement of the cosmic microwave background B-mode polarization power spectrum with the Polarbear experiment at 150 GHz. By adding new data collected during the second season of observations (2013-2014) to re-analyzed data from the first season (2012-2013), we have reduced twofold the band-power uncertainties. The band powers are reported over angular multipoles 500 ≤ ℓ ≤ 2100, where the dominant B-mode signal is expected to be due to the gravitational lensing of E-modes. We reject the null hypothesis of no B-mode polarization at a confidence of 3.1σ including both statistical and systematic uncertainties. We test the consistency of the measured B-modes with the Λ Cold Dark Matter (ΛCDM) framework by fitting for a single lensing amplitude parameter A L = 0.60 +0.26-0.24(stat)+0.00-0.04 (inst) ± 0.14(foreground) ± 0.04(multi), where A L = 1 relative to the Planck 2015 best-fit model prediction. We obtain ±0.14(foreground) ±0.04(multi), where is the fiducial ΛCDM value.
- Published
- 2017
38. Performance of a continuously rotating half-wave plate on the POLARBEAR telescope
- Author
-
Takakura, S, Aguilar, M, Akiba, Y, Arnold, K, Baccigalupi, C, Barron, D, Beckman, S, Boettger, D, Borrill, J, Chapman, S, Chinone, Y, Cukierman, A, Ducout, A, Elleflot, T, Errard, J, Fabbian, G, Fujino, T, Galitzki, N, Goeckner-Wald, N, Halverson, NW, Hasegawa, M, Hattori, K, Hazumi, M, Hill, C, Howe, L, Inoue, Y, Jaffe, AH, Jeong, O, Kaneko, D, Katayama, N, Keating, B, Keskitalo, R, Kisner, T, Krachmalnicoff, N, Kusaka, A, Lee, AT, Leon, D, Lowry, L, Matsuda, F, Matsumura, T, Navaroli, M, Nishino, H, Paar, H, Peloton, J, Poletti, D, Puglisi, G, Reichardt, CL, Ross, C, Siritanasak, P, Suzuki, A, Tajima, O, Takatori, S, and Teply, G
- Subjects
CMBR experiments ,gravitational waves and CMBR polarization ,astro-ph.IM ,astro-ph.CO ,physics.ins-det ,Nuclear & Particles Physics ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
A continuously rotating half-wave plate (CRHWP) is a promising tool to improve the sensitivity to large angular scales in cosmic microwave background (CMB) polarization measurements. With a CRHWP, single detectors can measure three of the Stokes parameters, I, Q and U, thereby avoiding the set of systematic errors that can be introduced by mismatches in the properties of orthogonal detector pairs. We focus on the implementation of CRHWPs in large aperture telescopes (i.e. the primary mirror is larger than the current maximum half-wave plate diameter of ∼0.5 m), where the CRHWP can be placed between the primary mirror and focal plane. In this configuration, one needs to address the intensity to polarization (I→P) leakage of the optics, which becomes a source of 1/f noise and also causes differential gain systematics that arise from CMB temperature fluctuations. In this paper, we present the performance of a CRHWP installed in the {\scshape Polarbear} experiment, which employs a Gregorian telescope with a 2.5 m primary illumination pattern. The CRHWP is placed near the prime focus between the primary and secondary mirrors. We find that the I→P leakage is larger than the expectation from the physical properties of our primary mirror, resulting in a 1/f knee of 100 mHz. The excess leakage could be due to imperfections in the detector system, i.e. detector non-linearity in the responsivity and time-constant. We demonstrate, however, that by subtracting the leakage correlated with the intensity signal, the 1/f noise knee frequency is reduced to 32 mHz (ℓ ∼ 39 for our scan strategy), which is very promising to probe the primordial B-mode signal. We also discuss methods for further noise subtraction in future projects where the precise temperature control of instrumental components and the leakage reduction will play a key role.
- Published
- 2017
39. Making maps of cosmic microwave background polarization for B-mode studies: The POLARBEAR example
- Author
-
Poletti, D, Fabbian, G, Le Jeune, M, Peloton, J, Arnold, K, Baccigalupi, C, Barron, D, Beckman, S, Borrill, J, Chapman, S, Chinone, Y, Cukierman, A, Ducout, A, Elleflot, T, Errard, J, Feeney, S, Goeckner-Wald, N, Groh, J, Hall, G, Hasegawa, M, Hazumi, M, Hill, C, Howe, L, Inoue, Y, Jaffe, AH, Jeong, O, Katayama, N, Keating, B, Keskitalo, R, Kisner, T, Kusaka, A, Lee, AT, Leon, D, Linder, E, Lowry, L, Matsuda, F, Navaroli, M, Paar, H, Puglisi, G, Reichardt, CL, Ross, C, Siritanasak, P, Stebor, N, Steinbach, B, Stompor, R, Suzuki, A, Tajima, O, Teply, G, and Whitehorn, N
- Subjects
cosmic background radiation ,cosmology: observations ,astro-ph.IM ,astro-ph.CO ,Astronomy & Astrophysics ,Astronomical and Space Sciences - Abstract
Analysis of cosmic microwave background (CMB) datasets typically requires some filtering of the raw time-ordered data. For instance, in the context of ground-based observations, filtering is frequently used to minimize the impact of low frequency noise, atmospheric contributions and/or scan synchronous signals on the resulting maps. In this work we have explicitly constructed a general filtering operator, which can unambiguously remove any set of unwanted modes in the data, and then amend the map-making procedure in order to incorporate and correct for it. We show that such an approach is mathematically equivalent to the solution of a problem in which the sky signal and unwanted modes are estimated simultaneously and the latter are marginalized over. We investigated the conditions under which this amended map-making procedure can render an unbiased estimate of the sky signal in realistic circumstances. We then discuss the potential implications of these observations on the choice of map-making and power spectrum estimation approaches in the context of B-mode polarization studies. Specifically, we have studied the effects of time-domain filtering on the noise correlation structure in the map domain, as well as impact it may haveon the performance of the popular pseudo-spectrum estimators. We conclude that although maps produced by the proposed estimators arguably provide the most faithful representation of the sky possible given the data, they may not straightforwardly lead to the best constraints on the power spectra of the underlying sky signal and special care may need to be taken to ensure this is the case. By contrast, simplified map-makers which do not explicitly correct for time-domain filtering, but leave it to subsequent steps in the data analysis, may perform equally well and be easier and faster to implement. We focused on polarization-sensitive measurements targeting the B-mode component of the CMB signal and apply the proposed methods to realistic simulations based on characteristics of an actual CMB polarization experiment, POLARBEAR. Our analysis and conclusions are however more generally applicable.
- Published
- 2017
40. Modeling atmospheric emission for CMB ground-based observations
- Author
-
Errard, J., Ade, P. A. R., Akiba, Y., Arnold, K., Atlas, M., Baccigalupi, C., Barron, D., Boettger, D., Borrill, J., Chapman, S., Chinone, Y., Cukierman, A., Delabrouille, J., Dobbs, M., Ducout, A., Elleflot, T., Fabbian, G., Feng, C., Feeney, S., Gilbert, A., Goeckner-Wald, N., Halverson, N. W., Hasegawa, M., Hattori, K., Hazumi, M., Hill, C., Holzapfel, W. L., Hori, Y., Inoue, Y., Jaehnig, G. C., Jaffe, A. H., Jeong, O., Katayama, N., Kaufman, J., Keating, B., Kermish, Z., Keskitalo, R., Kisner, T., Jeune, M. Le, Lee, A. T., Leitch, E. M., Leon, D., Linder, E., Matsuda, F., Matsumura, T., Miller, N. J., Myers, M. J., Navaroli, M., Nishino, H., Okamura, T., Paar, H., Peloton, J., Poletti, D., Puglisi, G., Rebeiz, G., Reichardt, C. L., Richards, P. L., Ross, C., Rotermund, K. M., Schenck, D. E., Sherwin, B. D., Siritanasak, P., Smecher, G., Stebor, N., Steinbach, B., Stompor, R., Suzuki, A., Tajima, O., Takakura, S., Tikhomirov, A., Tomaru, T., Whitehorn, N., Wilson, B., Yadav, A., and Zahn, O.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Atmosphere is one of the most important noise sources for ground-based cosmic microwave background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3d-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive a new analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using an original numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the POLARBEAR-I project first season data set. We derive a new 1.0% upper limit on the linear polarization fraction of atmospheric emission. We also compare our results to previous studies and weather station measurements. The proposed model can be used for realistic simulations of future ground-based CMB observations., Comment: 20 pages, 16 figures
- Published
- 2015
- Full Text
- View/download PDF
41. POLARBEAR-2: an instrument for CMB polarization measurements
- Author
-
Inoue, Y, Ade, P, Akiba, Y, Aleman, C, Arnold, K, Baccigalupi, C, Barch, B, Barron, D, Bender, A, Boettger, D, Borrill, J, Chapman, S, Chinone, Y, Cukierman, A, de Haan, T, Dobbs, MA, Ducout, A, Dünner, R, Elleflot, T, Errard, J, Fabbian, G, Feeney, S, Feng, C, Fuller, G, Gilbert, AJ, Goeckner-Wald, N, Groh, J, Hall, G, Halverson, N, Hamada, T, Hasegawa, M, Hattori, K, Hazumi, M, Hill, C, Holzapfel, WL, Hori, Y, Howe, L, Irie, F, Jaehnig, G, Jaffe, A, Jeong, O, Katayama, N, Kaufman, JP, Kazemzadeh, K, Keating, BG, Kermish, Z, Keskitalo, R, Kisner, TS, Kusaka, A, Le Jeune, M, Lee, AT, Leon, D, Linder, EV, Lowry, L, Matsuda, F, Matsumura, T, Miller, N, Mizukami, K, Montgomery, J, Navaroli, M, Nishino, H, Paar, H, Peloton, J, Poletti, D, Puglisi, G, Raum, CR, Rebeiz, GM, Reichardt, CL, Richards, PL, Ross, C, Rotermund, KM, Segawa, Y, Sherwin, BD, Shirley, I, Siritanasak, P, Stebor, N, Stompor, R, Suzuki, J, Suzuki, A, Tajima, O, Takada, S, Takatori, S, Teply, GP, Tikhomirov, A, Tomaru, T, Whitehorn, N, Zahn, A, and Zahn, O
- Subjects
Engineering ,Communications Engineering ,Electronics ,Sensors and Digital Hardware ,Physical Sciences ,Atomic ,Molecular and Optical Physics ,Cosmic Microwave Background ,IR filter ,POLARBEAR-2 ,Polarization ,Bolometer ,Gravitational Wave ,millimeter wave ,astro-ph.IM ,astro-ph.CO ,Communications engineering ,Electronics ,sensors and digital hardware ,Atomic ,molecular and optical physics - Abstract
POLARBEAR-2 (PB-2) is a cosmic microwave background (CMB) polarization experiment that will be located in the Atacama highland in Chile at an altitude of 5200 m. Its science goals are to measure the CMB polarization signals originating from both primordial gravitational waves and weak lensing. PB-2 is designed to measure the tensor to scalar ratio, r, with precision σ(r) > 0:01, and the sum of neutrino masses, Σmz, with σ(Σmv) < 90 meV. To achieve these goals, PB-2 will employ 7588 transition-edge sensor bolometers at 95 GHz and 150 GHz, which will be operated at the base temperature of 250 mK. Science observations will begin in 2017.
- Published
- 2016
42. The Polarbear-2 and the Simons Array Experiments
- Author
-
Suzuki, A, Ade, P, Akiba, Y, Aleman, C, Arnold, K, Baccigalupi, C, Barch, B, Barron, D, Bender, A, Boettger, D, Borrill, J, Chapman, S, Chinone, Y, Cukierman, A, Dobbs, M, Ducout, A, Dunner, R, Elleflot, T, Errard, J, Fabbian, G, Feeney, S, Feng, C, Fujino, T, Fuller, G, Gilbert, A, Goeckner-Wald, N, Groh, J, Haan, T De, Hall, G, Halverson, N, Hamada, T, Hasegawa, M, Hattori, K, Hazumi, M, Hill, C, Holzapfel, W, Hori, Y, Howe, L, Inoue, Y, Irie, F, Jaehnig, G, Jaffe, A, Jeong, O, Katayama, N, Kaufman, J, Kazemzadeh, K, Keating, B, Kermish, Z, Keskitalo, R, Kisner, T, Kusaka, A, Jeune, M Le, Lee, A, Leon, D, Linder, E, Lowry, L, Matsuda, F, Matsumura, T, Miller, N, Mizukami, K, Montgomery, J, Navaroli, M, Nishino, H, Peloton, J, Poletti, D, Puglisi, G, Rebeiz, G, Raum, C, Reichardt, C, Richards, P, Ross, C, Rotermund, K, Segawa, Y, Sherwin, B, Shirley, I, Siritanasak, P, Stebor, N, Stompor, R, Suzuki, J, Tajima, O, Takada, S, Takakura, S, Takatori, S, Tikhomirov, A, Tomaru, T, Westbrook, B, Whitehorn, N, Yamashita, T, Zahn, A, and Zahn, O
- Subjects
Particle and High Energy Physics ,Physical Sciences ,Cosmic microwave background ,Inflation ,Gravitational weak lensing ,Polarization ,B-mode ,astro-ph.IM ,astro-ph.CO ,Mathematical Physics ,Classical Physics ,Condensed Matter Physics ,General Physics ,Classical physics ,Condensed matter physics - Abstract
We present an overview of the design and status of the Polarbear-2 and the Simons Array experiments. Polarbear-2 is a cosmic microwave background polarimetry experiment which aims to characterize the arc-minute angular scale B-mode signal from weak gravitational lensing and search for the degree angular scale B-mode signal from inflationary gravitational waves. The receiver has a 365 mm diameter focal plane cooled to 270 mK. The focal plane is filled with 7588 dichroic lenslet–antenna-coupled polarization sensitive transition edge sensor (TES) bolometric pixels that are sensitive to 95 and 150 GHz bands simultaneously. The TES bolometers are read-out by SQUIDs with 40 channel frequency domain multiplexing. Refractive optical elements are made with high-purity alumina to achieve high optical throughput. The receiver is designed to achieve noise equivalent temperature of 5.8 μ KCMBs in each frequency band. Polarbear-2 will deploy in 2016 in the Atacama desert in Chile. The Simons Array is a project to further increase sensitivity by deploying three Polarbear-2 type receivers. The Simons Array will cover 95, 150, and 220 GHz frequency bands for foreground control. The Simons Array will be able to constrain tensor-to-scalar ratio and sum of neutrino masses to σ(r) = 6 × 10 - 3 at r= 0.1 and ∑ mν(σ= 1) to 40 meV.
- Published
- 2016
43. The Simons Array CMB polarization experiment
- Author
-
Stebor, N, Ade, P, Akiba, Y, Aleman, C, Arnold, K, Baccigalupi, C, Barch, B, Barron, D, Beckman, S, Bender, A, Boettger, D, Borrill, J, Chapman, S, Chinone, Y, Cukierman, A, de Haan, T, Dobbs, M, Ducout, A, Planella, R Dünner, Elleflot, T, Errard, J, Fabbian, G, Feeney, S, Feng, C, Fujino, T, Fuller, G, Gilbert, AJ, Goeckner-Wald, N, Groh, J, Hall, G, Halverson, N, Hamada, T, Hasegawa, M, Hattori, K, Hazumi, M, Hill, C, Holzapfel, WL, Hori, Y, Howe, L, Inoue, Y, Irie, F, Jaehnig, G, Jaffe, A, Jeong, O, Katayama, N, Kaufman, JP, Kazemzadeh, K, Keating, BG, Kermish, Z, Keskitalo, R, Kisner, T, Kusaka, A, Le Jeune, M, Lee, AT, Leon, D, Linder, EV, Lowry, L, Matsuda, F, Matsumura, T, Miller, N, Montgomery, J, Navaroli, M, Nishino, H, Paar, H, Peloton, J, Poletti, D, Puglisi, G, Raum, CR, Rebeiz, GM, Reichardt, CL, Richards, PL, Ross, C, Rotermund, KM, Segawa, Y, Sherwin, BD, Shirley, I, Siritanasak, P, Steinmetz, L, Stompor, R, Suzuki, A, Tajima, O, Takada, S, Takatori, S, Teply, GP, Tikhomirov, A, Tomaru, T, Westbrook, B, Whitehorn, N, Zahn, A, and Zahn, O
- Subjects
cosmic microwave background radiation ,polarization ,polarimeters ,inflation ,neutrinos ,dark matter ,dark energy ,gravitational lensing - Abstract
The Simons Array is a next generation cosmic microwave background (CMB) polarization experiment whose science target is a precision measurement of the B-mode polarization pattern produced both by inflation and by gravitational lensing. As a continuation and extension of the successful POLARBEAR experimental program, the Simons Array will consist of three cryogenic receivers each featuring multichroic bolometer arrays mounted onto separate 3.5m telescopes. The first of these, also called POLARBEAR-2A, will be the first to deploy in late 2016 and has a large diameter focal plane consisting of dual-polarization dichroic pixels sensitive at 95 GHz and 150 GHz. The POLARBEAR-2A focal plane will utilize 7,588 antenna-coupled superconducting transition edge sensor (TES) bolometers read out with SQUID amplifiers using frequency domain multiplexing techniques. The next two receivers that will make up the Simons Array will be nearly identical in overall design but will feature extended frequency capability. The combination of high sensitivity, multichroic frequency coverage and large sky area available from our mid-latitude Chilean observatory will allow Simons Array to produce high quality polarization sky maps over a wide range of angular scales and to separate out the CMB B-modes from other astrophysical sources with high fidelity. After accounting for galactic foreground separation, the Simons Array will detect the primordial gravitational wave B-mode signal to r > 0.01 with a significance of > 5σ and will constrain the sum of neutrino masses to 40 meV (1σ) when cross-correlated with galaxy surveys. We present the current status of this funded experiment, its future, and discuss its projected science return.
- Published
- 2016
44. Development and characterization of the readout system for POLARBEAR-2
- Author
-
Barron, D., Ade, P. A. R., Akiba, Y., Aleman, C., Arnold, K., Atlas, M., Bender, A., Boettger, D., Borrill, J., Chapman, S., Chinone, Y., Cukierman, A., Dobbs, M., Elleflot, T., Errard, J., Fabbian, G., Feng, C., Gilbert, A., Goeckner-Wald, N., Halverson, N. W., Hasegawa, M., Hattori, K., Hazumi, M., Holzapfel, W. L., Hori, Y., Inoue, Y., Jaehnig, G. C., Jaffe, A. H., Katayama, N., Keating, B., Kermish, Z., Keskitalo, R., Kisner, T., Jeune, M. Le, Lee, A. T., Leitch, E. M., Linder, E., Matsuda, F., Matsumura, T., Meng, X., Morii, H., Myers, M. J., Navaroli, M., Nishino, H., Okamura, T., Paar, H., Peloton, J., Poletti, D., Raum, C., Rebeiz, G., Reichardt, C. L., Richards, P. L., Ross, C., Rotermund, K., Schenck, D. E., Sherwin, B. D., Shirley, I., Sholl, M., Siritanasak, P., Smecher, G., Stebor, N., Steinbach, B., Stompor, R., Suzuki, A., Suzuki, J., Takada, S., Takakura, S., Tomaru, T., Wilson, B., Yadav, A., Yamaguchi, H., and Zahn, O.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
POLARBEAR-2 is a next-generation receiver for precision measurements of the polarization of the cosmic microwave background (Cosmic Microwave Background (CMB)). Scheduled to deploy in early 2015, it will observe alongside the existing POLARBEAR-1 receiver, on a new telescope in the Simons Array on Cerro Toco in the Atacama desert of Chile. For increased sensitivity, it will feature a larger area focal plane, with a total of 7,588 polarization sensitive antenna-coupled Transition Edge Sensor (TES) bolometers, with a design sensitivity of 4.1 uKrt(s). The focal plane will be cooled to 250 milliKelvin, and the bolometers will be read-out with 40x frequency domain multiplexing, with 36 optical bolometers on a single SQUID amplifier, along with 2 dark bolometers and 2 calibration resistors. To increase the multiplexing factor from 8x for POLARBEAR-1 to 40x for POLARBEAR-2 requires additional bandwidth for SQUID readout and well-defined frequency channel spacing. Extending to these higher frequencies requires new components and design for the LC filters which define channel spacing. The LC filters are cold resonant circuits with an inductor and capacitor in series with each bolometer, and stray inductance in the wiring and equivalent series resistance from the capacitors can affect bolometer operation. We present results from characterizing these new readout components. Integration of the readout system is being done first on a small scale, to ensure that the readout system does not affect bolometer sensitivity or stability, and to validate the overall system before expansion into the full receiver. We present the status of readout integration, and the initial results and status of components for the full array., Comment: Presented at SPIE Astronomical Telescopes and Instrumentation 2014: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. Published in Proceedings of SPIE Volume 9153
- Published
- 2014
- Full Text
- View/download PDF
45. A Measurement of the Cosmic Microwave Background B-Mode Polarization Power Spectrum at Sub-Degree Scales with POLARBEAR
- Author
-
The POLARBEAR Collaboration, Ade, P. A. R., Akiba, Y., Anthony, A. E., Arnold, K., Atlas, M., Barron, D., Boettger, D., Borrill, J., Chapman, S., Chinone, Y., Dobbs, M., Elleflot, T., Errard, J., Fabbian, G., Feng, C., Flanigan, D., Gilbert, A., Grainger, W., Halverson, N. W., Hasegawa, M., Hattori, K., Hazumi, M., Holzapfel, W. L., Hori, Y., Howard, J., Hyland, P., Inoue, Y., Jaehnig, G. C., Jaffe, A. H., Keating, B., Kermish, Z., Keskitalo, R., Kisner, T., Jeune, M. Le, Lee, A. T., Leitch, E. M., Linder, E., Lungu, M., Matsuda, F., Matsumura, T., Meng, X., Miller, N. J., Morii, H., Moyerman, S., Myers, M. J., Navaroli, M., Nishino, H., Paar, H., Peloton, J., Poletti, D., Quealy, E., Rebeiz, G., Reichardt, C. L., Richards, P. L., Ross, C., Schanning, I., Schenck, D. E., Sherwin, B. D., Shimizu, A., Shimmin, C., Shimon, M., Siritanasak, P., Smecher, G., Spieler, H., Stebor, N., Steinbach, B., Stompor, R., Suzuki, A., Takakura, S., Tomaru, T., Wilson, B., Yadav, A., and Zahn, O.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We report a measurement of the B-mode polarization power spectrum in the cosmic microwave background (CMB) using the POLARBEAR experiment in Chile. The faint B-mode polarization signature carries information about the Universe's entire history of gravitational structure formation, and the cosmic inflation that may have occurred in the very early Universe. Our measurement covers the angular multipole range 500 < l < 2100 and is based on observations of an effective sky area of 25 square degrees with 3.5 arcmin resolution at 150 GHz. On these angular scales, gravitational lensing of the CMB by intervening structure in the Universe is expected to be the dominant source of B-mode polarization. Including both systematic and statistical uncertainties, the hypothesis of no B-mode polarization power from gravitational lensing is rejected at 97.1% confidence. The band powers are consistent with the standard cosmological model. Fitting a single lensing amplitude parameter A_BB to the measured band powers, A_BB = 1.12 +/- 0.61 (stat) +0.04/-0.12 (sys) +/- 0.07 (multi), where A_BB = 1 is the fiducial WMAP-9 LCDM value. In this expression, "stat" refers to the statistical uncertainty, "sys" to the systematic uncertainty associated with possible biases from the instrument and astrophysical foregrounds, and "multi" to the calibration uncertainties that have a multiplicative effect on the measured amplitude A_BB., Comment: 22 pages, 12 figures. v3 is updated to reflect the erratum published in ApJ 2017 848:73, which changed the rejection of the hypothesis of no B-mode polarization power from gravitational lensing from 97.2% to 97.1%
- Published
- 2014
- Full Text
- View/download PDF
46. POLARBEAR constraints on cosmic birefringence and primordial magnetic fields
- Author
-
Ade, PAR, Arnold, K, Atlas, M, Baccigalupi, C, Barron, D, Boettger, D, Borrill, J, Chapman, S, Chinone, Y, Cukierman, A, Dobbs, M, Ducout, A, Dunner, R, Elleflot, T, Errard, J, Fabbian, G, Feeney, S, Feng, C, Gilbert, A, Goeckner-Wald, N, Groh, J, Hall, G, Halverson, NW, Hasegawa, M, Hattori, K, Hazumi, M, Hill, C, Holzapfel, WL, Hori, Y, Howe, L, Inoue, Y, Jaehnig, GC, Jaffe, AH, Jeong, O, Katayama, N, Kaufman, JP, Keating, B, Kermish, Z, Keskitalo, R, Kisner, T, Kusaka, A, Le Jeune, M, Lee, AT, Leitch, EM, Leon, D, Li, Y, Linder, E, Lowry, L, Matsuda, F, Matsumura, T, Miller, N, Montgomery, J, Myers, MJ, Navaroli, M, Nishino, H, Okamura, T, Paar, H, Peloton, J, Pogosian, L, Poletti, D, Puglisi, G, Raum, C, Rebeiz, G, Reichardt, CL, Richards, PL, Ross, C, Rotermund, KM, Schenck, DE, Sherwin, BD, Shimon, M, Shirley, I, Siritanasak, P, Smecher, G, Stebor, N, Steinbach, B, Suzuki, A, Suzuki, JI, Tajima, O, Takakura, S, Tikhomirov, A, Tomaru, T, Whitehorn, N, Wilson, B, Yadav, A, Zahn, A, and Zahn, O
- Subjects
astro-ph.CO ,Nuclear & Particles Physics ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
We constrain anisotropic cosmic birefringence using four-point correlations of even-parity E-mode and odd-parity B-mode polarization in the cosmic microwave background measurements made by the POLARization of the Background Radiation (POLARBEAR) experiment in its first season of observations. We find that the anisotropic cosmic birefringence signal from any parity-violating processes is consistent with zero. The Faraday rotation from anisotropic cosmic birefringence can be compared with the equivalent quantity generated by primordial magnetic fields if they existed. The POLARBEAR nondetection translates into a 95% confidence level (C.L.) upper limit of 93 nanogauss (nG) on the amplitude of an equivalent primordial magnetic field inclusive of systematic uncertainties. This four-point correlation constraint on Faraday rotation is about 15 times tighter than the upper limit of 1380 nG inferred from constraining the contribution of Faraday rotation to two-point correlations of B-modes measured by Planck in 2015. Metric perturbations sourced by primordial magnetic fields would also contribute to the B-mode power spectrum. Using the POLARBEAR measurements of the B-mode power spectrum (two-point correlation), we set a 95% C.L. upper limit of 3.9 nG on primordial magnetic fields assuming a flat prior on the field amplitude. This limit is comparable to what was found in the Planck 2015 two-point correlation analysis with both temperature and polarization. We perform a set of systematic error tests and find no evidence for contamination. This work marks the first time that anisotropic cosmic birefringence or primordial magnetic fields have been constrained from the ground at subdegree scales.
- Published
- 2015
47. Deployment of Polarbear-2A
- Author
-
Kaneko, Daisuke, Adachi, S., Ade, P. A. R., Aguilar Faúndez, M., Akiba, Y., Arnold, K., Baccigalupi, C., Barron, D., Beck, D., Beckman, S., Bianchini, F., Boettger, D., Borrill, J., Carron, J., Chapman, S., Cheung, K., Chinone, Y., Crowley, K., Cukierman, A., Dobbs, M., Dűnner, R., El-Bouhargani, H., Elleflot, T., Errard, J., Fabbian, G., Feeney, S. M., Feng, C., Fujino, T., Galitzki, N., Gilbert, A., Goeckner-Wald, N., Groh, J., Hall, G., Halverson, N. W., Hamada, T., Hasegawa, M., Hazumi, M., Hill, C. A., Howe, L., Inoue, Y., Jaehnig, G., Jeong, O., Katayama, N., Keating, B., Keskitalo, R., Kikuchi, S., Kisner, T., Krachmalnicoff, N., Kusaka, A., Lee, A. T., Leon, D., Linder, E., Lowry, L. N., Mangu, A., Matsuda, F., Minami, Y., Navaroli, M., Nishino, H., Peloton, J., Pham, A. T. P., Poletti, D., Puglisi, G., Reichardt, C. L., Ross, C., Segawa, Y., Silva-Feaver, M., Siritanasak, P., Stebor, N., Stompor, R., Suzuki, A., Tajima, O., Takakura, S., Takatori, S., Tanabe, D., Teply, G. P., Tomaru, T., Tsai, C., Verges, C., Westbrook, B., and Zhou, Y.
- Published
- 2020
- Full Text
- View/download PDF
48. Sensitivity Modeling for LiteBIRD
- Author
-
Hasebe, T, Ade, P, Adler, A, Allys, E, Alonso, D, Arnold, K, Auguste, D, Aumont, J, Aurlien, R, Austermann, J, Azzoni, S, Baccigalupi, C, Banday, A, Banerji, R, Barreiro, R, Bartolo, N, Basak, S, Battistelli, E, Bautista, L, Beall, J, Beck, D, Beckman, S, Benabed, K, Bermejo-Ballesteros, J, Bersanelli, M, Bonis, J, Borrill, J, Bouchet, F, Boulanger, F, Bounissou, S, Brilenkov, M, Brown, M, Bucher, M, Calabrese, E, Calvo, M, Campeti, P, Carones, A, Casas, F, Catalano, A, Challinor, A, Chan, V, Cheung, K, Chinone, Y, Cliche, J, Columbro, F, Coulton, W, Cubas, J, Cukierman, A, Curtis, D, D'Alessandro, G, Dachlythra, K, de Bernardis, P, de Haan, T, dela Hoz, E, De Petris, M, Torre, S, Dickinson, C, Diego-Palazuelos, P, Dobbs, M, Dotani, T, Douillet, D, Duband, L, Ducout, A, Duff, S, Duval, J, Ebisawa, K, Elleflot, T, Eriksen, H, Errard, J, Essinger-Hileman, T, Finelli, F, Flauger, R, Franceschet, C, Fuskeland, U, Galli, S, Galloway, M, Ganga, K, Gao, J, Genova-Santos, R, Gerbino, M, Gervasi, M, Ghigna, T, Giardiello, S, Gjerlow, E, Gradziel, M, Grain, J, Grandsire, L, Grupp, F, Gruppuso, A, Gudmundsson, J, Halverson, N, Hamilton, J, Hargrave, P, Hasegawa, M, Hattori, M, Hazumi, M, Henrot-Versille, S, Hergt, L, Herman, D, Herranz, D, Hill, C, Hilton, G, Hivon, E, Hlozek, R, Hoang, T, Hornsby, A, Hoshino, Y, Hubmayr, J, Ichiki, K, Iida, T, Imada, H, Ishimura, K, Ishino, H, Jaehnig, G, Jones, M, Kaga, T, Kashima, S, Katayama, N, Kato, A, Kawasaki, T, Keskitalo, R, Kisner, T, Kobayashi, Y, Kogiso, N, Kogut, A, Kohri, K, Komatsu, E, Komatsu, K, Konishi, K, Krachmalnicoff, N, Kreykenbohm, I, Kuo, C, Kushino, A, Lamagna, L, Lanen, J, Laquaniello, G, Lattanzi, M, Lee, A, Leloup, C, Levrier, F, Linder, E, Louis, T, Luzzi, G, Macias-Perez, J, Maciaszek, T, Maffei, B, Maino, D, Maki, M, Mandelli, S, Maris, M, Martinez-Gonzalez, E, Masi, S, Massa, M, Matarrese, S, Matsuda, F, Matsumura, T, Mele, L, Mennella, A, Migliaccio, M, Minami, Y, Mitsuda, K, Moggi, A, Monfardini, A, Montgomery, J, Montier, L, Morgante, G, Mot, B, Murata, Y, Murphy, J, Nagai, M, Nagano, Y, Nagasaki, T, Nagata, R, Nakamura, S, Nakano, R, Namikawa, T, Nati, F, Natoli, P, Nerval, S, Nishibori, T, Nishino, H, Noviello, F, O'Sullivan, C, Odagiri, K, Ogawa, H, Oguri, S, Ohsaki, H, Ohta, I, Okada, N, Pagano, L, Paiella, A, Paoletti, D, Passerini, A, Patanchon, G, Pelgrim, V, Peloton, J, Piacentini, F, Piat, M, Pisano, G, Polenta, G, Poletti, D, Prouve, T, Puglisi, G, Rambaud, D, Raum, C, Realini, S, Reinecke, M, Remazeilles, M, Ritacco, A, Roudil, G, Rubino-Martin, J, Russell, M, Sakurai, H, Sakurai, Y, Sandri, M, Sasaki, M, Savini, G, Scott, D, Seibert, J, Sekimoto, Y, Sherwin, B, Shinozaki, K, Shiraishi, M, Shirron, P, Signorelli, G, Smecher, G, Spinella, F, Stever, S, Stompor, R, Sugiyama, S, Sullivan, R, Suzuki, A, Suzuki, J, Svalheim, T, Switzer, E, Takaku, R, Takakura, H, Takakura, S, Takase, Y, Takeda, Y, Tartari, A, Tavagnacco, D, Taylor, A, Taylor, E, Terao, Y, Thermeau, J, Thommesen, H, Thompson, K, Thorne, B, Toda, T, Tomasi, M, Tominaga, M, Trappe, N, Tristram, M, Tsuji, M, Tsujimoto, M, Tucker, C, Ullom, J, Vacher, L, Vermeulen, G, Vielva, P, Villa, F, Vissers, M, Vittorio, N, Wandelt, B, Wang, W, Watanuki, K, Wehus, I, Weller, J, Westbrook, B, Wilms, J, Winter, B, Wollack, E, Yamasaki, N, Yoshida, T, Yumoto, J, Zacchei, A, Zannoni, M, Zonca, A, Hasebe T., Ade P. A. R., Adler A., Allys E., Alonso D., Arnold K., Auguste D., Aumont J., Aurlien R., Austermann J., Azzoni S., Baccigalupi C., Banday A. J., Banerji R., Barreiro R. B., Bartolo N., Basak S., Battistelli E., Bautista L., Beall J., Beck D., Beckman S., Benabed K., Bermejo-Ballesteros J., Bersanelli M., Bonis J., Borrill J., Bouchet F., Boulanger F., Bounissou S., Brilenkov M., Brown M. L., Bucher M., Calabrese E., Calvo M., Campeti P., Carones A., Casas F. J., Catalano A., Challinor A., Chan V., Cheung K., Chinone Y., Cliche J., Columbro F., Coulton W., Cubas J., Cukierman A., Curtis D., D'Alessandro G., Dachlythra K., de Bernardis P., de Haan T., dela Hoz E., De Petris M., Torre S. D., Dickinson C., Diego-Palazuelos P., Dobbs M., Dotani T., Douillet D., Duband L., Ducout A., Duff S., Duval J. M., Ebisawa K., Elleflot T., Eriksen H. K., Errard J., Essinger-Hileman T., Finelli F., Flauger R., Franceschet C., Fuskeland U., Galli S., Galloway M., Ganga K., Gao J. R., Genova-Santos R. T., Gerbino M., Gervasi M., Ghigna T., Giardiello S., Gjerlow E., Gradziel M. L., Grain J., Grandsire L., Grupp F., Gruppuso A., Gudmundsson J. E., Halverson N. W., Hamilton J., Hargrave P., Hasegawa M., Hattori M., Hazumi M., Henrot-Versille S., Hergt L. T., Herman D., Herranz D., Hill C. A., Hilton G., Hivon E., Hlozek R. A., Hoang T. D., Hornsby A. L., Hoshino Y., Hubmayr J., Ichiki K., Iida T., Imada H., Ishimura K., Ishino H., Jaehnig G., Jones M., Kaga T., Kashima S., Katayama N., Kato A., Kawasaki T., Keskitalo R., Kisner T., Kobayashi Y., Kogiso N., Kogut A., Kohri K., Komatsu E., Komatsu K., Konishi K., Krachmalnicoff N., Kreykenbohm I., Kuo C. L., Kushino A., Lamagna L., Lanen J. V., Laquaniello G., Lattanzi M., Lee A. T., Leloup C., Levrier F., Linder E., Louis T., Luzzi G., Macias-Perez J., Maciaszek T., Maffei B., Maino D., Maki M., Mandelli S., Maris M., Martinez-Gonzalez E., Masi S., Massa M., Matarrese S., Matsuda F. T., Matsumura T., Mele L., Mennella A., Migliaccio M., Minami Y., Mitsuda K., Moggi A., Monfardini A., Montgomery J., Montier L., Morgante G., Mot B., Murata Y., Murphy J. A., Nagai M., Nagano Y., Nagasaki T., Nagata R., Nakamura S., Nakano R., Namikawa T., Nati F., Natoli P., Nerval S., Nishibori T., Nishino H., Noviello F., O'Sullivan C., Odagiri K., Ogawa H., Oguri S., Ohsaki H., Ohta I. S., Okada N., Pagano L., Paiella A., Paoletti D., Passerini A., Patanchon G., Pelgrim V., Peloton J., Piacentini F., Piat M., Pisano G., Polenta G., Poletti D., Prouve T., Puglisi G., Rambaud D., Raum C., Realini S., Reinecke M., Remazeilles M., Ritacco A., Roudil G., Rubino-Martin J., Russell M., Sakurai H., Sakurai Y., Sandri M., Sasaki M., Savini G., Scott D., Seibert J., Sekimoto Y., Sherwin B., Shinozaki K., Shiraishi M., Shirron P., Signorelli G., Smecher G., Spinella F., Stever S., Stompor R., Sugiyama S., Sullivan R., Suzuki A., Suzuki J., Svalheim T. L., Switzer E., Takaku R., Takakura H., Takakura S., Takase Y., Takeda Y., Tartari A., Tavagnacco D., Taylor A., Taylor E., Terao Y., Thermeau J., Thommesen H., Thompson K. L., Thorne B., Toda T., Tomasi M., Tominaga M., Trappe N., Tristram M., Tsuji M., Tsujimoto M., Tucker C., Ullom J., Vacher L., Vermeulen G., Vielva P., Villa F., Vissers M., Vittorio N., Wandelt B., Wang W., Watanuki K., Wehus I. K., Weller J., Westbrook B., Wilms J., Winter B., Wollack E. J., Yamasaki N. Y., Yoshida T., Yumoto J., Zacchei A., Zannoni M., Zonca A., Hasebe, T, Ade, P, Adler, A, Allys, E, Alonso, D, Arnold, K, Auguste, D, Aumont, J, Aurlien, R, Austermann, J, Azzoni, S, Baccigalupi, C, Banday, A, Banerji, R, Barreiro, R, Bartolo, N, Basak, S, Battistelli, E, Bautista, L, Beall, J, Beck, D, Beckman, S, Benabed, K, Bermejo-Ballesteros, J, Bersanelli, M, Bonis, J, Borrill, J, Bouchet, F, Boulanger, F, Bounissou, S, Brilenkov, M, Brown, M, Bucher, M, Calabrese, E, Calvo, M, Campeti, P, Carones, A, Casas, F, Catalano, A, Challinor, A, Chan, V, Cheung, K, Chinone, Y, Cliche, J, Columbro, F, Coulton, W, Cubas, J, Cukierman, A, Curtis, D, D'Alessandro, G, Dachlythra, K, de Bernardis, P, de Haan, T, dela Hoz, E, De Petris, M, Torre, S, Dickinson, C, Diego-Palazuelos, P, Dobbs, M, Dotani, T, Douillet, D, Duband, L, Ducout, A, Duff, S, Duval, J, Ebisawa, K, Elleflot, T, Eriksen, H, Errard, J, Essinger-Hileman, T, Finelli, F, Flauger, R, Franceschet, C, Fuskeland, U, Galli, S, Galloway, M, Ganga, K, Gao, J, Genova-Santos, R, Gerbino, M, Gervasi, M, Ghigna, T, Giardiello, S, Gjerlow, E, Gradziel, M, Grain, J, Grandsire, L, Grupp, F, Gruppuso, A, Gudmundsson, J, Halverson, N, Hamilton, J, Hargrave, P, Hasegawa, M, Hattori, M, Hazumi, M, Henrot-Versille, S, Hergt, L, Herman, D, Herranz, D, Hill, C, Hilton, G, Hivon, E, Hlozek, R, Hoang, T, Hornsby, A, Hoshino, Y, Hubmayr, J, Ichiki, K, Iida, T, Imada, H, Ishimura, K, Ishino, H, Jaehnig, G, Jones, M, Kaga, T, Kashima, S, Katayama, N, Kato, A, Kawasaki, T, Keskitalo, R, Kisner, T, Kobayashi, Y, Kogiso, N, Kogut, A, Kohri, K, Komatsu, E, Komatsu, K, Konishi, K, Krachmalnicoff, N, Kreykenbohm, I, Kuo, C, Kushino, A, Lamagna, L, Lanen, J, Laquaniello, G, Lattanzi, M, Lee, A, Leloup, C, Levrier, F, Linder, E, Louis, T, Luzzi, G, Macias-Perez, J, Maciaszek, T, Maffei, B, Maino, D, Maki, M, Mandelli, S, Maris, M, Martinez-Gonzalez, E, Masi, S, Massa, M, Matarrese, S, Matsuda, F, Matsumura, T, Mele, L, Mennella, A, Migliaccio, M, Minami, Y, Mitsuda, K, Moggi, A, Monfardini, A, Montgomery, J, Montier, L, Morgante, G, Mot, B, Murata, Y, Murphy, J, Nagai, M, Nagano, Y, Nagasaki, T, Nagata, R, Nakamura, S, Nakano, R, Namikawa, T, Nati, F, Natoli, P, Nerval, S, Nishibori, T, Nishino, H, Noviello, F, O'Sullivan, C, Odagiri, K, Ogawa, H, Oguri, S, Ohsaki, H, Ohta, I, Okada, N, Pagano, L, Paiella, A, Paoletti, D, Passerini, A, Patanchon, G, Pelgrim, V, Peloton, J, Piacentini, F, Piat, M, Pisano, G, Polenta, G, Poletti, D, Prouve, T, Puglisi, G, Rambaud, D, Raum, C, Realini, S, Reinecke, M, Remazeilles, M, Ritacco, A, Roudil, G, Rubino-Martin, J, Russell, M, Sakurai, H, Sakurai, Y, Sandri, M, Sasaki, M, Savini, G, Scott, D, Seibert, J, Sekimoto, Y, Sherwin, B, Shinozaki, K, Shiraishi, M, Shirron, P, Signorelli, G, Smecher, G, Spinella, F, Stever, S, Stompor, R, Sugiyama, S, Sullivan, R, Suzuki, A, Suzuki, J, Svalheim, T, Switzer, E, Takaku, R, Takakura, H, Takakura, S, Takase, Y, Takeda, Y, Tartari, A, Tavagnacco, D, Taylor, A, Taylor, E, Terao, Y, Thermeau, J, Thommesen, H, Thompson, K, Thorne, B, Toda, T, Tomasi, M, Tominaga, M, Trappe, N, Tristram, M, Tsuji, M, Tsujimoto, M, Tucker, C, Ullom, J, Vacher, L, Vermeulen, G, Vielva, P, Villa, F, Vissers, M, Vittorio, N, Wandelt, B, Wang, W, Watanuki, K, Wehus, I, Weller, J, Westbrook, B, Wilms, J, Winter, B, Wollack, E, Yamasaki, N, Yoshida, T, Yumoto, J, Zacchei, A, Zannoni, M, Zonca, A, Hasebe T., Ade P. A. R., Adler A., Allys E., Alonso D., Arnold K., Auguste D., Aumont J., Aurlien R., Austermann J., Azzoni S., Baccigalupi C., Banday A. J., Banerji R., Barreiro R. B., Bartolo N., Basak S., Battistelli E., Bautista L., Beall J., Beck D., Beckman S., Benabed K., Bermejo-Ballesteros J., Bersanelli M., Bonis J., Borrill J., Bouchet F., Boulanger F., Bounissou S., Brilenkov M., Brown M. L., Bucher M., Calabrese E., Calvo M., Campeti P., Carones A., Casas F. J., Catalano A., Challinor A., Chan V., Cheung K., Chinone Y., Cliche J., Columbro F., Coulton W., Cubas J., Cukierman A., Curtis D., D'Alessandro G., Dachlythra K., de Bernardis P., de Haan T., dela Hoz E., De Petris M., Torre S. D., Dickinson C., Diego-Palazuelos P., Dobbs M., Dotani T., Douillet D., Duband L., Ducout A., Duff S., Duval J. M., Ebisawa K., Elleflot T., Eriksen H. K., Errard J., Essinger-Hileman T., Finelli F., Flauger R., Franceschet C., Fuskeland U., Galli S., Galloway M., Ganga K., Gao J. R., Genova-Santos R. T., Gerbino M., Gervasi M., Ghigna T., Giardiello S., Gjerlow E., Gradziel M. L., Grain J., Grandsire L., Grupp F., Gruppuso A., Gudmundsson J. E., Halverson N. W., Hamilton J., Hargrave P., Hasegawa M., Hattori M., Hazumi M., Henrot-Versille S., Hergt L. T., Herman D., Herranz D., Hill C. A., Hilton G., Hivon E., Hlozek R. A., Hoang T. D., Hornsby A. L., Hoshino Y., Hubmayr J., Ichiki K., Iida T., Imada H., Ishimura K., Ishino H., Jaehnig G., Jones M., Kaga T., Kashima S., Katayama N., Kato A., Kawasaki T., Keskitalo R., Kisner T., Kobayashi Y., Kogiso N., Kogut A., Kohri K., Komatsu E., Komatsu K., Konishi K., Krachmalnicoff N., Kreykenbohm I., Kuo C. L., Kushino A., Lamagna L., Lanen J. V., Laquaniello G., Lattanzi M., Lee A. T., Leloup C., Levrier F., Linder E., Louis T., Luzzi G., Macias-Perez J., Maciaszek T., Maffei B., Maino D., Maki M., Mandelli S., Maris M., Martinez-Gonzalez E., Masi S., Massa M., Matarrese S., Matsuda F. T., Matsumura T., Mele L., Mennella A., Migliaccio M., Minami Y., Mitsuda K., Moggi A., Monfardini A., Montgomery J., Montier L., Morgante G., Mot B., Murata Y., Murphy J. A., Nagai M., Nagano Y., Nagasaki T., Nagata R., Nakamura S., Nakano R., Namikawa T., Nati F., Natoli P., Nerval S., Nishibori T., Nishino H., Noviello F., O'Sullivan C., Odagiri K., Ogawa H., Oguri S., Ohsaki H., Ohta I. S., Okada N., Pagano L., Paiella A., Paoletti D., Passerini A., Patanchon G., Pelgrim V., Peloton J., Piacentini F., Piat M., Pisano G., Polenta G., Poletti D., Prouve T., Puglisi G., Rambaud D., Raum C., Realini S., Reinecke M., Remazeilles M., Ritacco A., Roudil G., Rubino-Martin J., Russell M., Sakurai H., Sakurai Y., Sandri M., Sasaki M., Savini G., Scott D., Seibert J., Sekimoto Y., Sherwin B., Shinozaki K., Shiraishi M., Shirron P., Signorelli G., Smecher G., Spinella F., Stever S., Stompor R., Sugiyama S., Sullivan R., Suzuki A., Suzuki J., Svalheim T. L., Switzer E., Takaku R., Takakura H., Takakura S., Takase Y., Takeda Y., Tartari A., Tavagnacco D., Taylor A., Taylor E., Terao Y., Thermeau J., Thommesen H., Thompson K. L., Thorne B., Toda T., Tomasi M., Tominaga M., Trappe N., Tristram M., Tsuji M., Tsujimoto M., Tucker C., Ullom J., Vacher L., Vermeulen G., Vielva P., Villa F., Vissers M., Vittorio N., Wandelt B., Wang W., Watanuki K., Wehus I. K., Weller J., Westbrook B., Wilms J., Winter B., Wollack E. J., Yamasaki N. Y., Yoshida T., Yumoto J., Zacchei A., Zannoni M., and Zonca A.
- Abstract
LiteBIRD is a future satellite mission designed to observe the polarization of the cosmic microwave background radiation in order to probe the inflationary universe. LiteBIRD is set to observe the sky using three telescopes with transition-edge sensor bolometers. In this work we estimated the LiteBIRD instrumental sensitivity using its current design. We estimated the detector noise due to the optical loadings using physical optics and ray-tracing simulations. The noise terms associated with thermal carrier and readout noise were modeled in the detector noise calculation. We calculated the observational sensitivities over fifteen bands designed for the LiteBIRD telescopes using assumed observation time efficiency.
- Published
- 2023
49. Density-Dependent Synthetic Gauge Fields Using Periodically Modulated Interactions
- Author
-
Greschner, S., Sun, G., Poletti, D., and Santos, L.
- Subjects
Condensed Matter - Quantum Gases - Abstract
We show that density-dependent synthetic gauge fields may be engineered by combining periodically modu- lated interactions and Raman-assisted hopping in spin-dependent optical lattices. These fields lead to a density- dependent shift of the momentum distribution, may induce superfluid-to-Mott insulator transitions, and strongly modify correlations in the superfluid regime. We show that the interplay between the created gauge field and the broken sublattice symmetry results, as well, in an intriguing behavior at vanishing interactions, characterized by the appearance of a fractional Mott insulator., Comment: 5 pages, 5 figures
- Published
- 2013
- Full Text
- View/download PDF
50. Comment on 'Coherent Ratchets in Driven Bose-Einstein Condensates'
- Author
-
Benenti, G., Casati, G., Denisov, S., Flach, S., Hanggi, P., Li, B., and Poletti, D.
- Subjects
Condensed Matter - Quantum Gases - Abstract
C. E. Creffield and F. Sols (Phys. Rev. Lett. 103, 200601 (2009)) recently reported finite, directed time-averaged ratchet current, for a noninteracting quantum particle in a periodic potential even when time-reversal symmetry holds. As we explain in this Comment, this result is incorrect, that is, time-reversal symmetry implies a vanishing current., Comment: revised version
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.