1. Plasmon modes in Dirac-Schrodinger hybrid electron systems including layer-thickness and exchange-correlation effects
- Author
-
Van Men, Nguyen and Khanh, Nguyen Quoc
- Subjects
Schrödinger equation -- Usage ,Plasmons (Physics) -- Models ,Mathematical research ,Physics - Abstract
We calculate the plasmon dispersion relation and damping rate of collective excitations in a double-layer system consisting of monolayer graphene and GaAs quantum well at zero temperature including layer-thickness and exchangecorrelation effects. We use the generalized random-phase-approximation dielectric function and take into account the nonhomogeneity of the dielectric background of the system. We show that the effects of layer thickness, electron densities, and exchange-correlations are more pronounced for acoustic modes, while the optical branch depends remarkably on dielectric constants of the contacting media. Key words: graphene, plasmon, collective excitations, double-layer systems, electron gas. Nous incluons les effets d'epaisseur de couche et d'echange-correlation pour calculer la relation de dispersion et le taux d'amortissement des excitations collectives dans un systeme a deux couches, consistant en une monocouche de graphene et un puits quantique GaAs a temperature zero. Nous utilisons la fonction dielectrique de l'approximation par phases aleatoires generalisee et nous tenons compte de la non homogeneite du fond dielectrique du systeme. Nous montrons que les effets d'epaisseur de couche, de densite electronique sont plus prononces pour les modes acoustiques, alors que la branche optique depend beaucoup de la constante dielectrique du milieu de contact. [Traduit par la Redaction] Mots-cles: graphene, plasmon, excitations collectives, systeme a deux couches, gaz d'electrons., 1. Introduction Graphene, a special two-dimensional electron gas (2DEG) system, has attracted a great deal of attention in recent years because of its unique electronic properties [1-3]. Charge carriers in [...]
- Published
- 2018
- Full Text
- View/download PDF