1. Regulation of memory CD4+ T-cell generation by intrinsic and extrinsic IL-27 signaling during malaria infection.
- Author
-
Tsogtsaikhan S, Inoue SI, Bayarsaikhan G, Macalinao ML, Kimura D, Miyakoda M, Yamamoto M, Hara H, Yoshida H, and Yui K
- Subjects
- Animals, Mice, Mice, Inbred C57BL, Immunologic Memory immunology, Mice, Transgenic, Receptors, Interleukin immunology, Receptors, Interleukin metabolism, Receptors, Interleukin genetics, Memory T Cells immunology, Malaria immunology, Signal Transduction immunology, Mice, Knockout, CD4-Positive T-Lymphocytes immunology, Plasmodium chabaudi immunology
- Abstract
The generation and maintenance of memory T cells are regulated by various factors, including cytokines. Previous studies have shown that IL-27 is produced during the early acute phase of Plasmodium chabaudi chabaudi AS (Pcc) infection and inhibits the development of Th1-type memory CD4+ T cells. However, whether IL-27 acts directly on its receptor on Plasmodium-specific CD4+ T cells or indirectly via its receptor on other immune cells remains unclear. We aimed to determine the role of IL-27 receptor signaling in different immune cell types in regulating the generation and phenotype of memory CD4+ T cells during Plasmodium infection. We utilized Plasmodium-specific T-cell antigen receptor (TCR) transgenic mice, PbT-II, and Il27rα-/- mice to assess the direct and indirect effects of IL-27 signaling on memory CD4+ T-cell generation. Mice were transferred with PbT-II or Il27rα-/- PbT-II cells and infected with Pcc. Conditional knockout mice lacking the IL-27 receptor in T cells or dendritic cells were employed to discern the specific immune cell types involved in IL-27 receptor signaling. High levels of memory in PbT-II cells with Th1-shift occurred only when both PbT-II and host cells lacked the IL-27 receptor, suggesting the predominant inhibitory role of IL-27 signaling in both cell types. Furthermore, IL-27 receptor signaling in T cells limited the number of memory CD4+ T cells, while signaling in both T and dendritic cells contributed to the Th1 dominance of memory CD4+ T cells. These findings underscore the complex cytokine signaling network regulating memory CD4+ T cells during Plasmodium infection., (© The Author(s) 2024. Published by Oxford University Press on behalf of The Japanese Society for Immunology. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF