1. Análisis de sentimientos a nivel de aspecto usando ontologías y aprendizaje automático
- Author
-
Henriquez Miranda, Carlos, Pla Santamaría, Ferrán, Hurtado Oliver, Lluís Felip, Guzmán, Jaime, Henriquez Miranda, Carlos, Pla Santamaría, Ferrán, Hurtado Oliver, Lluís Felip, and Guzmán, Jaime
- Abstract
En este artículo se presenta un sistema de análisis de sentimientos a nivel de aspecto que permite extraer automáticamente las características de una opinión y determinar la polaridad asociada. El sistema propuesto está basado en un modelo que utiliza ontologías de dominio para la detección de los aspectos y un clasificador basado en Máquinas de Soporte Vectorial para la asignación de la polaridad a los aspectos detectados. El trabajo experimental se ha realizado utilizando el conjunto de datos desarrollado para la Tarea 5, Sentence-level ABSA en SemEval 2016 para el español. El sistema propuesto ha obtenido un 73.07 en F1 en la extracción de aspectos (slot2) y un 46.24 de F1 en la subtarea conjunta de categorización y extracción de aspectos (slot1,2) utilizando una aproximación basada en ontologías. Para la subtarea de clasificación de sentimientos (slot3) se ha obtenido una Accuracy de 84.79% utilizando una aproximación basada en el uso de Máquinas de Soporte Vectorial y lexicones de polaridad. Estos valores superan los mejores resultados obtenidos en SemEval., In this paper, we present an aspect-based sentiment analysis system that allows to automatically extract the characteristics of an opinion and to determine their associated polarity. The proposed system is based on a model that uses domain ontologies for the detection of aspects and a classifier based on the Support Vector Machines formalism for assigning the polarity to the detected aspects. The experimental work was conducted using the dataset developed for Task 5, Sentence-level ABSA in SemEval 2016 for Spanish. The proposed system has obtained a 73.07 in F1 in the aspect extraction subtask (slot2) and a 46.24 of F1 in the categorization and aspect extraction subtask (slot1,2) using an ontology-based approach. For the sentiment classification subtask (slot3) an 84.79% in terms of Accuracy has been obtained using an approach based on Support Vector Machines and polarity lexicons. These results are better than those reported in SemEval.
- Published
- 2017