809 results on '"Pischon,T"'
Search Results
2. Baseline MRI Examination in the NAKO Health Study: Findings on Feasibility, Participation and Dropout Rates, Comfort, and Image Quality.
- Author
-
Bamberg, F., Schlett, C. L., Caspers, S., Ringhof, S., Günther, M., Hirsch, J. G., Rüdebusch, J., Miklánková, P., Bittner, N., Jockwitz, C., Forsting, M., Hosten, N., Kaaks, R., Kauczor, H. U., Kroenke, T., Niendorf, T., Peters, A., Pischon, T., Stang, A., and Berger, K.
- Abstract
Background: Magnetic resonance imaging (MRI) yields important information on the development and current status of many different diseases. Whole-body MRI was accordingly made a part of the multicenter, population-based NAKO Health Study. The present analysis concerns the feasibility of the baseline MRI examination and various aspects of quality assurance over the period 2014-2019. Methods: 32 252 participants in the NAKO Health Study, aged 20 to 74, who had no contraindication to MRI were invited to undergo scanning in one of five MRI study centers across Germany. The whole-body MRI scan took about one hour and consisted of sequences for the visualization of structural and functional features of the brain, musculoskeletal system, cardiovascular system, and thoracoabdominal system. A comprehensive quality-assurance assessment was carried out, with evaluation of adverse events, the completeness of the MRI protocols, the participants' subjective perceptions, and image quality. Results: 31 578 participants (97.9%) were successfully included in the MRI study. They reported a high level of comfort and suffered no severe adverse events (mild adverse events occurred in only four participants). Depending on the imaging sequence, the image quality was rated as excellent in 80.2% to 96.8% of cases. Quality assessment with respect to structural features of the brain revealed high consistency across study centers, as well as with regard to age- and sex-based differences in brain volume (men, 1203.81 ± 102.06 cm³; women, 1068.10 ± 86.69 cm³). Conclusion: Whole-body MRI was successfully implemented in the NAKO baseline examination and was associated with high patient comfort and very good image quality. The imaging biomarkers of the brain confirmed previously observed differences based on age and sex, underscoring the feasibility of data pooling. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
3. Compositional clusters in the nasal microbiome as predictors of SARS-CoV-2 infection - results from the German National Cohort (NAKO) study
- Author
-
Kleine Bardenhorst, S, Six-Merker, J, Peters, A, Krist, L, Keil, T, Nimptsch, K, Pischon, T, Gastell, S, Schulze, MB, Wolters, M, Günther, K, Schikowski, T, Schmidt, B, Stang, A, Michels, KB, Klee, B, Mikolajczyk, R, Harth, V, Obi, N, Lange, B, Klett-Tammen, CJ, Lieb, W, Becher, H, Kaaks, R, Karch, A, Berger, K, Nauck, M, Khattak M, N, Baurecht, H, Leitzmann, M, Holleczek, B, Brenner, H, Kemmling, Y, Panreck, L, Vital, M, Rübsamen, N, Kleine Bardenhorst, S, Six-Merker, J, Peters, A, Krist, L, Keil, T, Nimptsch, K, Pischon, T, Gastell, S, Schulze, MB, Wolters, M, Günther, K, Schikowski, T, Schmidt, B, Stang, A, Michels, KB, Klee, B, Mikolajczyk, R, Harth, V, Obi, N, Lange, B, Klett-Tammen, CJ, Lieb, W, Becher, H, Kaaks, R, Karch, A, Berger, K, Nauck, M, Khattak M, N, Baurecht, H, Leitzmann, M, Holleczek, B, Brenner, H, Kemmling, Y, Panreck, L, Vital, M, and Rübsamen, N
- Published
- 2024
4. Common symptoms and post-COVID associated symptoms in Germany - results from the NAKO study
- Author
-
Diexer, S, Purschke, O, Fricke, J, Ahnert, P, Gabrysch, S, Gottschick, C, Bohn, B, Brenner, H, Buck, C, Castell, S, Gastell, S, Greiser, KH, Harth, V, Heise, JK, Holleczek, B, Kaaks, R, Krist, L, Leitzmann, MF, Meinke-Franze, C, Michels, KB, Moreno, I, Obi, N, Panreck, L, Peters, A, Pischon, T, Schikowski, T, Schmidt, B, Standl, M, Stang, A, Völzke, H, Weber, A, Zeeb, H, Karch, A, Mikolajczyk, R, Diexer, S, Purschke, O, Fricke, J, Ahnert, P, Gabrysch, S, Gottschick, C, Bohn, B, Brenner, H, Buck, C, Castell, S, Gastell, S, Greiser, KH, Harth, V, Heise, JK, Holleczek, B, Kaaks, R, Krist, L, Leitzmann, MF, Meinke-Franze, C, Michels, KB, Moreno, I, Obi, N, Panreck, L, Peters, A, Pischon, T, Schikowski, T, Schmidt, B, Standl, M, Stang, A, Völzke, H, Weber, A, Zeeb, H, Karch, A, and Mikolajczyk, R
- Published
- 2024
5. Sex differences in cardiovascular risk in relation to socioeconomic position in the NAKO study
- Author
-
Moreno, I, Peters, S, Dragano, N, Greiser, KH, Doerr, M, Fischer, B, Berger, K, Hannemann, A, Schnabel, R, Nauck, M, goettlicher, s, Peters, A, Rospleszcz, S, Willich, SN, Krist, L, Schulze, MB, Gastell, S, Brand, T, Günther, K, Schikowski, T, Emmel, C, Schmidt, B, Michels, KB, Mikolajczyk, R, Kluttig, A, Harth, V, Obi, N, Castell, S, Klett-Tammen, CJ, Lieb, W, Becher, H, Winkler, V, Minnerup, H, Karch, A, Meinke-Franze, C, Leitzmann, MF, Stein, MJ, Bohn, B, Schoettker, B, trares, K, Pischon, T, Moreno, I, Peters, S, Dragano, N, Greiser, KH, Doerr, M, Fischer, B, Berger, K, Hannemann, A, Schnabel, R, Nauck, M, goettlicher, s, Peters, A, Rospleszcz, S, Willich, SN, Krist, L, Schulze, MB, Gastell, S, Brand, T, Günther, K, Schikowski, T, Emmel, C, Schmidt, B, Michels, KB, Mikolajczyk, R, Kluttig, A, Harth, V, Obi, N, Castell, S, Klett-Tammen, CJ, Lieb, W, Becher, H, Winkler, V, Minnerup, H, Karch, A, Meinke-Franze, C, Leitzmann, MF, Stein, MJ, Bohn, B, Schoettker, B, trares, K, and Pischon, T
- Published
- 2024
6. Association of a Lifestyle Risk Index with Visceral Adipose Tissue and Diabetes in the NAKO
- Author
-
Maskarinec, G, Klapp, R, Nöthlings, U, Sedlmeier, A, Schulze, MB, Nattenmüller, J, Bamberg, F, Haueise, T, Machann, J, Nauck, M, Nimptsch, K, Pischon, T, Maskarinec, G, Klapp, R, Nöthlings, U, Sedlmeier, A, Schulze, MB, Nattenmüller, J, Bamberg, F, Haueise, T, Machann, J, Nauck, M, Nimptsch, K, and Pischon, T
- Published
- 2024
7. Circulating fatty acid binding protein 4 (FABP-4) concentrations and mortality after CRC diagnosis in the European Prospective Investigation into Cancer and Nutrition (EPIC): A survival and a mediation analysis
- Author
-
Pham, TT, Nimptsch, K, Aleksandrova, K, Jenab, M, Fedirko, V, Pischon, T, Pham, TT, Nimptsch, K, Aleksandrova, K, Jenab, M, Fedirko, V, and Pischon, T
- Published
- 2024
8. Plasma SORLA concentration and risk of postoperative neurocognitive disorders (NCD): Results of the BioCog Study
- Author
-
Feinkohl, I, Wang, J, Janke, J, Slooter, A, Winterer, G, Spies, C, Schmidt, V, Willnow, T, Pischon, T, Feinkohl, I, Wang, J, Janke, J, Slooter, A, Winterer, G, Spies, C, Schmidt, V, Willnow, T, and Pischon, T
- Published
- 2024
9. The German National Cohort (NAKO): Current state and selected results
- Author
-
Greiser, KH, Bohn, B, Hilger-Kolb, J, Panreck, L, Palm, L, Breunig, E, Lieb, W, Pischon, T, Schikowski, T, Betker, P, Castell, S, Heise, JK, Schubert, M, Fischer, B, Sedlmeier, A, Stein, M, Bohmann, P, Leitzmann, M, Werner, J, Adjei, N, Brand, T, Zeeb, H, Berger, K, Meyer, T, Völzke, H, Greiser, KH, Bohn, B, Hilger-Kolb, J, Panreck, L, Palm, L, Breunig, E, Lieb, W, Pischon, T, Schikowski, T, Betker, P, Castell, S, Heise, JK, Schubert, M, Fischer, B, Sedlmeier, A, Stein, M, Bohmann, P, Leitzmann, M, Werner, J, Adjei, N, Brand, T, Zeeb, H, Berger, K, Meyer, T, and Völzke, H
- Published
- 2024
10. Size matters: Grey matter brain reserve predicts executive functioning in the elderly
- Author
-
Laubach, M., Lammers, F., Zacharias, N., Feinkohl, I., Pischon, T., Borchers, F., Slooter, A.J.C., Kühn, S., Spies, C., and Winterer, G.
- Published
- 2018
- Full Text
- View/download PDF
11. Personalized risk prediction of postoperative cognitive impairment – rationale for the EU-funded BioCog project
- Author
-
Winterer, G., Androsova, G., Bender, O., Boraschi, D., Borchers, F., Dschietzig, T.B., Feinkohl, I., Fletcher, P., Gallinat, J., Hadzidiakos, D., Haynes, J.D., Heppner, F., Hetzer, S., Hendrikse, J., Ittermann, B., Kant, I.M.J., Kraft, A., Krannich, A., Krause, R., Kühn, S., Lachmann, G., van Montfort, S.J.T., Müller, A., Nürnberg, P., Ofosu, K., Pietsch, M., Pischon, T., Preller, J., Renzulli, E., Scheurer, K., Schneider, R., Slooter, A.J.C., Spies, C., Stamatakis, E., Volk, H.D., Weber, S., Wolf, A., Yürek, F., and Zacharias, N.
- Published
- 2018
- Full Text
- View/download PDF
12. Association of obesity, diabetes and hypertension with cognitive impairment in older age
- Author
-
Feinkohl I, Lachmann G, Brockhaus WR, Borchers F, Piper SK, Ottens TH, Nathoe HM, Sauer AM, Dieleman JM, Radtke FM, van Dijk D, Pischon T, and Spies C
- Subjects
obesity ,body mass index ,diabetes ,hypertension ,cognitive impairment ,aging ,cognitive epidemiology ,Infectious and parasitic diseases ,RC109-216 - Abstract
Insa Feinkohl,1,* Gunnar Lachmann,2,* Wolf-Rüdiger Brockhaus,2 Friedrich Borchers,2 Sophie K Piper,3 Thomas H Ottens,4 Hendrik M Nathoe,5 Anne-Mette Sauer,4 Jan M Dieleman,4 Finn M Radtke,6 Diederik van Dijk,7 Tobias Pischon,1,8,9,* Claudia Spies2,* 1Molecular Epidemiology Research Group, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin-Buch, Germany; 2Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; 3Institute of Biometry and Clinical Epidemiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; 4Department of Anesthesiology, University Medical Center Utrecht, Utrecht, the Netherlands; 5Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands; 6Department of Anesthesiology, Naestved Hospital, Naestved, Denmark; 7Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, the Netherlands; 8Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; 9MDC/BIH Biobank, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), and Berlin Institute of Health (BIH), Berlin, Germany *These authors contributed equally to this work Background: Age-related cognitive impairment is rising in prevalence but is not yet fully characterized in terms of its epidemiology. Here, we aimed to elucidate the role of obesity, diabetes and hypertension as candidate risk factors. Methods: Original baseline data from 3 studies (OCTOPUS, DECS, SuDoCo) were obtained for secondary analysis of cross-sectional associations of diabetes, hypertension, blood pressure, obesity (body mass index [BMI] ≥30 kg/m²) and BMI with presence of cognitive impairment in log-binomial regression analyses. Cognitive impairment was defined as scoring more than 2 standard deviations below controls on at least one of 5–11 cognitive tests. Underweight participants (BMI
- Published
- 2018
13. The German National Cohort (NAKO): Design, current state, and further follow-up data collection
- Author
-
Greiser, K H, primary, Bohn, B, additional, Hilger-Kolb, J, additional, Panreck, L, additional, Breunig, E, additional, Lieb, W, additional, Pischon, T, additional, Schikowski, T, additional, and Völzke, H, additional
- Published
- 2023
- Full Text
- View/download PDF
14. Description of the COVID 2.0 survey in the NAKO and first results
- Author
-
Mikolajczyk, R, primary, Diexer, S, additional, Fricke, J, additional, Ahnert, P, additional, Pischon, T, additional, and Karch, A, additional
- Published
- 2023
- Full Text
- View/download PDF
15. The global burden of cancer attributable to risk factors, 2010–19: a systematic analysis for the Global Burden of Disease Study 2019
- Author
-
Tran, K, Lang, J, Compton, K, Xu, R, Acheson, A, Henrikson, H, Kocarnik, J, Penberthy, L, Aali, A, Abbas, Q, Abbasi, B, Abbasi-Kangevari, M, Abbasi-Kangevari, Z, Abbastabar, H, Abdelmasseh, M, Abd-Elsalam, S, Abdelwahab, A, Abdoli, G, Abdulkadir, H, Abedi, A, Abegaz, K, Abidi, H, Aboagye, R, Abolhassani, H, Absalan, A, Abtew, Y, Abubaker Ali, H, Abu-Gharbieh, E, Achappa, B, Acuna, J, Addison, D, Addo, I, Adegboye, O, Adesina, M, Adnan, M, Adnani, Q, Advani, S, Afrin, S, Afzal, M, Aggarwal, M, Ahinkorah, B, Ahmad, A, Ahmad, R, Ahmad, S, Ahmadi, S, Ahmed, H, Ahmed, L, Ahmed, M, Ahmed Rashid, T, Aiman, W, Ajami, M, Akalu, G, Akbarzadeh-Khiavi, M, Aklilu, A, Akonde, M, Akunna, C, Al Hamad, H, Alahdab, F, Alanezi, F, Alanzi, T, Alessy, S, Algammal, A, Al-Hanawi, M, Alhassan, R, Ali, B, Ali, L, Ali, S, Alimohamadi, Y, Alipour, V, Aljunid, S, Alkhayyat, M, Al-Maweri, S, Almustanyir, S, Alonso, N, Alqalyoobi, S, Al-Raddadi, R, Al-Rifai, R, Al-Sabah, S, Al-Tammemi, A, Altawalah, H, Alvis-Guzman, N, Amare, F, Ameyaw, E, Aminian Dehkordi, J, Amirzade-Iranaq, M, Amu, H, Amusa, G, Ancuceanu, R, Anderson, J, Animut, Y, Anoushiravani, A, Anoushirvani, A, Ansari-Moghaddam, A, Ansha, M, Antony, B, Antwi, M, Anwar, S, Anwer, R, Anyasodor, A, Arabloo, J, Arab-Zozani, M, Aremu, O, Argaw, A, Ariffin, H, Aripov, T, Arshad, M, Artaman, A, Arulappan, J, Aruleba, R, Aryannejad, A, Asaad, M, Asemahagn, M, Asemi, Z, Asghari-Jafarabadi, M, Ashraf, T, Assadi, R, Athar, M, Athari, S, Atout, M, Attia, S, Aujayeb, A, Ausloos, M, Avila-Burgos, L, Awedew, A, Awoke, M, Awoke, T, Ayala Quintanilla, B, Ayana, T, Ayen, S, Azadi, D, Azadnajafabad, S, Azami-Aghdash, S, Azanaw, M, Azangou-Khyavy, M, Azari Jafari, A, Azizi, H, Azzam, A, Babajani, A, Badar, M, Badiye, A, Baghcheghi, N, Bagheri, N, Bagherieh, S, Bahadory, S, Baig, A, Baker, J, Bakhtiari, A, Bakshi, R, Banach, M, Banerjee, I, Bardhan, M, Barone-Adesi, F, Barra, F, Barrow, A, Bashir, N, Bashiri, A, Basu, S, Batiha, A, Begum, A, Bekele, A, Belay, A, Belete, M, Belgaumi, U, Bell, A, Belo, L, Benzian, H, Berhie, A, Bermudez, A, Bernabe, E, Bhagavathula, A, Bhala, N, Bhandari, B, Bhardwaj, N, Bhardwaj, P, Bhattacharyya, K, Bhojaraja, V, Bhuyan, S, Bibi, S, Bilchut, A, Bintoro, B, Biondi, A, Birega, M, Birhan, H, Bjorge, T, Blyuss, O, Bodicha, B, Bolla, S, Boloor, A, Bosetti, C, Braithwaite, D, Brauer, M, Brenner, H, Briko, A, Briko, N, Buchanan, C, Bulamu, N, Bustamante-Teixeira, M, Butt, M, Butt, N, Butt, Z, Caetano dos Santos, F, Camera, L, Cao, C, Cao, Y, Carreras, G, Carvalho, M, Cembranel, F, Cerin, E, Chakraborty, P, Charalampous, P, Chattu, V, Chimed-Ochir, O, Chirinos-Caceres, J, Cho, D, Cho, W, Christopher, D, Chu, D, Chukwu, I, Cohen, A, Conde, J, Cortes, S, Costa, V, Cruz-Martins, N, Culbreth, G, Dadras, O, Dagnaw, F, Dahlawi, S, Dai, X, Dandona, L, Dandona, R, Daneshpajouhnejad, P, Danielewicz, A, Dao, A, Darvishi Cheshmeh Soltani, R, Darwesh, A, Das, S, Davitoiu, D, Davtalab Esmaeili, E, De la Hoz, F, Debela, S, Dehghan, A, Demisse, B, Demisse, F, Denova-Gutierrez, E, Derakhshani, A, Derbew Molla, M, Dereje, D, Deribe, K, Desai, R, Desalegn, M, Dessalegn, F, Dessalegni, S, Dessie, G, Desta, A, Dewan, S, Dharmaratne, S, Dhimal, M, Dianatinasab, M, Diao, N, Diaz, D, Digesa, L, Dixit, S, Doaei, S, Doan, L, Doku, P, Dongarwar, D, dos Santos, W, Driscoll, T, Dsouza, H, Durojaiye, O, Edalati, S, Eghbalian, F, Ehsani-Chimeh, E, Eini, E, Ekholuenetale, M, Ekundayo, T, Ekwueme, D, El Tantawi, M, Elbahnasawy, M, Elbarazi, I, Elghazaly, H, Elhadi, M, El-Huneidi, W, Emamian, M, Engelbert Bain, L, Enyew, D, Erkhembayar, R, Eshetu, T, Eshrati, B, Eskandarieh, S, Espinosa-Montero, J, Etaee, F, Etemadimanesh, A, Eyayu, T, Ezeonwumelu, I, Ezzikouri, S, Fagbamigbe, A, Fahimi, S, Fakhradiyev, I, Faraon, E, Fares, J, Farmany, A, Farooque, U, Farrokhpour, H, Fasanmi, A, Fatehizadeh, A, Fatima, W, Fattahi, H, Fekadu, G, Feleke, B, Ferrari, A, Ferrero, S, Ferro Desideri, L, Filip, I, Fischer, F, Foroumadi, R, Foroutan, M, Fukumoto, T, Gaal, P, Gad, M, Gadanya, M, Gaipov, A, Galehdar, N, Gallus, S, Garg, T, Gaspar Fonseca, M, Gebremariam, Y, Gebremeskel, T, Gebremichael, M, Geda, Y, Gela, Y, Gemeda, B, Getachew, M, Ghaffari, K, Ghafourifard, M, Ghamari, S, Ghasemi Nour, M, Ghassemi, F, Ghimire, A, Ghith, N, Gholamalizadeh, M, Gholizadeh Navashenaq, J, Ghozy, S, Gilani, S, Gill, P, Ginindza, T, Gizaw, A, Glasbey, J, Godos, J, Goel, A, Golechha, M, Goleij, P, Golinelli, D, Golitaleb, M, Gorini, G, Goulart, B, Grosso, G, Guadie, H, Gubari, M, Gudayu, T, Guerra, M, Gunawardane, D, Gupta, B, Gupta, S, Gupta, V, Gurara, M, Guta, A, Habibzadeh, P, Haddadi Avval, A, Hafezi-Nejad, N, Hajj Ali, A, Haj-Mirzaian, A, Halboub, E, Halimi, A, Halwani, R, Hamadeh, R, Hameed, S, Hamidi, S, Hanif, A, Hariri, S, Harlianto, N, Haro, J, Hartono, R, Hasaballah, A, Hasan, S, Hasani, H, Hashemi, S, Hassan, A, Hassanipour, S, Hayat, K, Heidari, G, Heidari, M, Heidarymeybodi, Z, Herrera-Serna, B, Herteliu, C, Hezam, K, Hiraike, Y, Hlongwa, M, Holla, R, Holm, M, Horita, N, Hoseini, M, Hossain, M, Hosseini, M, Hosseinzadeh, A, Hosseinzadeh, M, Hostiuc, M, Hostiuc, S, Househ, M, Huang, J, Hugo, F, Humayun, A, Hussain, S, Hussein, N, Hwang, B, Ibitoye, S, Iftikhar, P, Ikuta, K, Ilesanmi, O, Ilic, I, Ilic, M, Immurana, M, Innos, K, Iranpour, P, Irham, L, Islam, M, Islam, R, Islami, F, Ismail, N, Isola, G, Iwagami, M, J, L, Jaiswal, A, Jakovljevic, M, Jalili, M, Jalilian, S, Jamshidi, E, Jang, S, Jani, C, Javaheri, T, Jayarajah, U, Jayaram, S, Jazayeri, S, Jebai, R, Jemal, B, Jeong, W, Jha, R, Jindal, H, John-Akinola, Y, Jonas, J, Joo, T, Joseph, N, Joukar, F, Jozwiak, J, Jurisson, M, Kabir, A, Kacimi, S, Kadashetti, V, Kahe, F, Kakodkar, P, Kalankesh, L, Kalhor, R, Kamal, V, Kamangar, F, Kamath, A, Kanchan, T, Kandaswamy, E, Kandel, H, Kang, H, Kanno, G, Kapoor, N, Kar, S, Karanth, S, Karaye, I, Karch, A, Karimi, A, Kassa, B, Katoto, P, Kauppila, J, Kaur, H, Kebede, A, Keikavoosi-Arani, L, Kejela, G, Kemp Bohan, P, Keramati, M, Keykhaei, M, Khajuria, H, Khan, A, Khan, E, Khan, G, Khan, M, Khanali, J, Khatab, K, Khatatbeh, M, Khatib, M, Khayamzadeh, M, Khayat Kashani, H, Khazeei Tabari, M, Khezeli, M, Khodadost, M, Kim, M, Kim, Y, Kisa, A, Kisa, S, Klugar, M, Klugarova, J, Kolahi, A, Kolkhir, P, Kompani, F, Koul, P, Koulmane Laxminarayana, S, Koyanagi, A, Krishan, K, Krishnamoorthy, Y, Kucuk Bicer, B, Kugbey, N, Kulimbet, M, Kumar, A, Kumar, G, Kumar, N, Kurmi, O, Kuttikkattu, A, La Vecchia, C, Lahiri, A, Lal, D, Lam, J, Lan, Q, Landires, I, Larijani, B, Lasrado, S, Lau, J, Lauriola, P, Ledda, C, Lee, S, Lee, W, Lee, Y, Legesse, S, Leigh, J, Leong, E, Li, M, Lim, S, Liu, G, Liu, J, Lo, C, Lohiya, A, Lopukhov, P, Lorenzovici, L, Lotfi, M, Loureiro, J, Lunevicius, R, Madadizadeh, F, Mafi, A, Magdeldin, S, Mahjoub, S, Mahmoodpoor, A, Mahmoudi, M, Mahmoudimanesh, M, Mahumud, R, Majeed, A, Majidpoor, J, Makki, A, Makris, K, Malakan Rad, E, Malekpour, M, Malekzadeh, R, Malik, A, Mallhi, T, Mallya, S, Mamun, M, Manda, A, Mansour-Ghanaei, F, Mansouri, B, Mansournia, M, Mantovani, L, Martini, S, Martorell, M, Masoudi, S, Masoumi, S, Matei, C, Mathews, E, Mathur, M, Mathur, V, Mckee, M, Meena, J, Mehmood, K, Mehrabi Nasab, E, Mehrotra, R, Melese, A, Mendoza, W, Menezes, R, Mengesha, S, Mensah, L, Mentis, A, Mera-Mamian, A, Meretoja, T, Merid, M, Mersha, A, Meselu, B, Meshkat, M, Mestrovic, T, Miao Jonasson, J, Miazgowski, T, Michalek, I, Mijena, G, Miller, T, Mir, S, Mirinezhad, S, Mirmoeeni, S, Mirza-Aghazadeh-Attari, M, Mirzaei, H, Misganaw, A, Misra, S, Mohammad, K, Mohammadi, E, Mohammadi, M, Mohammadian-Hafshejani, A, Mohammadpourhodki, R, Mohammed, A, Mohammed, S, Mohan, S, Mohseni, M, Moka, N, Mokdad, A, Molassiotis, A, Molokhia, M, Momenzadeh, K, Momtazmanesh, S, Monasta, L, Mons, U, Montasir, A, Montazeri, F, Montero, A, Moosavi, M, Moradi, A, Moradi, Y, Moradi Sarabi, M, Moraga, P, Morawska, L, Morrison, S, Morze, J, Mosapour, A, Mostafavi, E, Mousavi, S, Mousavi Isfahani, H, Mousavi Khaneghah, A, Mpundu-Kaambwa, C, Mubarik, S, Mulita, F, Munblit, D, Munro, S, Murillo-Zamora, E, Musa, J, Nabhan, A, Nagarajan, A, Nagaraju, S, Nagel, G, Naghipour, M, Naimzada, M, Nair, T, Naqvi, A, Narasimha Swamy, S, Narayana, A, Nassereldine, H, Natto, Z, Nayak, B, Ndejjo, R, Nduaguba, S, Negash, W, Nejadghaderi, S, Nejati, K, Neupane Kandel, S, Nguyen, H, Niazi, R, Noor, N, Noori, M, Noroozi, N, Nouraei, H, Nowroozi, A, Nunez-Samudio, V, Nzoputam, C, Nzoputam, O, Oancea, B, Odukoya, O, Oghenetega, O, Ogunsakin, R, Oguntade, A, Oh, I, Okati-Aliabad, H, Okekunle, A, Olagunju, A, Olagunju, T, Olakunde, B, Olufadewa, I, Omer, E, Omonisi, A, Ong, S, Onwujekwe, O, Orru, H, Otstavnov, S, Oulhaj, A, Oumer, B, Owopetu, O, Oyinloye, B, P A, M, Padron-Monedero, A, Padubidri, J, Pakbin, B, Pakshir, K, Pakzad, R, Palicz, T, Pana, A, Pandey, A, Pant, S, Pardhan, S, Park, E, Park, S, Patel, J, Pati, S, Paudel, R, Paudel, U, Paun, M, Pazoki Toroudi, H, Peng, M, Pereira, J, Pereira, R, Perna, S, Perumalsamy, N, Pestell, R, Pezzani, R, Piccinelli, C, Pillay, J, Piracha, Z, Pischon, T, Postma, M, Pourabhari Langroudi, A, Pourshams, A, Pourtaheri, N, Prashant, A, Qadir, M, Quazi Syed, Z, Rabiee, M, Rabiee, N, Radfar, A, Radhakrishnan, R, Radhakrishnan, V, Raeisi, M, Rafiee, A, Rafiei, A, Raheem, N, Rahim, F, Rahman, M, Rahmani, A, Rahmani, S, Rahmanian, V, Rajai, N, Rajesh, A, Ram, P, Ramezanzadeh, K, Rana, J, Ranabhat, K, Ranasinghe, P, Rao, C, Rao, S, Rashedi, S, Rashidi, A, Rashidi, M, Ratan, Z, Rawaf, D, Rawaf, S, Rawal, L, Rawassizadeh, R, Razeghinia, M, Rehman, A, Rehman, I, Reitsma, M, Renzaho, A, Rezaei, M, Rezaei, N, Rezaei, S, Rezaeian, M, Rezapour, A, Riad, A, Rikhtegar, R, Rios-Blancas, M, Roberts, T, Rohloff, P, Romero-Rodriguez, E, Roshandel, G, Rwegerera, G, S, M, Saber-Ayad, M, Saberzadeh-Ardestani, B, Sabour, S, Saddik, B, Sadeghi, E, Saeb, M, Saeed, U, Safaei, M, Safary, A, Sahebazzamani, M, Sahebkar, A, Sahoo, H, Sajid, M, Salari, H, Salehi, S, Salem, M, Salimzadeh, H, Samodra, Y, Samy, A, Sanabria, J, Sankararaman, S, Sanmarchi, F, Santric-Milicevic, M, Saqib, M, Sarveazad, A, Sarvi, F, Sathian, B, Satpathy, M, Sayegh, N, Schneider, I, Schwarzinger, M, Sekerija, M, Senthilkumaran, S, Sepanlou, S, Seylani, A, Seyoum, K, Sha, F, Shafaat, O, Shah, P, Shahabi, S, Shahid, I, Shahrbaf, M, Shahsavari, H, Shaikh, M, Shaka, M, Shaker, E, Shannawaz, M, Sharew, M, Sharifi, A, Sharifi-Rad, J, Sharma, P, Shashamo, B, Sheikh, A, Sheikh, M, Sheikhbahaei, S, Sheikhi, R, Sheikhy, A, Shepherd, P, Shetty, A, Shetty, J, Shetty, R, Shibuya, K, Shirkoohi, R, Shirzad-Aski, H, Shivakumar, K, Shivalli, S, Shivarov, V, Shobeiri, P, Shokri Varniab, Z, Shorofi, S, Shrestha, S, Sibhat, M, Siddappa Malleshappa, S, Sidemo, N, Silva, D, Silva, L, Silva Julian, G, Silvestris, N, Simegn, W, Singh, A, Singh, G, Singh, H, Singh, J, Singh, P, Singh, S, Sinha, D, Sinke, A, Siraj, M, Sitas, F, Siwal, S, Skryabin, V, Skryabina, A, Socea, B, Soeberg, M, Sofi-Mahmudi, A, Solomon, Y, Soltani-Zangbar, M, Song, S, Song, Y, Sorensen, R, Soshnikov, S, Sotoudeh, H, Sowe, A, Sufiyan, M, Suk, R, Suleman, M, Suliankatchi Abdulkader, R, Sultana, S, Sur, D, Szocska, M, Tabaeian, S, Tabares-Seisdedos, R, Tabatabaei, S, Tabuchi, T, Tadbiri, H, Taheri, E, Taheri, M, Taheri Soodejani, M, Takahashi, K, Talaat, I, Tampa, M, Tan, K, Tat, N, Tat, V, Tavakoli, A, Tehrani-Banihashemi, A, Tekalegn, Y, Tesfay, F, Thapar, R, Thavamani, A, Thoguluva Chandrasekar, V, Thomas, N, Ticoalu, J, Tiyuri, A, Tollosa, D, Topor-Madry, R, Touvier, M, Tovani-Palone, M, Traini, E, Tran, M, Tripathy, J, Ukke, G, Ullah, I, Ullah, S, Unnikrishnan, B, Vacante, M, Vaezi, M, Valadan Tahbaz, S, Valdez, P, Vardavas, C, Varthya, S, Vaziri, S, Velazquez, D, Veroux, M, Villeneuve, P, Violante, F, Vladimirov, S, Vlassov, V, Vo, B, Vu, L, Wadood, A, Waheed, Y, Walde, M, Wamai, R, Wang, C, Wang, F, Wang, N, Wang, Y, Ward, P, Waris, A, Westerman, R, Wickramasinghe, N, Woldemariam, M, Woldu, B, Xiao, H, Xu, S, Xu, X, Yadav, L, Yahyazadeh Jabbari, S, Yang, L, Yazdanpanah, F, Yeshaw, Y, Yismaw, Y, Yonemoto, N, Younis, M, Yousefi, Z, Yousefian, F, Yu, C, Yu, Y, Yunusa, I, Zahir, M, Zaki, N, Zaman, B, Zangiabadian, M, Zare, F, Zare, I, Zareshahrabadi, Z, Zarrintan, A, Zastrozhin, M, Zeineddine, M, Zhang, D, Zhang, J, Zhang, Y, Zhang, Z, Zhou, L, Zodpey, S, Zoladl, M, Vos, T, Hay, S, Force, L, Murray, C, Tran K. B., Lang J. J., Compton K., Xu R., Acheson A. R., Henrikson H. J., Kocarnik J. M., Penberthy L., Aali A., Abbas Q., Abbasi B., Abbasi-Kangevari M., Abbasi-Kangevari Z., Abbastabar H., Abdelmasseh M., Abd-Elsalam S., Abdelwahab A. A., Abdoli G., Abdulkadir H. A., Abedi A., Abegaz K. H., Abidi H., Aboagye R. G., Abolhassani H., Absalan A., Abtew Y. D., Abubaker Ali H., Abu-Gharbieh E., Achappa B., Acuna J. M., Addison D., Addo I. Y., Adegboye O. A., Adesina M. A., Adnan M., Adnani Q. E. S., Advani S. M., Afrin S., Afzal M. S., Aggarwal M., Ahinkorah B. O., Ahmad A. R., Ahmad R., Ahmad S., Ahmadi S., Ahmed H., Ahmed L. A., Ahmed M. B., Ahmed Rashid T., Aiman W., Ajami M., Akalu G. T., Akbarzadeh-Khiavi M., Aklilu A., Akonde M., Akunna C. J., Al Hamad H., Alahdab F., Alanezi F. M., Alanzi T. M., Alessy S. A., Algammal A. M., Al-Hanawi M. K., Alhassan R. K., Ali B. A., Ali L., Ali S. S., Alimohamadi Y., Alipour V., Aljunid S. M., Alkhayyat M., Al-Maweri S. A. A., Almustanyir S., Alonso N., Alqalyoobi S., Al-Raddadi R. M., Al-Rifai R. H. H., Al-Sabah S. K., Al-Tammemi A. B., Altawalah H., Alvis-Guzman N., Amare F., Ameyaw E. K., Aminian Dehkordi J. J., Amirzade-Iranaq M. H., Amu H., Amusa G. A., Ancuceanu R., Anderson J. A., Animut Y. A., Anoushiravani A., Anoushirvani A. A., Ansari-Moghaddam A., Ansha M. G., Antony B., Antwi M. H., Anwar S. L., Anwer R., Anyasodor A. E., Arabloo J., Arab-Zozani M., Aremu O., Argaw A. M., Ariffin H., Aripov T., Arshad M., Artaman A., Arulappan J., Aruleba R. T., Aryannejad A., Asaad M., Asemahagn M. A., Asemi Z., Asghari-Jafarabadi M., Ashraf T., Assadi R., Athar M., Athari S. S., Atout M. M. W., Attia S., Aujayeb A., Ausloos M., Avila-Burgos L., Awedew A. F., Awoke M. A., Awoke T., Ayala Quintanilla B. P., Ayana T. M., Ayen S. S., Azadi D., Azadnajafabad S., Azami-Aghdash S., Azanaw M. M., Azangou-Khyavy M., Azari Jafari A., Azizi H., Azzam A. Y. Y., Babajani A., Badar M., Badiye A. D., Baghcheghi N., Bagheri N., Bagherieh S., Bahadory S., Baig A. A., Baker J. L., Bakhtiari A., Bakshi R. K., Banach M., Banerjee I., Bardhan M., Barone-Adesi F., Barra F., Barrow A., Bashir N. Z., Bashiri A., Basu S., Batiha A. -M. M., Begum A., Bekele A. B., Belay A. S., Belete M. A., Belgaumi U. I., Bell A. W., Belo L., Benzian H., Berhie A. Y., Bermudez A. N. C., Bernabe E., Bhagavathula A. S., Bhala N., Bhandari B. B., Bhardwaj N., Bhardwaj P., Bhattacharyya K., Bhojaraja V. S., Bhuyan S. S., Bibi S., Bilchut A. H., Bintoro B. S., Biondi A., Birega M. G. B., Birhan H. E., Bjorge T., Blyuss O., Bodicha B. B. A., Bolla S. R., Boloor A., Bosetti C., Braithwaite D., Brauer M., Brenner H., Briko A. N., Briko N. I., Buchanan C. M., Bulamu N. B., Bustamante-Teixeira M. T., Butt M. H., Butt N. S., Butt Z. A., Caetano dos Santos F. L., Camera L. A., Cao C., Cao Y., Carreras G., Carvalho M., Cembranel F., Cerin E., Chakraborty P. A., Charalampous P., Chattu V. K., Chimed-Ochir O., Chirinos-Caceres J. L., Cho D. Y., Cho W. C. S., Christopher D. J., Chu D. -T., Chukwu I. S., Cohen A. J., Conde J., Cortes S., Costa V. M., Cruz-Martins N., Culbreth G. T., Dadras O., Dagnaw F. T., Dahlawi S. M. A., Dai X., Dandona L., Dandona R., Daneshpajouhnejad P., Danielewicz A., Dao A. T. M., Darvishi Cheshmeh Soltani R., Darwesh A. M., Das S., Davitoiu D. V., Davtalab Esmaeili E., De la Hoz F. P., Debela S. A., Dehghan A., Demisse B., Demisse F. W., Denova-Gutierrez E., Derakhshani A., Derbew Molla M., Dereje D., Deribe K. S., Desai R., Desalegn M. D., Dessalegn F. N., Dessalegni S. A. A., Dessie G., Desta A. A., Dewan S. M. R., Dharmaratne S. D., Dhimal M., Dianatinasab M., Diao N., Diaz D., Digesa L. E., Dixit S. G., Doaei S., Doan L. P., Doku P. N., Dongarwar D., dos Santos W. M., Driscoll T. R., Dsouza H. L., Durojaiye O. C., Edalati S., Eghbalian F., Ehsani-Chimeh E., Eini E., Ekholuenetale M., Ekundayo T. C., Ekwueme D. U., El Tantawi M., Elbahnasawy M. A., Elbarazi I., Elghazaly H., Elhadi M., El-Huneidi W., Emamian M. H., Engelbert Bain L., Enyew D. B., Erkhembayar R., Eshetu T., Eshrati B., Eskandarieh S., Espinosa-Montero J., Etaee F., Etemadimanesh A., Eyayu T., Ezeonwumelu I. J., Ezzikouri S., Fagbamigbe A. F., Fahimi S., Fakhradiyev I. R., Faraon E. J. A., Fares J., Farmany A., Farooque U., Farrokhpour H., Fasanmi A. O., Fatehizadeh A., Fatima W., Fattahi H., Fekadu G., Feleke B. E., Ferrari A. A., Ferrero S., Ferro Desideri L., Filip I., Fischer F., Foroumadi R., Foroutan M., Fukumoto T., Gaal P. A., Gad M. M., Gadanya M. A., Gaipov A., Galehdar N., Gallus S., Garg T., Gaspar Fonseca M., Gebremariam Y. H., Gebremeskel T. G., Gebremichael M. A., Geda Y. F., Gela Y. Y., Gemeda B. N. B., Getachew M., Getachew M. E., Ghaffari K., Ghafourifard M., Ghamari S. -H., Ghasemi Nour M., Ghassemi F., Ghimire A., Ghith N., Gholamalizadeh M., Gholizadeh Navashenaq J., Ghozy S., Gilani S. A., Gill P. S., Ginindza T. G., Gizaw A. T. T., Glasbey J. C., Godos J., Goel A., Golechha M., Goleij P., Golinelli D., Golitaleb M., Gorini G., Goulart B. N. G., Grosso G., Guadie H. A., Gubari M. I. M., Gudayu T. W., Guerra M. R., Gunawardane D. A., Gupta B., Gupta S., Gupta V. B., Gupta V. K., Gurara M. K., Guta A., Habibzadeh P., Haddadi Avval A., Hafezi-Nejad N., Hajj Ali A., Haj-Mirzaian A., Halboub E. S., Halimi A., Halwani R., Hamadeh R. R., Hameed S., Hamidi S., Hanif A., Hariri S., Harlianto N. I., Haro J. M., Hartono R. K., Hasaballah A. I., Hasan S. M. M., Hasani H., Hashemi S. M., Hassan A. M., Hassanipour S., Hayat K., Heidari G., Heidari M., Heidarymeybodi Z., Herrera-Serna B. Y., Herteliu C., Hezam K., Hiraike Y., Hlongwa M. M., Holla R., Holm M., Horita N., Hoseini M., Hossain M. M., Hossain M. B. H., Hosseini M. -S., Hosseinzadeh A., Hosseinzadeh M., Hostiuc M., Hostiuc S., Househ M., Huang J., Hugo F. N., Humayun A., Hussain S., Hussein N. R., Hwang B. -F., Ibitoye S. E., Iftikhar P. M., Ikuta K. S., Ilesanmi O. S., Ilic I. M., Ilic M. D., Immurana M., Innos K., Iranpour P., Irham L. M., Islam M. S., Islam R. M., Islami F., Ismail N. E., Isola G., Iwagami M., J L. M., Jaiswal A., Jakovljevic M., Jalili M., Jalilian S., Jamshidi E., Jang S. -I., Jani C. T., Javaheri T., Jayarajah U. U., Jayaram S., Jazayeri S. B., Jebai R., Jemal B., Jeong W., Jha R. P., Jindal H. A., John-Akinola Y. O., Jonas J. B., Joo T., Joseph N., Joukar F., Jozwiak J. J., Jurisson M., Kabir A., Kacimi S. E. O., Kadashetti V., Kahe F., Kakodkar P. V., Kalankesh L. R., Kalhor R., Kamal V. K., Kamangar F., Kamath A., Kanchan T., Kandaswamy E., Kandel H., Kang H., Kanno G. G., Kapoor N., Kar S. S., Karanth S. D., Karaye I. M., Karch A., Karimi A., Kassa B. G., Katoto P. D., Kauppila J. H., Kaur H., Kebede A. G., Keikavoosi-Arani L., Kejela G. G., Kemp Bohan P. M., Keramati M., Keykhaei M., Khajuria H., Khan A., Khan A. A. K., Khan E. A., Khan G., Khan M. N., Khan M. A., Khanali J., Khatab K., Khatatbeh M. M., Khatib M. N., Khayamzadeh M., Khayat Kashani H. R., Khazeei Tabari M. A., Khezeli M., Khodadost M., Kim M. S., Kim Y. J., Kisa A., Kisa S., Klugar M., Klugarova J., Kolahi A. -A., Kolkhir P., Kompani F., Koul P. A., Koulmane Laxminarayana S. L., Koyanagi A., Krishan K., Krishnamoorthy Y., Kucuk Bicer B., Kugbey N., Kulimbet M., Kumar A., Kumar G. A., Kumar N., Kurmi O. P., Kuttikkattu A., La Vecchia C., Lahiri A., Lal D. K., Lam J., Lan Q., Landires I., Larijani B., Lasrado S., Lau J., Lauriola P., Ledda C., Lee S. -W., Lee S. W. H., Lee W. -C., Lee Y. Y., Lee Y. H., Legesse S. M., Leigh J., Leong E., Li M. -C., Lim S. S., Liu G., Liu J., Lo C. -H., Lohiya A., Lopukhov P. D., Lorenzovici L., Lotfi M., Loureiro J. A., Lunevicius R., Madadizadeh F., Mafi A. R., Magdeldin S., Mahjoub S., Mahmoodpoor A., Mahmoudi M., Mahmoudimanesh M., Mahumud R. A., Majeed A., Majidpoor J., Makki A., Makris K. C., Malakan Rad E., Malekpour M. -R., Malekzadeh R., Malik A. A., Mallhi T. H., Mallya S. D., Mamun M. A., Manda A. L., Mansour-Ghanaei F., Mansouri B., Mansournia M. A., Mantovani L. G., Martini S., Martorell M., Masoudi S., Masoumi S. Z., Matei C. N., Mathews E., Mathur M. R., Mathur V., McKee M., Meena J. K., Mehmood K., Mehrabi Nasab E., Mehrotra R., Melese A., Mendoza W., Menezes R. G., Mengesha S. D., Mensah L. G., Mentis A. -F. A., Mera-Mamian A. Y. M., Meretoja T. J., Merid M. W., Mersha A. G., Meselu B. T., Meshkat M., Mestrovic T., Miao Jonasson J., Miazgowski T., Michalek I. M., Mijena G. F. W., Miller T. R., Mir S. A., Mirinezhad S. K., Mirmoeeni S., Mirza-Aghazadeh-Attari M., Mirzaei H., Mirzaei H. R., Misganaw A. S., Misra S., Mohammad K. A., Mohammadi E., Mohammadi M., Mohammadian-Hafshejani A., Mohammadpourhodki R., Mohammed A., Mohammed S., Mohan S., Mohseni M., Moka N., Mokdad A. H., Molassiotis A., Molokhia M., Momenzadeh K., Momtazmanesh S., Monasta L., Mons U., Montasir A. A., Montazeri F., Montero A., Moosavi M. A., Moradi A., Moradi Y., Moradi Sarabi M., Moraga P., Morawska L., Morrison S. D., Morze J., Mosapour A., Mostafavi E., Mousavi S. M., Mousavi Isfahani H., Mousavi Khaneghah A., Mpundu-Kaambwa C., Mubarik S., Mulita F., Munblit D., Munro S. B., Murillo-Zamora E., Musa J., Nabhan A. F., Nagarajan A. J., Nagaraju S. P., Nagel G., Naghipour M., Naimzada M. D., Nair T. S., Naqvi A. A., Narasimha Swamy S., Narayana A. I., Nassereldine H., Natto Z. S., Nayak B. P., Ndejjo R., Nduaguba S. O., Negash W. W., Nejadghaderi S. A., Nejati K., Neupane Kandel S., Nguyen H. V. N., Niazi R. K., Noor N. M., Noori M., Noroozi N., Nouraei H., Nowroozi A., Nunez-Samudio V., Nzoputam C. I., Nzoputam O. J., Oancea B., Odukoya O. O., Oghenetega O. B., Ogunsakin R. E., Oguntade A. S., Oh I. -H., Okati-Aliabad H., Okekunle A. P., Olagunju A. T., Olagunju T. O., Olakunde B. O., Olufadewa I. I., Omer E., Omonisi A. E. E., Ong S., Onwujekwe O. E., Orru H., Otstavnov S. S., Oulhaj A., Oumer B., Owopetu O. F., Oyinloye B. E., P A M., Padron-Monedero A., Padubidri J. R., Pakbin B., Pakshir K., Pakzad R., Palicz T., Pana A., Pandey A., Pant S., Pardhan S., Park E. -C., Park E. -K., Park S., Patel J., Pati S., Paudel R., Paudel U., Paun M., Pazoki Toroudi H., Peng M., Pereira J., Pereira R. B., Perna S., Perumalsamy N., Pestell R. G., Pezzani R., Piccinelli C., Pillay J. D., Piracha Z. Z., Pischon T., Postma M. J., Pourabhari Langroudi A., Pourshams A., Pourtaheri N., Prashant A., Qadir M. M. F., Quazi Syed Z., Rabiee M., Rabiee N., Radfar A., Radhakrishnan R. A., Radhakrishnan V., Raeisi M., Rafiee A., Rafiei A., Raheem N., Rahim F., Rahman M. O., Rahman M., Rahman M. A., Rahmani A. M., Rahmani S., Rahmanian V., Rajai N., Rajesh A., Ram P., Ramezanzadeh K., Rana J., Ranabhat K., Ranasinghe P., Rao C. R., Rao S. J., Rashedi S., Rashidi A., Rashidi M., Rashidi M. -M., Ratan Z. A., Rawaf D. L., Rawaf S., Rawal L., Rawassizadeh R., Razeghinia M. S., Rehman A. U., Rehman I. U., Reitsma M. B., Renzaho A. M. N., Rezaei M., Rezaei N., Rezaei S., Rezaeian M., Rezapour A., Riad A., Rikhtegar R., Rios-Blancas M., Roberts T. J., Rohloff P., Romero-Rodriguez E., Roshandel G., Rwegerera G. M., S M., Saber-Ayad M. M., Saberzadeh-Ardestani B., Sabour S., Saddik B., Sadeghi E., Saeb M. R., Saeed U., Safaei M., Safary A., Sahebazzamani M., Sahebkar A., Sahoo H., Sajid M. R., Salari H., Salehi S., Salem M. R., Salimzadeh H., Samodra Y. L., Samy A. M., Sanabria J., Sankararaman S., Sanmarchi F., Santric-Milicevic M. M., Saqib M. A. N., Sarveazad A., Sarvi F., Sathian B., Satpathy M., Sayegh N., Schneider I. J. C., Schwarzinger M., Sekerija M., Senthilkumaran S., Sepanlou S. G., Seylani A., Seyoum K., Sha F., Shafaat O., Shah P. A., Shahabi S., Shahid I., Shahrbaf M. A., Shahsavari H. R., Shaikh M. A., Shaka M. F., Shaker E., Shannawaz M., Sharew M. M. S., Sharifi A., Sharifi-Rad J., Sharma P., Shashamo B. B., Sheikh A., Sheikh M., Sheikhbahaei S., Sheikhi R. A., Sheikhy A., Shepherd P. R., Shetty A., Shetty J. K., Shetty R. S., Shibuya K., Shirkoohi R., Shirzad-Aski H., Shivakumar K. M., Shivalli S., Shivarov V., Shobeiri P., Shokri Varniab Z., Shorofi S. A., Shrestha S., Sibhat M. M., Siddappa Malleshappa S. K., Sidemo N. B., Silva D. A. S., Silva L. M. L. R., Silva Julian G., Silvestris N., Simegn W., Singh A. D., Singh A., Singh G., Singh H., Singh J. A., Singh J. K., Singh P., Singh S., Sinha D. N., Sinke A. H., Siraj M. S., Sitas F., Siwal S. S., Skryabin V. Y., Skryabina A. A., Socea B., Soeberg M. J., Sofi-Mahmudi A., Solomon Y., Soltani-Zangbar M. S., Song S., Song Y., Sorensen R. J. D., Soshnikov S., Sotoudeh H., Sowe A., Sufiyan M. B., Suk R., Suleman M., Suliankatchi Abdulkader R., Sultana S., Sur D., Szocska M., Tabaeian S. P., Tabares-Seisdedos R., Tabatabaei S. M., Tabuchi T., Tadbiri H., Taheri E., Taheri M., Taheri Soodejani M., Takahashi K., Talaat I. M., Tampa M., Tan K. -K., Tat N. Y., Tat V. Y., Tavakoli A., Tehrani-Banihashemi A., Tekalegn Y., Tesfay F. H., Thapar R., Thavamani A., Thoguluva Chandrasekar V., Thomas N., Thomas N. K., Ticoalu J. H. V., Tiyuri A., Tollosa D. N., Topor-Madry R., Touvier M., Tovani-Palone M. R., Traini E., Tran M. T. N., Tripathy J. P., Ukke G. G., Ullah I., Ullah S., Unnikrishnan B., Vacante M., Vaezi M., Valadan Tahbaz S., Valdez P. R., Vardavas C., Varthya S. B., Vaziri S., Velazquez D. Z., Veroux M., Villeneuve P. J., Violante F. S., Vladimirov S. K., Vlassov V., Vo B., Vu L. G., Wadood A. W., Waheed Y., Walde M. T., Wamai R. G., Wang C., Wang F., Wang N., Wang Y., Ward P., Waris A., Westerman R., Wickramasinghe N. D., Woldemariam M., Woldu B., Xiao H., Xu S., Xu X., Yadav L., Yahyazadeh Jabbari S. H., Yang L., Yazdanpanah F., Yeshaw Y., Yismaw Y., Yonemoto N., Younis M. Z., Yousefi Z., Yousefian F., Yu C., Yu Y., Yunusa I., Zahir M., Zaki N., Zaman B. A., Zangiabadian M., Zare F., Zare I., Zareshahrabadi Z., Zarrintan A., Zastrozhin M. S., Zeineddine M. A., Zhang D., Zhang J., Zhang Y., Zhang Z. -J., Zhou L., Zodpey S., Zoladl M., Vos T., Hay S. I., Force L. M., Murray C. J. L., Tran, K, Lang, J, Compton, K, Xu, R, Acheson, A, Henrikson, H, Kocarnik, J, Penberthy, L, Aali, A, Abbas, Q, Abbasi, B, Abbasi-Kangevari, M, Abbasi-Kangevari, Z, Abbastabar, H, Abdelmasseh, M, Abd-Elsalam, S, Abdelwahab, A, Abdoli, G, Abdulkadir, H, Abedi, A, Abegaz, K, Abidi, H, Aboagye, R, Abolhassani, H, Absalan, A, Abtew, Y, Abubaker Ali, H, Abu-Gharbieh, E, Achappa, B, Acuna, J, Addison, D, Addo, I, Adegboye, O, Adesina, M, Adnan, M, Adnani, Q, Advani, S, Afrin, S, Afzal, M, Aggarwal, M, Ahinkorah, B, Ahmad, A, Ahmad, R, Ahmad, S, Ahmadi, S, Ahmed, H, Ahmed, L, Ahmed, M, Ahmed Rashid, T, Aiman, W, Ajami, M, Akalu, G, Akbarzadeh-Khiavi, M, Aklilu, A, Akonde, M, Akunna, C, Al Hamad, H, Alahdab, F, Alanezi, F, Alanzi, T, Alessy, S, Algammal, A, Al-Hanawi, M, Alhassan, R, Ali, B, Ali, L, Ali, S, Alimohamadi, Y, Alipour, V, Aljunid, S, Alkhayyat, M, Al-Maweri, S, Almustanyir, S, Alonso, N, Alqalyoobi, S, Al-Raddadi, R, Al-Rifai, R, Al-Sabah, S, Al-Tammemi, A, Altawalah, H, Alvis-Guzman, N, Amare, F, Ameyaw, E, Aminian Dehkordi, J, Amirzade-Iranaq, M, Amu, H, Amusa, G, Ancuceanu, R, Anderson, J, Animut, Y, Anoushiravani, A, Anoushirvani, A, Ansari-Moghaddam, A, Ansha, M, Antony, B, Antwi, M, Anwar, S, Anwer, R, Anyasodor, A, Arabloo, J, Arab-Zozani, M, Aremu, O, Argaw, A, Ariffin, H, Aripov, T, Arshad, M, Artaman, A, Arulappan, J, Aruleba, R, Aryannejad, A, Asaad, M, Asemahagn, M, Asemi, Z, Asghari-Jafarabadi, M, Ashraf, T, Assadi, R, Athar, M, Athari, S, Atout, M, Attia, S, Aujayeb, A, Ausloos, M, Avila-Burgos, L, Awedew, A, Awoke, M, Awoke, T, Ayala Quintanilla, B, Ayana, T, Ayen, S, Azadi, D, Azadnajafabad, S, Azami-Aghdash, S, Azanaw, M, Azangou-Khyavy, M, Azari Jafari, A, Azizi, H, Azzam, A, Babajani, A, Badar, M, Badiye, A, Baghcheghi, N, Bagheri, N, Bagherieh, S, Bahadory, S, Baig, A, Baker, J, Bakhtiari, A, Bakshi, R, Banach, M, Banerjee, I, Bardhan, M, Barone-Adesi, F, Barra, F, Barrow, A, Bashir, N, Bashiri, A, Basu, S, Batiha, A, Begum, A, Bekele, A, Belay, A, Belete, M, Belgaumi, U, Bell, A, Belo, L, Benzian, H, Berhie, A, Bermudez, A, Bernabe, E, Bhagavathula, A, Bhala, N, Bhandari, B, Bhardwaj, N, Bhardwaj, P, Bhattacharyya, K, Bhojaraja, V, Bhuyan, S, Bibi, S, Bilchut, A, Bintoro, B, Biondi, A, Birega, M, Birhan, H, Bjorge, T, Blyuss, O, Bodicha, B, Bolla, S, Boloor, A, Bosetti, C, Braithwaite, D, Brauer, M, Brenner, H, Briko, A, Briko, N, Buchanan, C, Bulamu, N, Bustamante-Teixeira, M, Butt, M, Butt, N, Butt, Z, Caetano dos Santos, F, Camera, L, Cao, C, Cao, Y, Carreras, G, Carvalho, M, Cembranel, F, Cerin, E, Chakraborty, P, Charalampous, P, Chattu, V, Chimed-Ochir, O, Chirinos-Caceres, J, Cho, D, Cho, W, Christopher, D, Chu, D, Chukwu, I, Cohen, A, Conde, J, Cortes, S, Costa, V, Cruz-Martins, N, Culbreth, G, Dadras, O, Dagnaw, F, Dahlawi, S, Dai, X, Dandona, L, Dandona, R, Daneshpajouhnejad, P, Danielewicz, A, Dao, A, Darvishi Cheshmeh Soltani, R, Darwesh, A, Das, S, Davitoiu, D, Davtalab Esmaeili, E, De la Hoz, F, Debela, S, Dehghan, A, Demisse, B, Demisse, F, Denova-Gutierrez, E, Derakhshani, A, Derbew Molla, M, Dereje, D, Deribe, K, Desai, R, Desalegn, M, Dessalegn, F, Dessalegni, S, Dessie, G, Desta, A, Dewan, S, Dharmaratne, S, Dhimal, M, Dianatinasab, M, Diao, N, Diaz, D, Digesa, L, Dixit, S, Doaei, S, Doan, L, Doku, P, Dongarwar, D, dos Santos, W, Driscoll, T, Dsouza, H, Durojaiye, O, Edalati, S, Eghbalian, F, Ehsani-Chimeh, E, Eini, E, Ekholuenetale, M, Ekundayo, T, Ekwueme, D, El Tantawi, M, Elbahnasawy, M, Elbarazi, I, Elghazaly, H, Elhadi, M, El-Huneidi, W, Emamian, M, Engelbert Bain, L, Enyew, D, Erkhembayar, R, Eshetu, T, Eshrati, B, Eskandarieh, S, Espinosa-Montero, J, Etaee, F, Etemadimanesh, A, Eyayu, T, Ezeonwumelu, I, Ezzikouri, S, Fagbamigbe, A, Fahimi, S, Fakhradiyev, I, Faraon, E, Fares, J, Farmany, A, Farooque, U, Farrokhpour, H, Fasanmi, A, Fatehizadeh, A, Fatima, W, Fattahi, H, Fekadu, G, Feleke, B, Ferrari, A, Ferrero, S, Ferro Desideri, L, Filip, I, Fischer, F, Foroumadi, R, Foroutan, M, Fukumoto, T, Gaal, P, Gad, M, Gadanya, M, Gaipov, A, Galehdar, N, Gallus, S, Garg, T, Gaspar Fonseca, M, Gebremariam, Y, Gebremeskel, T, Gebremichael, M, Geda, Y, Gela, Y, Gemeda, B, Getachew, M, Ghaffari, K, Ghafourifard, M, Ghamari, S, Ghasemi Nour, M, Ghassemi, F, Ghimire, A, Ghith, N, Gholamalizadeh, M, Gholizadeh Navashenaq, J, Ghozy, S, Gilani, S, Gill, P, Ginindza, T, Gizaw, A, Glasbey, J, Godos, J, Goel, A, Golechha, M, Goleij, P, Golinelli, D, Golitaleb, M, Gorini, G, Goulart, B, Grosso, G, Guadie, H, Gubari, M, Gudayu, T, Guerra, M, Gunawardane, D, Gupta, B, Gupta, S, Gupta, V, Gurara, M, Guta, A, Habibzadeh, P, Haddadi Avval, A, Hafezi-Nejad, N, Hajj Ali, A, Haj-Mirzaian, A, Halboub, E, Halimi, A, Halwani, R, Hamadeh, R, Hameed, S, Hamidi, S, Hanif, A, Hariri, S, Harlianto, N, Haro, J, Hartono, R, Hasaballah, A, Hasan, S, Hasani, H, Hashemi, S, Hassan, A, Hassanipour, S, Hayat, K, Heidari, G, Heidari, M, Heidarymeybodi, Z, Herrera-Serna, B, Herteliu, C, Hezam, K, Hiraike, Y, Hlongwa, M, Holla, R, Holm, M, Horita, N, Hoseini, M, Hossain, M, Hosseini, M, Hosseinzadeh, A, Hosseinzadeh, M, Hostiuc, M, Hostiuc, S, Househ, M, Huang, J, Hugo, F, Humayun, A, Hussain, S, Hussein, N, Hwang, B, Ibitoye, S, Iftikhar, P, Ikuta, K, Ilesanmi, O, Ilic, I, Ilic, M, Immurana, M, Innos, K, Iranpour, P, Irham, L, Islam, M, Islam, R, Islami, F, Ismail, N, Isola, G, Iwagami, M, J, L, Jaiswal, A, Jakovljevic, M, Jalili, M, Jalilian, S, Jamshidi, E, Jang, S, Jani, C, Javaheri, T, Jayarajah, U, Jayaram, S, Jazayeri, S, Jebai, R, Jemal, B, Jeong, W, Jha, R, Jindal, H, John-Akinola, Y, Jonas, J, Joo, T, Joseph, N, Joukar, F, Jozwiak, J, Jurisson, M, Kabir, A, Kacimi, S, Kadashetti, V, Kahe, F, Kakodkar, P, Kalankesh, L, Kalhor, R, Kamal, V, Kamangar, F, Kamath, A, Kanchan, T, Kandaswamy, E, Kandel, H, Kang, H, Kanno, G, Kapoor, N, Kar, S, Karanth, S, Karaye, I, Karch, A, Karimi, A, Kassa, B, Katoto, P, Kauppila, J, Kaur, H, Kebede, A, Keikavoosi-Arani, L, Kejela, G, Kemp Bohan, P, Keramati, M, Keykhaei, M, Khajuria, H, Khan, A, Khan, E, Khan, G, Khan, M, Khanali, J, Khatab, K, Khatatbeh, M, Khatib, M, Khayamzadeh, M, Khayat Kashani, H, Khazeei Tabari, M, Khezeli, M, Khodadost, M, Kim, M, Kim, Y, Kisa, A, Kisa, S, Klugar, M, Klugarova, J, Kolahi, A, Kolkhir, P, Kompani, F, Koul, P, Koulmane Laxminarayana, S, Koyanagi, A, Krishan, K, Krishnamoorthy, Y, Kucuk Bicer, B, Kugbey, N, Kulimbet, M, Kumar, A, Kumar, G, Kumar, N, Kurmi, O, Kuttikkattu, A, La Vecchia, C, Lahiri, A, Lal, D, Lam, J, Lan, Q, Landires, I, Larijani, B, Lasrado, S, Lau, J, Lauriola, P, Ledda, C, Lee, S, Lee, W, Lee, Y, Legesse, S, Leigh, J, Leong, E, Li, M, Lim, S, Liu, G, Liu, J, Lo, C, Lohiya, A, Lopukhov, P, Lorenzovici, L, Lotfi, M, Loureiro, J, Lunevicius, R, Madadizadeh, F, Mafi, A, Magdeldin, S, Mahjoub, S, Mahmoodpoor, A, Mahmoudi, M, Mahmoudimanesh, M, Mahumud, R, Majeed, A, Majidpoor, J, Makki, A, Makris, K, Malakan Rad, E, Malekpour, M, Malekzadeh, R, Malik, A, Mallhi, T, Mallya, S, Mamun, M, Manda, A, Mansour-Ghanaei, F, Mansouri, B, Mansournia, M, Mantovani, L, Martini, S, Martorell, M, Masoudi, S, Masoumi, S, Matei, C, Mathews, E, Mathur, M, Mathur, V, Mckee, M, Meena, J, Mehmood, K, Mehrabi Nasab, E, Mehrotra, R, Melese, A, Mendoza, W, Menezes, R, Mengesha, S, Mensah, L, Mentis, A, Mera-Mamian, A, Meretoja, T, Merid, M, Mersha, A, Meselu, B, Meshkat, M, Mestrovic, T, Miao Jonasson, J, Miazgowski, T, Michalek, I, Mijena, G, Miller, T, Mir, S, Mirinezhad, S, Mirmoeeni, S, Mirza-Aghazadeh-Attari, M, Mirzaei, H, Misganaw, A, Misra, S, Mohammad, K, Mohammadi, E, Mohammadi, M, Mohammadian-Hafshejani, A, Mohammadpourhodki, R, Mohammed, A, Mohammed, S, Mohan, S, Mohseni, M, Moka, N, Mokdad, A, Molassiotis, A, Molokhia, M, Momenzadeh, K, Momtazmanesh, S, Monasta, L, Mons, U, Montasir, A, Montazeri, F, Montero, A, Moosavi, M, Moradi, A, Moradi, Y, Moradi Sarabi, M, Moraga, P, Morawska, L, Morrison, S, Morze, J, Mosapour, A, Mostafavi, E, Mousavi, S, Mousavi Isfahani, H, Mousavi Khaneghah, A, Mpundu-Kaambwa, C, Mubarik, S, Mulita, F, Munblit, D, Munro, S, Murillo-Zamora, E, Musa, J, Nabhan, A, Nagarajan, A, Nagaraju, S, Nagel, G, Naghipour, M, Naimzada, M, Nair, T, Naqvi, A, Narasimha Swamy, S, Narayana, A, Nassereldine, H, Natto, Z, Nayak, B, Ndejjo, R, Nduaguba, S, Negash, W, Nejadghaderi, S, Nejati, K, Neupane Kandel, S, Nguyen, H, Niazi, R, Noor, N, Noori, M, Noroozi, N, Nouraei, H, Nowroozi, A, Nunez-Samudio, V, Nzoputam, C, Nzoputam, O, Oancea, B, Odukoya, O, Oghenetega, O, Ogunsakin, R, Oguntade, A, Oh, I, Okati-Aliabad, H, Okekunle, A, Olagunju, A, Olagunju, T, Olakunde, B, Olufadewa, I, Omer, E, Omonisi, A, Ong, S, Onwujekwe, O, Orru, H, Otstavnov, S, Oulhaj, A, Oumer, B, Owopetu, O, Oyinloye, B, P A, M, Padron-Monedero, A, Padubidri, J, Pakbin, B, Pakshir, K, Pakzad, R, Palicz, T, Pana, A, Pandey, A, Pant, S, Pardhan, S, Park, E, Park, S, Patel, J, Pati, S, Paudel, R, Paudel, U, Paun, M, Pazoki Toroudi, H, Peng, M, Pereira, J, Pereira, R, Perna, S, Perumalsamy, N, Pestell, R, Pezzani, R, Piccinelli, C, Pillay, J, Piracha, Z, Pischon, T, Postma, M, Pourabhari Langroudi, A, Pourshams, A, Pourtaheri, N, Prashant, A, Qadir, M, Quazi Syed, Z, Rabiee, M, Rabiee, N, Radfar, A, Radhakrishnan, R, Radhakrishnan, V, Raeisi, M, Rafiee, A, Rafiei, A, Raheem, N, Rahim, F, Rahman, M, Rahmani, A, Rahmani, S, Rahmanian, V, Rajai, N, Rajesh, A, Ram, P, Ramezanzadeh, K, Rana, J, Ranabhat, K, Ranasinghe, P, Rao, C, Rao, S, Rashedi, S, Rashidi, A, Rashidi, M, Ratan, Z, Rawaf, D, Rawaf, S, Rawal, L, Rawassizadeh, R, Razeghinia, M, Rehman, A, Rehman, I, Reitsma, M, Renzaho, A, Rezaei, M, Rezaei, N, Rezaei, S, Rezaeian, M, Rezapour, A, Riad, A, Rikhtegar, R, Rios-Blancas, M, Roberts, T, Rohloff, P, Romero-Rodriguez, E, Roshandel, G, Rwegerera, G, S, M, Saber-Ayad, M, Saberzadeh-Ardestani, B, Sabour, S, Saddik, B, Sadeghi, E, Saeb, M, Saeed, U, Safaei, M, Safary, A, Sahebazzamani, M, Sahebkar, A, Sahoo, H, Sajid, M, Salari, H, Salehi, S, Salem, M, Salimzadeh, H, Samodra, Y, Samy, A, Sanabria, J, Sankararaman, S, Sanmarchi, F, Santric-Milicevic, M, Saqib, M, Sarveazad, A, Sarvi, F, Sathian, B, Satpathy, M, Sayegh, N, Schneider, I, Schwarzinger, M, Sekerija, M, Senthilkumaran, S, Sepanlou, S, Seylani, A, Seyoum, K, Sha, F, Shafaat, O, Shah, P, Shahabi, S, Shahid, I, Shahrbaf, M, Shahsavari, H, Shaikh, M, Shaka, M, Shaker, E, Shannawaz, M, Sharew, M, Sharifi, A, Sharifi-Rad, J, Sharma, P, Shashamo, B, Sheikh, A, Sheikh, M, Sheikhbahaei, S, Sheikhi, R, Sheikhy, A, Shepherd, P, Shetty, A, Shetty, J, Shetty, R, Shibuya, K, Shirkoohi, R, Shirzad-Aski, H, Shivakumar, K, Shivalli, S, Shivarov, V, Shobeiri, P, Shokri Varniab, Z, Shorofi, S, Shrestha, S, Sibhat, M, Siddappa Malleshappa, S, Sidemo, N, Silva, D, Silva, L, Silva Julian, G, Silvestris, N, Simegn, W, Singh, A, Singh, G, Singh, H, Singh, J, Singh, P, Singh, S, Sinha, D, Sinke, A, Siraj, M, Sitas, F, Siwal, S, Skryabin, V, Skryabina, A, Socea, B, Soeberg, M, Sofi-Mahmudi, A, Solomon, Y, Soltani-Zangbar, M, Song, S, Song, Y, Sorensen, R, Soshnikov, S, Sotoudeh, H, Sowe, A, Sufiyan, M, Suk, R, Suleman, M, Suliankatchi Abdulkader, R, Sultana, S, Sur, D, Szocska, M, Tabaeian, S, Tabares-Seisdedos, R, Tabatabaei, S, Tabuchi, T, Tadbiri, H, Taheri, E, Taheri, M, Taheri Soodejani, M, Takahashi, K, Talaat, I, Tampa, M, Tan, K, Tat, N, Tat, V, Tavakoli, A, Tehrani-Banihashemi, A, Tekalegn, Y, Tesfay, F, Thapar, R, Thavamani, A, Thoguluva Chandrasekar, V, Thomas, N, Ticoalu, J, Tiyuri, A, Tollosa, D, Topor-Madry, R, Touvier, M, Tovani-Palone, M, Traini, E, Tran, M, Tripathy, J, Ukke, G, Ullah, I, Ullah, S, Unnikrishnan, B, Vacante, M, Vaezi, M, Valadan Tahbaz, S, Valdez, P, Vardavas, C, Varthya, S, Vaziri, S, Velazquez, D, Veroux, M, Villeneuve, P, Violante, F, Vladimirov, S, Vlassov, V, Vo, B, Vu, L, Wadood, A, Waheed, Y, Walde, M, Wamai, R, Wang, C, Wang, F, Wang, N, Wang, Y, Ward, P, Waris, A, Westerman, R, Wickramasinghe, N, Woldemariam, M, Woldu, B, Xiao, H, Xu, S, Xu, X, Yadav, L, Yahyazadeh Jabbari, S, Yang, L, Yazdanpanah, F, Yeshaw, Y, Yismaw, Y, Yonemoto, N, Younis, M, Yousefi, Z, Yousefian, F, Yu, C, Yu, Y, Yunusa, I, Zahir, M, Zaki, N, Zaman, B, Zangiabadian, M, Zare, F, Zare, I, Zareshahrabadi, Z, Zarrintan, A, Zastrozhin, M, Zeineddine, M, Zhang, D, Zhang, J, Zhang, Y, Zhang, Z, Zhou, L, Zodpey, S, Zoladl, M, Vos, T, Hay, S, Force, L, Murray, C, Tran K. B., Lang J. J., Compton K., Xu R., Acheson A. R., Henrikson H. J., Kocarnik J. M., Penberthy L., Aali A., Abbas Q., Abbasi B., Abbasi-Kangevari M., Abbasi-Kangevari Z., Abbastabar H., Abdelmasseh M., Abd-Elsalam S., Abdelwahab A. A., Abdoli G., Abdulkadir H. A., Abedi A., Abegaz K. H., Abidi H., Aboagye R. G., Abolhassani H., Absalan A., Abtew Y. D., Abubaker Ali H., Abu-Gharbieh E., Achappa B., Acuna J. M., Addison D., Addo I. Y., Adegboye O. A., Adesina M. A., Adnan M., Adnani Q. E. S., Advani S. M., Afrin S., Afzal M. S., Aggarwal M., Ahinkorah B. O., Ahmad A. R., Ahmad R., Ahmad S., Ahmadi S., Ahmed H., Ahmed L. A., Ahmed M. B., Ahmed Rashid T., Aiman W., Ajami M., Akalu G. T., Akbarzadeh-Khiavi M., Aklilu A., Akonde M., Akunna C. J., Al Hamad H., Alahdab F., Alanezi F. M., Alanzi T. M., Alessy S. A., Algammal A. M., Al-Hanawi M. K., Alhassan R. K., Ali B. A., Ali L., Ali S. S., Alimohamadi Y., Alipour V., Aljunid S. M., Alkhayyat M., Al-Maweri S. A. A., Almustanyir S., Alonso N., Alqalyoobi S., Al-Raddadi R. M., Al-Rifai R. H. H., Al-Sabah S. K., Al-Tammemi A. B., Altawalah H., Alvis-Guzman N., Amare F., Ameyaw E. K., Aminian Dehkordi J. J., Amirzade-Iranaq M. H., Amu H., Amusa G. A., Ancuceanu R., Anderson J. A., Animut Y. A., Anoushiravani A., Anoushirvani A. A., Ansari-Moghaddam A., Ansha M. G., Antony B., Antwi M. H., Anwar S. L., Anwer R., Anyasodor A. E., Arabloo J., Arab-Zozani M., Aremu O., Argaw A. M., Ariffin H., Aripov T., Arshad M., Artaman A., Arulappan J., Aruleba R. T., Aryannejad A., Asaad M., Asemahagn M. A., Asemi Z., Asghari-Jafarabadi M., Ashraf T., Assadi R., Athar M., Athari S. S., Atout M. M. W., Attia S., Aujayeb A., Ausloos M., Avila-Burgos L., Awedew A. F., Awoke M. A., Awoke T., Ayala Quintanilla B. P., Ayana T. M., Ayen S. S., Azadi D., Azadnajafabad S., Azami-Aghdash S., Azanaw M. M., Azangou-Khyavy M., Azari Jafari A., Azizi H., Azzam A. Y. Y., Babajani A., Badar M., Badiye A. D., Baghcheghi N., Bagheri N., Bagherieh S., Bahadory S., Baig A. A., Baker J. L., Bakhtiari A., Bakshi R. K., Banach M., Banerjee I., Bardhan M., Barone-Adesi F., Barra F., Barrow A., Bashir N. Z., Bashiri A., Basu S., Batiha A. -M. M., Begum A., Bekele A. B., Belay A. S., Belete M. A., Belgaumi U. I., Bell A. W., Belo L., Benzian H., Berhie A. Y., Bermudez A. N. C., Bernabe E., Bhagavathula A. S., Bhala N., Bhandari B. B., Bhardwaj N., Bhardwaj P., Bhattacharyya K., Bhojaraja V. S., Bhuyan S. S., Bibi S., Bilchut A. H., Bintoro B. S., Biondi A., Birega M. G. B., Birhan H. E., Bjorge T., Blyuss O., Bodicha B. B. A., Bolla S. R., Boloor A., Bosetti C., Braithwaite D., Brauer M., Brenner H., Briko A. N., Briko N. I., Buchanan C. M., Bulamu N. B., Bustamante-Teixeira M. T., Butt M. H., Butt N. S., Butt Z. A., Caetano dos Santos F. L., Camera L. A., Cao C., Cao Y., Carreras G., Carvalho M., Cembranel F., Cerin E., Chakraborty P. A., Charalampous P., Chattu V. K., Chimed-Ochir O., Chirinos-Caceres J. L., Cho D. Y., Cho W. C. S., Christopher D. J., Chu D. -T., Chukwu I. S., Cohen A. J., Conde J., Cortes S., Costa V. M., Cruz-Martins N., Culbreth G. T., Dadras O., Dagnaw F. T., Dahlawi S. M. A., Dai X., Dandona L., Dandona R., Daneshpajouhnejad P., Danielewicz A., Dao A. T. M., Darvishi Cheshmeh Soltani R., Darwesh A. M., Das S., Davitoiu D. V., Davtalab Esmaeili E., De la Hoz F. P., Debela S. A., Dehghan A., Demisse B., Demisse F. W., Denova-Gutierrez E., Derakhshani A., Derbew Molla M., Dereje D., Deribe K. S., Desai R., Desalegn M. D., Dessalegn F. N., Dessalegni S. A. A., Dessie G., Desta A. A., Dewan S. M. R., Dharmaratne S. D., Dhimal M., Dianatinasab M., Diao N., Diaz D., Digesa L. E., Dixit S. G., Doaei S., Doan L. P., Doku P. N., Dongarwar D., dos Santos W. M., Driscoll T. R., Dsouza H. L., Durojaiye O. C., Edalati S., Eghbalian F., Ehsani-Chimeh E., Eini E., Ekholuenetale M., Ekundayo T. C., Ekwueme D. U., El Tantawi M., Elbahnasawy M. A., Elbarazi I., Elghazaly H., Elhadi M., El-Huneidi W., Emamian M. H., Engelbert Bain L., Enyew D. B., Erkhembayar R., Eshetu T., Eshrati B., Eskandarieh S., Espinosa-Montero J., Etaee F., Etemadimanesh A., Eyayu T., Ezeonwumelu I. J., Ezzikouri S., Fagbamigbe A. F., Fahimi S., Fakhradiyev I. R., Faraon E. J. A., Fares J., Farmany A., Farooque U., Farrokhpour H., Fasanmi A. O., Fatehizadeh A., Fatima W., Fattahi H., Fekadu G., Feleke B. E., Ferrari A. A., Ferrero S., Ferro Desideri L., Filip I., Fischer F., Foroumadi R., Foroutan M., Fukumoto T., Gaal P. A., Gad M. M., Gadanya M. A., Gaipov A., Galehdar N., Gallus S., Garg T., Gaspar Fonseca M., Gebremariam Y. H., Gebremeskel T. G., Gebremichael M. A., Geda Y. F., Gela Y. Y., Gemeda B. N. B., Getachew M., Getachew M. E., Ghaffari K., Ghafourifard M., Ghamari S. -H., Ghasemi Nour M., Ghassemi F., Ghimire A., Ghith N., Gholamalizadeh M., Gholizadeh Navashenaq J., Ghozy S., Gilani S. A., Gill P. S., Ginindza T. G., Gizaw A. T. T., Glasbey J. C., Godos J., Goel A., Golechha M., Goleij P., Golinelli D., Golitaleb M., Gorini G., Goulart B. N. G., Grosso G., Guadie H. A., Gubari M. I. M., Gudayu T. W., Guerra M. R., Gunawardane D. A., Gupta B., Gupta S., Gupta V. B., Gupta V. K., Gurara M. K., Guta A., Habibzadeh P., Haddadi Avval A., Hafezi-Nejad N., Hajj Ali A., Haj-Mirzaian A., Halboub E. S., Halimi A., Halwani R., Hamadeh R. R., Hameed S., Hamidi S., Hanif A., Hariri S., Harlianto N. I., Haro J. M., Hartono R. K., Hasaballah A. I., Hasan S. M. M., Hasani H., Hashemi S. M., Hassan A. M., Hassanipour S., Hayat K., Heidari G., Heidari M., Heidarymeybodi Z., Herrera-Serna B. Y., Herteliu C., Hezam K., Hiraike Y., Hlongwa M. M., Holla R., Holm M., Horita N., Hoseini M., Hossain M. M., Hossain M. B. H., Hosseini M. -S., Hosseinzadeh A., Hosseinzadeh M., Hostiuc M., Hostiuc S., Househ M., Huang J., Hugo F. N., Humayun A., Hussain S., Hussein N. R., Hwang B. -F., Ibitoye S. E., Iftikhar P. M., Ikuta K. S., Ilesanmi O. S., Ilic I. M., Ilic M. D., Immurana M., Innos K., Iranpour P., Irham L. M., Islam M. S., Islam R. M., Islami F., Ismail N. E., Isola G., Iwagami M., J L. M., Jaiswal A., Jakovljevic M., Jalili M., Jalilian S., Jamshidi E., Jang S. -I., Jani C. T., Javaheri T., Jayarajah U. U., Jayaram S., Jazayeri S. B., Jebai R., Jemal B., Jeong W., Jha R. P., Jindal H. A., John-Akinola Y. O., Jonas J. B., Joo T., Joseph N., Joukar F., Jozwiak J. J., Jurisson M., Kabir A., Kacimi S. E. O., Kadashetti V., Kahe F., Kakodkar P. V., Kalankesh L. R., Kalhor R., Kamal V. K., Kamangar F., Kamath A., Kanchan T., Kandaswamy E., Kandel H., Kang H., Kanno G. G., Kapoor N., Kar S. S., Karanth S. D., Karaye I. M., Karch A., Karimi A., Kassa B. G., Katoto P. D., Kauppila J. H., Kaur H., Kebede A. G., Keikavoosi-Arani L., Kejela G. G., Kemp Bohan P. M., Keramati M., Keykhaei M., Khajuria H., Khan A., Khan A. A. K., Khan E. A., Khan G., Khan M. N., Khan M. A., Khanali J., Khatab K., Khatatbeh M. M., Khatib M. N., Khayamzadeh M., Khayat Kashani H. R., Khazeei Tabari M. A., Khezeli M., Khodadost M., Kim M. S., Kim Y. J., Kisa A., Kisa S., Klugar M., Klugarova J., Kolahi A. -A., Kolkhir P., Kompani F., Koul P. A., Koulmane Laxminarayana S. L., Koyanagi A., Krishan K., Krishnamoorthy Y., Kucuk Bicer B., Kugbey N., Kulimbet M., Kumar A., Kumar G. A., Kumar N., Kurmi O. P., Kuttikkattu A., La Vecchia C., Lahiri A., Lal D. K., Lam J., Lan Q., Landires I., Larijani B., Lasrado S., Lau J., Lauriola P., Ledda C., Lee S. -W., Lee S. W. H., Lee W. -C., Lee Y. Y., Lee Y. H., Legesse S. M., Leigh J., Leong E., Li M. -C., Lim S. S., Liu G., Liu J., Lo C. -H., Lohiya A., Lopukhov P. D., Lorenzovici L., Lotfi M., Loureiro J. A., Lunevicius R., Madadizadeh F., Mafi A. R., Magdeldin S., Mahjoub S., Mahmoodpoor A., Mahmoudi M., Mahmoudimanesh M., Mahumud R. A., Majeed A., Majidpoor J., Makki A., Makris K. C., Malakan Rad E., Malekpour M. -R., Malekzadeh R., Malik A. A., Mallhi T. H., Mallya S. D., Mamun M. A., Manda A. L., Mansour-Ghanaei F., Mansouri B., Mansournia M. A., Mantovani L. G., Martini S., Martorell M., Masoudi S., Masoumi S. Z., Matei C. N., Mathews E., Mathur M. R., Mathur V., McKee M., Meena J. K., Mehmood K., Mehrabi Nasab E., Mehrotra R., Melese A., Mendoza W., Menezes R. G., Mengesha S. D., Mensah L. G., Mentis A. -F. A., Mera-Mamian A. Y. M., Meretoja T. J., Merid M. W., Mersha A. G., Meselu B. T., Meshkat M., Mestrovic T., Miao Jonasson J., Miazgowski T., Michalek I. M., Mijena G. F. W., Miller T. R., Mir S. A., Mirinezhad S. K., Mirmoeeni S., Mirza-Aghazadeh-Attari M., Mirzaei H., Mirzaei H. R., Misganaw A. S., Misra S., Mohammad K. A., Mohammadi E., Mohammadi M., Mohammadian-Hafshejani A., Mohammadpourhodki R., Mohammed A., Mohammed S., Mohan S., Mohseni M., Moka N., Mokdad A. H., Molassiotis A., Molokhia M., Momenzadeh K., Momtazmanesh S., Monasta L., Mons U., Montasir A. A., Montazeri F., Montero A., Moosavi M. A., Moradi A., Moradi Y., Moradi Sarabi M., Moraga P., Morawska L., Morrison S. D., Morze J., Mosapour A., Mostafavi E., Mousavi S. M., Mousavi Isfahani H., Mousavi Khaneghah A., Mpundu-Kaambwa C., Mubarik S., Mulita F., Munblit D., Munro S. B., Murillo-Zamora E., Musa J., Nabhan A. F., Nagarajan A. J., Nagaraju S. P., Nagel G., Naghipour M., Naimzada M. D., Nair T. S., Naqvi A. A., Narasimha Swamy S., Narayana A. I., Nassereldine H., Natto Z. S., Nayak B. P., Ndejjo R., Nduaguba S. O., Negash W. W., Nejadghaderi S. A., Nejati K., Neupane Kandel S., Nguyen H. V. N., Niazi R. K., Noor N. M., Noori M., Noroozi N., Nouraei H., Nowroozi A., Nunez-Samudio V., Nzoputam C. I., Nzoputam O. J., Oancea B., Odukoya O. O., Oghenetega O. B., Ogunsakin R. E., Oguntade A. S., Oh I. -H., Okati-Aliabad H., Okekunle A. P., Olagunju A. T., Olagunju T. O., Olakunde B. O., Olufadewa I. I., Omer E., Omonisi A. E. E., Ong S., Onwujekwe O. E., Orru H., Otstavnov S. S., Oulhaj A., Oumer B., Owopetu O. F., Oyinloye B. E., P A M., Padron-Monedero A., Padubidri J. R., Pakbin B., Pakshir K., Pakzad R., Palicz T., Pana A., Pandey A., Pant S., Pardhan S., Park E. -C., Park E. -K., Park S., Patel J., Pati S., Paudel R., Paudel U., Paun M., Pazoki Toroudi H., Peng M., Pereira J., Pereira R. B., Perna S., Perumalsamy N., Pestell R. G., Pezzani R., Piccinelli C., Pillay J. D., Piracha Z. Z., Pischon T., Postma M. J., Pourabhari Langroudi A., Pourshams A., Pourtaheri N., Prashant A., Qadir M. M. F., Quazi Syed Z., Rabiee M., Rabiee N., Radfar A., Radhakrishnan R. A., Radhakrishnan V., Raeisi M., Rafiee A., Rafiei A., Raheem N., Rahim F., Rahman M. O., Rahman M., Rahman M. A., Rahmani A. M., Rahmani S., Rahmanian V., Rajai N., Rajesh A., Ram P., Ramezanzadeh K., Rana J., Ranabhat K., Ranasinghe P., Rao C. R., Rao S. J., Rashedi S., Rashidi A., Rashidi M., Rashidi M. -M., Ratan Z. A., Rawaf D. L., Rawaf S., Rawal L., Rawassizadeh R., Razeghinia M. S., Rehman A. U., Rehman I. U., Reitsma M. B., Renzaho A. M. N., Rezaei M., Rezaei N., Rezaei S., Rezaeian M., Rezapour A., Riad A., Rikhtegar R., Rios-Blancas M., Roberts T. J., Rohloff P., Romero-Rodriguez E., Roshandel G., Rwegerera G. M., S M., Saber-Ayad M. M., Saberzadeh-Ardestani B., Sabour S., Saddik B., Sadeghi E., Saeb M. R., Saeed U., Safaei M., Safary A., Sahebazzamani M., Sahebkar A., Sahoo H., Sajid M. R., Salari H., Salehi S., Salem M. R., Salimzadeh H., Samodra Y. L., Samy A. M., Sanabria J., Sankararaman S., Sanmarchi F., Santric-Milicevic M. M., Saqib M. A. N., Sarveazad A., Sarvi F., Sathian B., Satpathy M., Sayegh N., Schneider I. J. C., Schwarzinger M., Sekerija M., Senthilkumaran S., Sepanlou S. G., Seylani A., Seyoum K., Sha F., Shafaat O., Shah P. A., Shahabi S., Shahid I., Shahrbaf M. A., Shahsavari H. R., Shaikh M. A., Shaka M. F., Shaker E., Shannawaz M., Sharew M. M. S., Sharifi A., Sharifi-Rad J., Sharma P., Shashamo B. B., Sheikh A., Sheikh M., Sheikhbahaei S., Sheikhi R. A., Sheikhy A., Shepherd P. R., Shetty A., Shetty J. K., Shetty R. S., Shibuya K., Shirkoohi R., Shirzad-Aski H., Shivakumar K. M., Shivalli S., Shivarov V., Shobeiri P., Shokri Varniab Z., Shorofi S. A., Shrestha S., Sibhat M. M., Siddappa Malleshappa S. K., Sidemo N. B., Silva D. A. S., Silva L. M. L. R., Silva Julian G., Silvestris N., Simegn W., Singh A. D., Singh A., Singh G., Singh H., Singh J. A., Singh J. K., Singh P., Singh S., Sinha D. N., Sinke A. H., Siraj M. S., Sitas F., Siwal S. S., Skryabin V. Y., Skryabina A. A., Socea B., Soeberg M. J., Sofi-Mahmudi A., Solomon Y., Soltani-Zangbar M. S., Song S., Song Y., Sorensen R. J. D., Soshnikov S., Sotoudeh H., Sowe A., Sufiyan M. B., Suk R., Suleman M., Suliankatchi Abdulkader R., Sultana S., Sur D., Szocska M., Tabaeian S. P., Tabares-Seisdedos R., Tabatabaei S. M., Tabuchi T., Tadbiri H., Taheri E., Taheri M., Taheri Soodejani M., Takahashi K., Talaat I. M., Tampa M., Tan K. -K., Tat N. Y., Tat V. Y., Tavakoli A., Tehrani-Banihashemi A., Tekalegn Y., Tesfay F. H., Thapar R., Thavamani A., Thoguluva Chandrasekar V., Thomas N., Thomas N. K., Ticoalu J. H. V., Tiyuri A., Tollosa D. N., Topor-Madry R., Touvier M., Tovani-Palone M. R., Traini E., Tran M. T. N., Tripathy J. P., Ukke G. G., Ullah I., Ullah S., Unnikrishnan B., Vacante M., Vaezi M., Valadan Tahbaz S., Valdez P. R., Vardavas C., Varthya S. B., Vaziri S., Velazquez D. Z., Veroux M., Villeneuve P. J., Violante F. S., Vladimirov S. K., Vlassov V., Vo B., Vu L. G., Wadood A. W., Waheed Y., Walde M. T., Wamai R. G., Wang C., Wang F., Wang N., Wang Y., Ward P., Waris A., Westerman R., Wickramasinghe N. D., Woldemariam M., Woldu B., Xiao H., Xu S., Xu X., Yadav L., Yahyazadeh Jabbari S. H., Yang L., Yazdanpanah F., Yeshaw Y., Yismaw Y., Yonemoto N., Younis M. Z., Yousefi Z., Yousefian F., Yu C., Yu Y., Yunusa I., Zahir M., Zaki N., Zaman B. A., Zangiabadian M., Zare F., Zare I., Zareshahrabadi Z., Zarrintan A., Zastrozhin M. S., Zeineddine M. A., Zhang D., Zhang J., Zhang Y., Zhang Z. -J., Zhou L., Zodpey S., Zoladl M., Vos T., Hay S. I., Force L. M., and Murray C. J. L.
- Abstract
Background: Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods: The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings: Globally, in 2019, the risk factors included in this analysis accounted for 4·45 million (95% uncertainty interval 4·01-4·94) deaths and 105 million (95·0-116) DALYs for both sexes combined, representing 44·4% (41·3-48·4) of all cancer deaths and 42·0% (39·1-45·6) of all DALYs. There were 2·88 million (2·60-3·18) risk-attributable cancer deaths in males (50·6% [47·8-54·1] of all male cancer deaths) and 1·58 million (1·36-1·84) risk-attributable cancer deaths in females (36·3% [32·5-41·3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20·4% (12·6-28·4) and DALYs by 16·8% (8·8-25·0), with the greatest percentage increase in metabolic risks (34·7% [2
- Published
- 2022
16. Genetically determined circulating resistin concentrations and risk of colorectal cancer: a two-sample Mendelian randomization study.
- Author
-
Pham, TT, Nimptsch, K, Papadimitriou, N, Aleksandrova, K, Jenab, M, Gunter, MJ, Le Marchand, L, Li, L, Lynch, BM, Castellví-Bel, S, Phipps, AI, Schmit, SL, Brenner, H, Ogino, S, Giovannucci, E, Pischon, T, Pham, TT, Nimptsch, K, Papadimitriou, N, Aleksandrova, K, Jenab, M, Gunter, MJ, Le Marchand, L, Li, L, Lynch, BM, Castellví-Bel, S, Phipps, AI, Schmit, SL, Brenner, H, Ogino, S, Giovannucci, E, and Pischon, T
- Abstract
PURPOSE: Resistin, a novel pro-inflammatory protein implicated in inflammatory processes, has been suggested to play a role in colorectal development. However, evidence from observational studies has been inconsistent. Mendelian randomization may be a complementary method to examine this association. METHODS: We conducted a two-sample Mendelian randomization to estimate the association between genetically determined circulating resistin concentrations and risk of colorectal cancer (CRC). Protein quantitative trait loci (pQTLs) from the SCALLOP consortium were used as instrumental variables (IVs) for resistin. CRC genetic summary data was obtained from GECCO/CORECT/CCFR (the Genetics and Epidemiology of Colorectal Cancer Consortium, Colorectal Cancer Transdisciplinary Study, and Colon Cancer Family Registry), and FinnGen (Finland Biobank). The inverse variance weighted method (IVW) was applied in the main analysis, and other robust methods were used as sensitivity analyses. Estimates for the association from the two data sources were then pooled using a meta-analysis approach. RESULTS: Thirteen pQTLs were identified as IVs explaining together 7.80% of interindividual variation in circulating resistin concentrations. Based on MR analyses, genetically determined circulating resistin concentrations were not associated with incident CRC (pooled-IVW-OR per standard deviation of resistin, 1.01; 95% CI 0.96, 1.06; p = 0.67. Restricting the analyses to using IVs within or proximal to the resistin-encoding gene (cis-IVs), or to IVs located elsewhere in the genome (trans-IVs) provided similar results. The association was not altered when stratified by sex or CRC subsites. CONCLUSIONS: We found no evidence of a relationship between genetically determined circulating resistin concentrations and risk of CRC.
- Published
- 2023
17. Childhood Trauma and Somatic and Mental Illness in Adulthood: Findings of the NAKO Health Study.
- Author
-
Klinger-König, J., Erhardt, A., Streit, F., Völker, M. P., Schulze, M. B., Keil, T., Fricke, J., Castell, S., Klett-Tammen, C. J., Pischon, T., Karch, A., Teismann, H., Michels, K. B., Greiser, K. H., Becher, H., Karrasch, S., Ahrens, W., Meinke-Franze, C., Schipf, S., and Mikolajczyk, R.
- Abstract
Background: Childhood trauma is associated with somatic and mental illness in adulthood. The strength of the association varies as a function of age, sex, and type of trauma. Pertinent studies to date have mainly focused on individual diseases. In this study, we investigate the association between childhood trauma and a multiplicity of somatic and mental illnesses in adulthood. Methods: Data from 156 807 NAKO Health Study participants were analyzed by means of logistic regressions, with adjustment for age, sex, years of education, and study site. The Childhood Trauma Screener differentiated between no/minor (n = 115 891) and moderate/severe childhood trauma (n = 40 916). The outcome variables were medical diagnoses of five somatic and two mental health conditions as stated in the clinical history. Results: Persons with childhood trauma were more likely to bear a diagnosis of all of the studied conditions: cancer (odds ratio [OR] = 1.10; 95% confidence interval: [1.05; 1.15]), myocardial infarction (OR = 1.13 [1.03; 1.24]), diabetes (OR = 1.16, [1.10; 1.23]), stroke (OR = 1.35 [1.23; 1.48]), chronic obstructive pulmonary disease (OR = 1.45 [1.38; 1.52]), depression (OR = 2.36 [2.29; 2.43]), and anxiety disorders (OR = 2.08 [2.00; 2.17]). All of these associations were stronger in younger persons, regardless of the nature of childhood trauma. Differences between the sexes were observed only for some of these associations. Conclusion: Childhood trauma was associated with a higher probability of developing mental as well as somatic illness in adulthood. As childhood trauma is an element of individual history that the victim has little to no control over, and because the illnesses that can arise in adulthood in association with it are a heavy burden on the affected persons and on society, there is a need for research on these associations and for the development of preventive measures. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
18. Investigating people’s attitudes towards participating in longitudinal health research: an intersectionality-informed perspective
- Author
-
Merz, S., Jaehn, P., Pischon, T., Fischer, B., Wirkner, K., Rach, S., Guenther, K., Obi, N., and Holmberg, C.
- Subjects
Cardiovascular and Metabolic Diseases - Abstract
BACKGROUND: Increasing evidence suggests that participation proportions in longitudinal health research vary according to sex/gender, age, social class, or migration status. Intersectionality scholarship purports that such social categories cannot be understood in isolation and makes visible the co-dependent nature of the social determinants of health and illness. This paper uses an intersectionality-informed approach in order to expand the understanding of why people participate in health research, and the impact of intersecting social structures and experiences on these attitudes. METHODS: A sample of 80 respondents who had previously either accepted or declined an invitation to participate in the German National Cohort (NAKO) participated in our interview study. Interviews were semi-structured and contained both narrative elements and more structured probes. Data analysis proceeded in two steps: first, the entire data set was analysed thematically (separately for participants and non-participants); second, key themes were compared across self-reported sex/gender, age group and migration status to identify differences and commonalities. RESULTS: Respondents' attitudes towards study participation can be categorised into four themes: wanting to make a contribution, seeking personalised health information, excitement and feeling chosen, and seeking social recognition. Besides citing logistical challenges, non-participants narrated adverse experiences with or attitudes towards science and the healthcare system that deterred them from participating. A range of social experiences and cultural value systems shaped such attitudes; in particular, this includes the cultural authority of science as an arbiter of social questions, transgressing social categories and experiences of marginalisation. Care responsibilities, predominantly borne by female respondents, also impacted upon the decision to take part in NAKO. DISCUSSION: Our findings suggest that for participants, health research constitutes a site of distinction in the sense of making a difference and being distinct or distinguishable, whereas non-participants inhabited an orientation towards science that reflected their subjective marginalisation through science. No clear relationship can thereby be presumed between social location and a particular attitude towards study participation; rather, such attitudes transgress and challenge categorical boundaries. This challenges the understanding of particular populations as more or less disadvantaged, or as more or less inclined to participate in health research.
- Published
- 2023
19. NFDI4Health – nationale Forschungsdateninfrastruktur für personenbezogene Gesundheitsdaten
- Author
-
Fluck, J., Lindstädt, B., Ahrens, W., Beyan, O., Buchner, B., Darms, J., Depping, R., Dierkes, J., Fröhlich, H., Gehrke, J., Golebiewski, M., Grabenhenrich, L., Hahn, H.K., Kirsten, T., Klammt, S., Kusch, H., Löbe, M., Löffler, M., Meineke, F., Müller, W., Neuhausen, H., Nöthlings, U., Pischon, T., Prasser, F., Sax, U., Schmidt, C.O., Schulze, M., Semler, S.C., Thun, S., Waltemath, D., Wieler, L.H., Zeeb, H., Pigeot, I., and Publica
- Subjects
Cardiovascular and Metabolic Diseases ,ddc:340 - Abstract
Epidemiologische und klinische Studien sind standardisiert und gut dokumentiert, jedoch erfüllen Studienprotokolle, eingesetzte Erhebungsinstrumente und erhobene Daten die Anforderungen der FAIR-Prinzipien nicht in ausreichendem Maße. NFDI4Health wird daher eine Struktur schaffen, die eine zentrale Suche nach existierenden, dezentral verwalteten Datenkörpern und zugehörigen Dokumenten sowie einen FAIRen Zugang zu diesen erleichtert. Dazu werden die Auffindbarkeit und der Zugang zu strukturierten Gesundheitsdaten aus Registern, administrativen Gesundheitsdatenbanken, klinischen und epidemiologischen sowie Public Health-Studien verbessert und die Qualität und Harmonisierung der zugrundeliegenden Daten optimiert. Eine weitere Herausforderung entsteht durch die Verwendung personenbezogener Gesundheitsdaten. Diese sind hoch sensibel, so dass ihre Nutzung restriktive Datenschutzbestimmungen und informierte Einwilligungserklärungen der StudienteilnehmerInnen erfordert, was jedoch ihre Wiederverwendbarkeit einschränkt. NFDI4Health zielt daher darauf ab, den Austausch und die Verknüpfung von personenbezogenen Gesundheitsdaten sowie verteilte Datenanalysen unter Einhaltung datenschutzrechtlicher und ethischer Bestimmungen zu erleichtern. Um dies möglichst effizient zu erreichen, wird NFDI4Health die Entwicklung neuer, maschinenprozessierbarer Zustimmungsmöglichkeiten sowie innovativer Datenzugriffsservices auf Grundlage der FAIRPrinzipien vorantreiben und die Interoperabilität von IT-Lösungen für Metadatenrepositorien stärken. Komplementiert wird dies durch die Entwicklung entsprechender Angebote für Training und Ausbildung, um der Herausforderung der Umsetzung der Lösungen in den Universitäten und Forschungseinrichtungen zu begegnen. Schließlich wird durch die gemeinsame Arbeit in der NFDI4Health die Kooperation zwischen klinischer und epidemiologischer/Public Health-Forschung gestärkt.
- Published
- 2022
20. Prediction of activity-related energy expenditure using accelerometer-derived physical activity under free-living conditions: a systematic review
- Author
-
Jeran, S, Steinbrecher, A, and Pischon, T
- Published
- 2016
- Full Text
- View/download PDF
21. The German National Cohort (NAKO): Overview and Current State
- Author
-
Greiser, KH, primary, Bohn, B, additional, Panreck, L, additional, Breunig, E, additional, Lieb, W, additional, Pischon, T, additional, Schikowski, T, additional, and Völzke, H, additional
- Published
- 2022
- Full Text
- View/download PDF
22. Weitere Risikofaktoren für kardiovaskuläre Komplikationen
- Author
-
Binder, S., Krone, W., Müller-Wieland, D., Pischon, T., Sharma, A. M., Steffen, H.-M., Keil, U., Berger, K., Krönig, B., Luft, F. C., Siegrist, J., Rosenthal, J., and Kolloch, R.
- Published
- 2004
- Full Text
- View/download PDF
23. Diabetes mellitus, insulin treatment, diabetes duration, and risk of biliary tract cancer and hepatocellular carcinoma in a European cohort
- Author
-
Schlesinger, S., Aleksandrova, K., Pischon, T., Jenab, M., Fedirko, V., Trepo, E., Overvad, K., Roswall, N., Tjønneland, A., Boutron-Ruault, M.C., Fagherazzi, G., Racine, A., Kaaks, R., Grote, V.A., Boeing, H., Trichopoulou, A., Pantzalis, M., Kritikou, M., Mattiello, A., Sieri, S., Sacerdote, C., Palli, D., Tumino, R., Peeters, P.H., Bueno-de-Mesquita, H.B., Weiderpass, E., Quirós, J.R., Zamora-Ros, R., Sánchez, M.J., Arriola, L., Ardanaz, E., Tormo, M.J., Nilsson, P., Lindkvist, B., Sund, M., Rolandsson, O., Khaw, K.T., Wareham, N., Travis, R.C., Riboli, E., and Nöthlings, U.
- Published
- 2013
- Full Text
- View/download PDF
24. The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019
- Author
-
Khanh, BT, Lang, JJ, Compton, K, Xu, R, Acheson, AR, Henrikson, HJ, Kocarnik, JM, Penberthy, L, Aali, A, Abbas, Q, Abbasi, B, Abbasi-Kangevari, M, Abbasi-Kangevari, Z, Abbastabar, H, Abdelmasseh, M, Abd-Elsalam, S, Abdelwahab, AA, Abdoli, G, Abdulkadir, HA, Abedi, A, Abegaz, KH, Abidi, H, Aboagye, RG, Abolhassani, H, Absalan, A, Abtew, YD, Ali, HA, Abu-Gharbieh, E, Achappa, B, Acuna, JM, Addison, D, Addo, IY, Adegboye, OA, Adesina, MA, Adnan, M, Adnani, QES, Advani, SM, Afrin, S, Afzal, MS, Aggarwal, M, Ahinkorah, BO, Ahmad, AR, Ahmad, R, Ahmad, S, Ahmadi, S, Ahmed, H, Ahmed, LA, Ahmed, MB, Rashid, TA, Aiman, W, Ajami, M, Akalu, GT, Akbarzadeh-Khiavi, M, Aklilu, A, Akonde, M, Akunna, CJ, Al Hamad, H, Alahdab, F, Alanezi, FM, Alanzi, TM, Alessy, SA, Algammal, AM, Al-Hanawi, MK, Alhassan, RK, Ali, BA, Ali, L, Ali, SS, Alimohamadi, Y, Alipour, V, Aljunid, SM, Alkhayyat, M, Al-Maweri, SAA, Almustanyir, S, Alonso, N, Alqalyoobi, S, Al-Raddadi, RM, Al-Rifai, RHH, Al-Sabah, SK, Al-Tammemi, AB, Altawalah, H, Alvis-Guzman, N, Amare, F, Ameyaw, EK, Dehkordi, JJA, Amirzade-Iranaq, MH, Amu, H, Amusa, GA, Ancuceanu, R, Anderson, JA, Animut, YA, Anoushiravani, A, Anoushirvani, AA, Ansari-Moghaddam, A, Ansha, MG, Antony, B, Antwi, MH, Anwar, SL, Anwer, R, Anyasodor, AE, Arabloo, J, Arab-Zozani, M, Aremu, O, Argaw, AM, Ariffin, H, Aripov, T, Arshad, M, Al, A, Arulappan, J, Aruleba, RT, Aryannejad, A, Asaad, M, Asemahagn, MA, Asemi, Z, Asghari-Jafarabadi, M, Ashraf, T, Assadi, R, Athar, M, Athari, SS, Null, MMWA, Attia, S, Aujayeb, A, Ausloos, M, Avila-Burgos, L, Awedew, AF, Awoke, MA, Awoke, T, Quintanilla, BPA, Ayana, TM, Ayen, SS, Azadi, D, Null, SA, Azami-Aghdash, S, Azanaw, MM, Azangou-Khyavy, M, Jafari, AA, Azizi, H, Azzam, AYY, Babajani, A, Badar, M, Badiye, AD, Baghcheghi, N, Bagheri, N, Bagherieh, S, Bahadory, S, Baig, AA, Baker, JL, Bakhtiari, A, Bakshi, RK, Banach, M, Banerjee, I, Bardhan, M, Barone-Adesi, F, Barra, F, Barrow, A, Bashir, NZ, Bashiri, A, Basu, S, Batiha, A-MM, Begum, A, Bekele, AB, Belay, AS, Belete, MA, Belgaumi, UI, Bell, AW, Belo, L, Benzian, H, Berhie, AY, Bermudez, ANC, Bernabe, E, Bhagavathula, AS, Bhala, N, Bhandari, BB, Bhardwaj, N, Bhardwaj, P, Bhattacharyya, K, Bhojaraja, VS, Bhuyan, SS, Bibi, S, Bilchut, AH, Bintoro, BS, Biondi, A, Birega, MGB, Birhan, HE, Bjorge, T, Blyuss, O, Bodicha, BBA, Bolla, SR, Boloor, A, Bosetti, C, Braithwaite, D, Brauer, M, Brenner, H, Briko, AN, Briko, NI, Buchanan, CM, Bulamu, NB, Bustamante-Teixeira, MT, Butt, MH, Butt, NS, Butt, ZA, Caetano dos Santos, FL, Camera, LA, Cao, C, Cao, Y, Carreras, G, Carvalho, M, Cembranel, F, Cerin, E, Chakraborty, PA, Charalampous, P, Chattu, VK, Chimed-Ochir, O, Chirinos-Caceres, JL, Cho, DY, Cho, WCS, Christopher, DJ, Chu, D-T, Chukwu, IS, Cohen, AJ, Conde, J, Cortas, S, Costa, VM, Cruz-Martins, N, Culbreth, GT, Dadras, O, Dagnaw, FT, Dahlawi, SMA, Dai, X, Dandona, L, Dandona, R, Daneshpajouhnejad, P, Danielewicz, A, An, TMD, Soltani, RDC, Darwesh, AM, Das, S, Davitoiu, DV, Esmaeili, ED, De la Hoz, FP, Debela, SA, Dehghan, A, Demisse, B, Demisse, FW, DenovaGutiA, E, Derakhshani, A, Molla, MD, Dereje, D, Deribe, KS, Desai, R, Desalegn, MD, Dessalegn, FN, Dessalegni, SAA, Dessie, G, Desta, AA, Dewan, SMR, Dharmaratne, SD, Dhimal, M, Dianatinasab, M, Diao, N, Diaz, D, Digesa, LE, Dixit, SG, Doaei, S, Linh, PD, Doku, PN, Dongarwar, D, dos Santos, WM, Driscoll, TR, Dsouza, HL, Durojaiye, OC, Edalati, S, Eghbalian, F, Ehsani-Chimeh, E, Eini, E, Ekholuenetale, M, Ekundayo, TC, Ekwueme, DU, El Tantawi, M, Elbahnasawy, MA, Elbarazi, I, Elghazaly, H, Elhadi, M, El-Huneidi, W, Emamian, MH, Bain, LE, Enyew, DB, Erkhembayar, R, Eshetu, T, Eshrati, B, Eskandarieh, S, Espinosa-Montero, J, Etaee, F, Etemadimanesh, A, Eyayu, T, Ezeonwumelu, IJ, Ezzikouri, S, Fagbamigbe, AF, Fahimi, S, Fakhradiyev, IR, Faraon, EJA, Fares, J, Farmany, A, Farooque, U, Farrokhpour, H, Fasanmi, AO, Fatehizadeh, A, Fatima, W, Fattahi, H, Fekadu, G, Feleke, BE, Ferrari, AA, Ferrero, S, Desideri, LF, Filip, I, Fischer, F, Foroumadi, R, Foroutan, M, Fukumoto, T, Gaal, PA, Gad, MM, Gadanya, MA, Gaipov, A, Galehdar, N, Gallus, S, Garg, T, Fonseca, MG, Gebremariam, YH, Gebremeskel, TG, Gebremichael, MA, Geda, YF, Gela, YY, Gemeda, BNB, Getachew, M, Getachew, ME, Ghaffari, K, Ghafourifard, M, Ghamari, S-H, Nour, MG, Ghassemi, F, Ghimire, A, Ghith, N, Gholamalizadeh, M, Navashenaq, JG, Ghozy, S, Gilani, SA, Gill, PS, Ginindza, TG, Gizaw, ATT, Glasbey, JC, Godos, J, Goel, A, Golechha, M, Goleij, P, Golinelli, D, Golitaleb, M, Gorini, G, Goulart, BNG, Grosso, G, Guadie, HA, Gubari, MIM, Gudayu, TW, Guerra, MR, Gunawardane, DA, Gupta, B, Gupta, S, Gupta, V, Gupta, VK, Gurara, MK, Guta, A, Habibzadeh, P, Avval, AH, Hafezi-Nejad, N, Ali, AH, Haj-Mirzaian, A, Halboub, ES, Halimi, A, Halwani, R, Hamadeh, RR, Hameed, S, Hamidi, S, Hanif, A, Hariri, S, Harlianto, N, Haro, JM, Hartono, RK, Hasaballah, A, Hasan, SMM, Hasani, H, Hashemi, SM, Hassan, AM, Hassanipour, S, Hayat, K, Heidari, G, Heidari, M, Heidarymeybodi, Z, Herrera-Serna, BY, Herteliu, C, Hezam, K, Hiraike, Y, Hlongwa, MM, Holla, R, Holm, M, Horita, N, Hoseini, M, Hossain, MM, Hossain, MBH, Hosseini, M-S, Hosseinzadeh, A, Hosseinzadeh, M, Hostiuc, M, Hostiuc, S, Househ, M, Huang, J, Hugo, FN, Humayun, A, Hussain, S, Hussein, NR, Hwang, B-F, Ibitoye, SE, Iftikhar, PM, Ikuta, KS, Ilesanmi, OS, Ilic, IM, Ilic, MD, Immurana, M, Innos, K, Iranpour, P, Irham, LM, Islam, MS, Islam, RM, Islami, F, Ismail, NE, Isola, G, Iwagami, M, Merin, LJ, Jaiswal, A, Jakovljevic, M, Jalili, M, Jalilian, S, Jamshidi, E, Jang, S-I, Jani, CT, Javaheri, T, Jayarajah, UU, Jayaram, S, Jazayeri, SB, Jebai, R, Jemal, B, Jeong, W, Jha, RP, Jindal, HA, John-Akinola, YO, Jonas, JB, Joo, T, Joseph, N, Joukar, F, Jozwiak, JJ, Jarisson, M, Kabir, A, Kacimi, SEO, Kadashetti, V, Kahe, F, Kakodkar, PV, Kalankesh, LR, Kalhor, R, Kamal, VK, Kamangar, F, Kamath, A, Kanchan, T, Kandaswamy, E, Kandel, H, Kang, H, Kanno, GG, Kapoor, N, Kar, SS, Karanth, SD, Karaye, IM, Karch, A, Karimi, A, Kassa, BG, Katoto, PDMC, Kauppila, JH, Kaur, H, Kebede, AG, Keikavoosi-Arani, L, Kejela, GG, Bohan, PMK, Keramati, M, Keykhaei, M, Khajuria, H, Khan, A, Khan, AAK, Khan, EA, Khan, G, Khan, MN, Ab Khan, M, Khanali, J, Khatab, K, Khatatbeh, MM, Khatib, MN, Khayamzadeh, M, Kashani, HRK, Tabari, MAK, Khezeli, M, Khodadost, M, Kim, MS, Kim, YJ, Kisa, A, Kisa, S, Klugar, M, Klugarova, J, Kolahi, A-A, Kolkhir, P, Kompani, F, Koul, PA, Laxminarayana, SLK, Koyanagi, A, Krishan, K, Krishnamoorthy, Y, Bicer, BK, Kugbey, N, Kulimbet, M, Kumar, A, Kumar, GA, Kumar, N, Kurmi, OP, Kuttikkattu, A, La Vecchia, C, Lahiri, A, Lal, DK, Lam, J, Lan, Q, Landires, I, Larijani, B, Lasrado, S, Lau, J, Lauriola, P, Ledda, C, Lee, S-W, Lee, SWH, Lee, W-C, Lee, YY, Lee, YH, Legesse, SM, Leigh, J, Leong, E, Li, M-C, Lim, SS, Liu, G, Liu, J, Lo, C-H, Lohiya, A, Lopukhov, PD, Lorenzovici, L, Lotfi, M, Loureiro, JA, Lunevicius, R, Madadizadeh, F, Mafi, AR, Magdeldin, S, Mahjoub, S, Mahmoodpoor, A, Mahmoudi, M, Mahmoudimanesh, M, Mahumud, RA, Majeed, A, Majidpoor, J, Makki, A, Makris, KC, Rad, EM, Malekpour, M-R, Malekzadeh, R, Malik, AA, Mallhi, TH, Mallya, SD, Mamun, MA, Manda, AL, Mansour-Ghanaei, F, Mansouri, B, Mansournia, MA, Mantovani, LG, Martini, S, Martorell, M, Masoudi, S, Masoumi, SZ, Matei, CN, Mathews, E, Mathur, MR, Mathur, V, McKee, M, Meena, JK, Mehmood, K, Nasab, EM, Mehrotra, R, Melese, A, Mendoza, W, Menezes, RG, Mengesha, SD, Mensah, LG, Mentis, A-FA, Mera-Mamian, AYM, Meretoja, TJ, Merid, MW, Mersha, AG, Meselu, BT, Meshkat, M, Mestrovic, T, Jonasson, JM, Miazgowski, T, Michalek, IM, Mijena, GFW, Miller, TR, Mir, SA, Mirinezhad, SK, Mirmoeeni, S, Mirza-Aghazadeh-Attari, M, Mirzaei, H, Mirzaei, HR, Misganaw, AS, Misra, S, AbdulmuhsinMohammad, K, Mohammadi, E, Mohammadi, M, Mohammadian-Hafshejani, A, Mohammadpourhodki, R, Mohammed, A, Mohammed, S, Mohan, S, Mohseni, M, Moka, N, Mokdad, AH, Molassiotis, A, Molokhia, M, Momenzadeh, K, Momtazmanesh, S, Monasta, L, Mons, U, Al Montasir, A, Montazeri, F, Montero, A, Moosavi, MA, Moradi, A, Moradi, Y, Sarabi, MM, Moraga, P, Morawska, L, Morrison, SD, Morze, J, Mosapour, A, Mostafavi, E, Mousavi, SM, Isfahani, HM, Khaneghah, AM, Mpundu-Kaambwa, C, Mubarik, S, Mulita, F, Munblit, D, Munro, SB, Murillo-Zamora, E, Musa, J, Nabhan, AF, Nagarajan, AJ, Nagaraju, SP, Nagel, G, Naghipour, M, Naimzada, MD, Nair, TS, Naqvi, AA, Swamy, SN, Narayana, AI, Nassereldine, H, Natto, ZS, Nayak, BP, Ndejjo, R, Nduaguba, SO, Negash, WW, Nejadghaderi, SA, Nejati, K, Kandel, SN, Huy, VNN, Niazi, RK, Noor, NM, Noori, M, Noroozi, N, Nouraei, H, Nowroozi, A, Nunez-Samudio, V, Nzoputam, CI, Nzoputam, OJ, Oancea, B, Odukoya, OO, Oghenetega, OB, Ogunsakin, RE, Oguntade, AS, Oh, I-H, Okati-Aliabad, H, Okekunle, AP, Olagunju, AT, Olagunju, TO, Olakunde, BO, Olufadewa, II, Omer, E, Omonisi, AEE, Ong, S, Onwujekwe, OE, Orru, H, Otstavnov, SS, Oulhaj, A, Oumer, B, Owopetu, OF, Oyinloye, BE, Mahesh, PA, Padron-Monedero, A, Padubidri, JR, Pakbin, B, Pakshir, K, Pakzad, R, Palicz, T, Pana, A, Pandey, A, Pant, S, Pardhan, S, Park, E-K, Park, S, Patel, J, Pati, S, Paudel, R, Paudel, U, Paun, M, Toroudi, HP, Peng, M, Pereira, J, Pereira, RB, Perna, S, Perumalsamy, N, Pestell, RG, Pezzani, R, Piccinelli, C, Pillay, JD, Piracha, ZZ, Pischon, T, Postma, MJ, Langroudi, AP, Pourshams, A, Pourtaheri, N, Prashant, A, Qadir, MMF, Syed, ZQ, Rabiee, M, Rabiee, N, Radfar, A, Radhakrishnan, RA, Radhakrishnan, V, Raeisi, M, Rafiee, A, Rafiei, A, Raheem, N, Rahim, F, Rahman, MO, Rahman, M, Rahman, MA, Rahmani, AM, Rahmani, S, Rahmanian, V, Rajai, N, Rajesh, A, Ram, P, Ramezanzadeh, K, Rana, J, Ranabhat, K, Ranasinghe, P, Rao, CR, Rao, SJ, Rashedi, S, Rashidi, A, Rashidi, M-M, Ratan, ZA, Rawaf, DL, Rawaf, S, Rawal, L, Rawassizadeh, R, Razeghinia, MS, Rehman, AU, Rehman, IU, Reitsma, MB, Renzaho, AMN, Rezaei, M, Rezaei, N, Rezaei, S, Rezaeian, M, Rezapour, A, Riad, A, Rikhtegar, R, Rios-Blancas, M, Roberts, TJ, Rohloff, P, Romero-Rodriguez, E, Roshandel, G, Rwegerera, GM, Manjula, S, Saber-Ayad, MM, Saberzadeh-Ardestani, B, Sabour, S, Saddik, B, Sadeghi, E, Saeb, MR, Saeed, U, Safaei, M, Safary, A, Sahebazzamani, M, Sahebkar, A, Sahoo, H, Sajid, MR, Salari, H, Salehi, S, Salem, MR, Salimzadeh, H, Samodra, YL, Samy, AM, Sanabria, J, Sankararaman, S, Sanmarchi, F, Santric-Milicevic, MM, Saqib, MAN, Sarveazad, A, Sarvi, F, Sathian, B, Satpathy, M, Sayegh, N, Schneider, IJC, Schwarzinger, M, Sekerija, M, Senthilkumaran, S, Sepanlou, SG, Seylani, A, Seyoum, K, Sha, F, Shafaat, O, Shah, PA, Shahabi, S, Shahid, I, Shahrbaf, MA, Shahsavari, HR, Shaikh, MA, Shaka, MF, Shaker, E, Shannawaz, M, Sharew, MMS, Sharifi, A, Sharifi-Rad, J, Sharma, P, Shashamo, BB, Sheikh, A, Sheikh, M, Sheikhbahaei, S, Sheikhi, RA, Sheikhy, A, Shepherd, PR, Shetty, A, Shetty, JK, Shetty, RS, Shibuya, K, Shirkoohi, R, Shirzad-Aski, H, Shivakumar, KM, Shivalli, S, Shivarov, V, Shobeiri, P, Varniab, ZS, Shorofi, SA, Shrestha, S, Sibhat, MM, Malleshappa, SS, Sidemo, NB, Silva, DAS, Silva, LMLR, Julian, GS, Silvestris, N, Simegn, W, Singh, AD, Singh, A, Singh, G, Singh, H, Singh, JA, Singh, JK, Singh, P, Singh, S, Sinha, DN, Sinke, AH, Siraj, MS, Sitas, F, Siwal, SS, Skryabin, VY, Skryabina, AA, Socea, B, Soeberg, MJ, Sofi-Mahmudi, A, Solomon, Y, Soltani-Zangbar, MS, Song, S, Song, Y, Sorensen, RJD, Soshnikov, S, Sotoudeh, H, Sowe, A, Sufiyan, MB, Suk, R, Suleman, M, Abdulkader, RS, Sultana, S, Sur, D, Szacska, M, Tabaeian, SP, Tabares-Seisdedos, R, Tabatabaei, SM, Tabuchi, T, Tadbiri, H, Taheri, E, Taheri, M, Soodejani, MT, Takahashi, K, Talaat, IM, Tampa, M, Tan, K-K, Tat, NY, Tat, VY, Tavakoli, A, Tehrani-Banihashemi, A, Tekalegn, Y, Tesfay, FH, Thapar, R, Thavamani, A, Chandrasekar, VT, Thomas, N, Thomas, NK, Ticoalu, JHV, Tiyuri, A, Tollosa, DN, Topor-Madry, R, Touvier, M, Tovani-Palone, MR, Traini, E, Mai, TNT, Tripathy, JP, Ukke, GG, Ullah, I, Ullah, S, Unnikrishnan, B, Vacante, M, Vaezi, M, Tahbaz, SV, Valdez, PR, Vardavas, C, Varthya, SB, Vaziri, S, Velazquez, DZ, Veroux, M, Villeneuve, PJ, Violante, FS, Vladimirov, SK, Vlassov, V, Vo, B, Vu, LG, Wadood, AW, Waheed, Y, Walde, MT, Wamai, RG, Wang, C, Wang, F, Wang, N, Wang, Y, Ward, P, Waris, A, Westerman, R, Wickramasinghe, ND, Woldemariam, M, Woldu, B, Xiao, H, Xu, S, Xu, X, Yadav, L, Jabbari, SHY, Yang, L, Yazdanpanah, F, Yeshaw, Y, Yismaw, Y, Yonemoto, N, Younis, MZ, Yousefi, Z, Yousefian, F, Yu, C, Yu, Y, Yunusa, I, Zahir, M, Zaki, N, Zaman, BA, Zangiabadian, M, Zare, F, Zare, I, Zareshahrabadi, Z, Zarrintan, A, Zastrozhin, MS, Zeineddine, MA, Zhang, D, Zhang, J, Zhang, Y, Zhang, Z-J, Zhou, L, Zodpey, S, Zoladl, M, Vos, T, Hay, S, Force, LM, Murray, CJL, Khanh, BT, Lang, JJ, Compton, K, Xu, R, Acheson, AR, Henrikson, HJ, Kocarnik, JM, Penberthy, L, Aali, A, Abbas, Q, Abbasi, B, Abbasi-Kangevari, M, Abbasi-Kangevari, Z, Abbastabar, H, Abdelmasseh, M, Abd-Elsalam, S, Abdelwahab, AA, Abdoli, G, Abdulkadir, HA, Abedi, A, Abegaz, KH, Abidi, H, Aboagye, RG, Abolhassani, H, Absalan, A, Abtew, YD, Ali, HA, Abu-Gharbieh, E, Achappa, B, Acuna, JM, Addison, D, Addo, IY, Adegboye, OA, Adesina, MA, Adnan, M, Adnani, QES, Advani, SM, Afrin, S, Afzal, MS, Aggarwal, M, Ahinkorah, BO, Ahmad, AR, Ahmad, R, Ahmad, S, Ahmadi, S, Ahmed, H, Ahmed, LA, Ahmed, MB, Rashid, TA, Aiman, W, Ajami, M, Akalu, GT, Akbarzadeh-Khiavi, M, Aklilu, A, Akonde, M, Akunna, CJ, Al Hamad, H, Alahdab, F, Alanezi, FM, Alanzi, TM, Alessy, SA, Algammal, AM, Al-Hanawi, MK, Alhassan, RK, Ali, BA, Ali, L, Ali, SS, Alimohamadi, Y, Alipour, V, Aljunid, SM, Alkhayyat, M, Al-Maweri, SAA, Almustanyir, S, Alonso, N, Alqalyoobi, S, Al-Raddadi, RM, Al-Rifai, RHH, Al-Sabah, SK, Al-Tammemi, AB, Altawalah, H, Alvis-Guzman, N, Amare, F, Ameyaw, EK, Dehkordi, JJA, Amirzade-Iranaq, MH, Amu, H, Amusa, GA, Ancuceanu, R, Anderson, JA, Animut, YA, Anoushiravani, A, Anoushirvani, AA, Ansari-Moghaddam, A, Ansha, MG, Antony, B, Antwi, MH, Anwar, SL, Anwer, R, Anyasodor, AE, Arabloo, J, Arab-Zozani, M, Aremu, O, Argaw, AM, Ariffin, H, Aripov, T, Arshad, M, Al, A, Arulappan, J, Aruleba, RT, Aryannejad, A, Asaad, M, Asemahagn, MA, Asemi, Z, Asghari-Jafarabadi, M, Ashraf, T, Assadi, R, Athar, M, Athari, SS, Null, MMWA, Attia, S, Aujayeb, A, Ausloos, M, Avila-Burgos, L, Awedew, AF, Awoke, MA, Awoke, T, Quintanilla, BPA, Ayana, TM, Ayen, SS, Azadi, D, Null, SA, Azami-Aghdash, S, Azanaw, MM, Azangou-Khyavy, M, Jafari, AA, Azizi, H, Azzam, AYY, Babajani, A, Badar, M, Badiye, AD, Baghcheghi, N, Bagheri, N, Bagherieh, S, Bahadory, S, Baig, AA, Baker, JL, Bakhtiari, A, Bakshi, RK, Banach, M, Banerjee, I, Bardhan, M, Barone-Adesi, F, Barra, F, Barrow, A, Bashir, NZ, Bashiri, A, Basu, S, Batiha, A-MM, Begum, A, Bekele, AB, Belay, AS, Belete, MA, Belgaumi, UI, Bell, AW, Belo, L, Benzian, H, Berhie, AY, Bermudez, ANC, Bernabe, E, Bhagavathula, AS, Bhala, N, Bhandari, BB, Bhardwaj, N, Bhardwaj, P, Bhattacharyya, K, Bhojaraja, VS, Bhuyan, SS, Bibi, S, Bilchut, AH, Bintoro, BS, Biondi, A, Birega, MGB, Birhan, HE, Bjorge, T, Blyuss, O, Bodicha, BBA, Bolla, SR, Boloor, A, Bosetti, C, Braithwaite, D, Brauer, M, Brenner, H, Briko, AN, Briko, NI, Buchanan, CM, Bulamu, NB, Bustamante-Teixeira, MT, Butt, MH, Butt, NS, Butt, ZA, Caetano dos Santos, FL, Camera, LA, Cao, C, Cao, Y, Carreras, G, Carvalho, M, Cembranel, F, Cerin, E, Chakraborty, PA, Charalampous, P, Chattu, VK, Chimed-Ochir, O, Chirinos-Caceres, JL, Cho, DY, Cho, WCS, Christopher, DJ, Chu, D-T, Chukwu, IS, Cohen, AJ, Conde, J, Cortas, S, Costa, VM, Cruz-Martins, N, Culbreth, GT, Dadras, O, Dagnaw, FT, Dahlawi, SMA, Dai, X, Dandona, L, Dandona, R, Daneshpajouhnejad, P, Danielewicz, A, An, TMD, Soltani, RDC, Darwesh, AM, Das, S, Davitoiu, DV, Esmaeili, ED, De la Hoz, FP, Debela, SA, Dehghan, A, Demisse, B, Demisse, FW, DenovaGutiA, E, Derakhshani, A, Molla, MD, Dereje, D, Deribe, KS, Desai, R, Desalegn, MD, Dessalegn, FN, Dessalegni, SAA, Dessie, G, Desta, AA, Dewan, SMR, Dharmaratne, SD, Dhimal, M, Dianatinasab, M, Diao, N, Diaz, D, Digesa, LE, Dixit, SG, Doaei, S, Linh, PD, Doku, PN, Dongarwar, D, dos Santos, WM, Driscoll, TR, Dsouza, HL, Durojaiye, OC, Edalati, S, Eghbalian, F, Ehsani-Chimeh, E, Eini, E, Ekholuenetale, M, Ekundayo, TC, Ekwueme, DU, El Tantawi, M, Elbahnasawy, MA, Elbarazi, I, Elghazaly, H, Elhadi, M, El-Huneidi, W, Emamian, MH, Bain, LE, Enyew, DB, Erkhembayar, R, Eshetu, T, Eshrati, B, Eskandarieh, S, Espinosa-Montero, J, Etaee, F, Etemadimanesh, A, Eyayu, T, Ezeonwumelu, IJ, Ezzikouri, S, Fagbamigbe, AF, Fahimi, S, Fakhradiyev, IR, Faraon, EJA, Fares, J, Farmany, A, Farooque, U, Farrokhpour, H, Fasanmi, AO, Fatehizadeh, A, Fatima, W, Fattahi, H, Fekadu, G, Feleke, BE, Ferrari, AA, Ferrero, S, Desideri, LF, Filip, I, Fischer, F, Foroumadi, R, Foroutan, M, Fukumoto, T, Gaal, PA, Gad, MM, Gadanya, MA, Gaipov, A, Galehdar, N, Gallus, S, Garg, T, Fonseca, MG, Gebremariam, YH, Gebremeskel, TG, Gebremichael, MA, Geda, YF, Gela, YY, Gemeda, BNB, Getachew, M, Getachew, ME, Ghaffari, K, Ghafourifard, M, Ghamari, S-H, Nour, MG, Ghassemi, F, Ghimire, A, Ghith, N, Gholamalizadeh, M, Navashenaq, JG, Ghozy, S, Gilani, SA, Gill, PS, Ginindza, TG, Gizaw, ATT, Glasbey, JC, Godos, J, Goel, A, Golechha, M, Goleij, P, Golinelli, D, Golitaleb, M, Gorini, G, Goulart, BNG, Grosso, G, Guadie, HA, Gubari, MIM, Gudayu, TW, Guerra, MR, Gunawardane, DA, Gupta, B, Gupta, S, Gupta, V, Gupta, VK, Gurara, MK, Guta, A, Habibzadeh, P, Avval, AH, Hafezi-Nejad, N, Ali, AH, Haj-Mirzaian, A, Halboub, ES, Halimi, A, Halwani, R, Hamadeh, RR, Hameed, S, Hamidi, S, Hanif, A, Hariri, S, Harlianto, N, Haro, JM, Hartono, RK, Hasaballah, A, Hasan, SMM, Hasani, H, Hashemi, SM, Hassan, AM, Hassanipour, S, Hayat, K, Heidari, G, Heidari, M, Heidarymeybodi, Z, Herrera-Serna, BY, Herteliu, C, Hezam, K, Hiraike, Y, Hlongwa, MM, Holla, R, Holm, M, Horita, N, Hoseini, M, Hossain, MM, Hossain, MBH, Hosseini, M-S, Hosseinzadeh, A, Hosseinzadeh, M, Hostiuc, M, Hostiuc, S, Househ, M, Huang, J, Hugo, FN, Humayun, A, Hussain, S, Hussein, NR, Hwang, B-F, Ibitoye, SE, Iftikhar, PM, Ikuta, KS, Ilesanmi, OS, Ilic, IM, Ilic, MD, Immurana, M, Innos, K, Iranpour, P, Irham, LM, Islam, MS, Islam, RM, Islami, F, Ismail, NE, Isola, G, Iwagami, M, Merin, LJ, Jaiswal, A, Jakovljevic, M, Jalili, M, Jalilian, S, Jamshidi, E, Jang, S-I, Jani, CT, Javaheri, T, Jayarajah, UU, Jayaram, S, Jazayeri, SB, Jebai, R, Jemal, B, Jeong, W, Jha, RP, Jindal, HA, John-Akinola, YO, Jonas, JB, Joo, T, Joseph, N, Joukar, F, Jozwiak, JJ, Jarisson, M, Kabir, A, Kacimi, SEO, Kadashetti, V, Kahe, F, Kakodkar, PV, Kalankesh, LR, Kalhor, R, Kamal, VK, Kamangar, F, Kamath, A, Kanchan, T, Kandaswamy, E, Kandel, H, Kang, H, Kanno, GG, Kapoor, N, Kar, SS, Karanth, SD, Karaye, IM, Karch, A, Karimi, A, Kassa, BG, Katoto, PDMC, Kauppila, JH, Kaur, H, Kebede, AG, Keikavoosi-Arani, L, Kejela, GG, Bohan, PMK, Keramati, M, Keykhaei, M, Khajuria, H, Khan, A, Khan, AAK, Khan, EA, Khan, G, Khan, MN, Ab Khan, M, Khanali, J, Khatab, K, Khatatbeh, MM, Khatib, MN, Khayamzadeh, M, Kashani, HRK, Tabari, MAK, Khezeli, M, Khodadost, M, Kim, MS, Kim, YJ, Kisa, A, Kisa, S, Klugar, M, Klugarova, J, Kolahi, A-A, Kolkhir, P, Kompani, F, Koul, PA, Laxminarayana, SLK, Koyanagi, A, Krishan, K, Krishnamoorthy, Y, Bicer, BK, Kugbey, N, Kulimbet, M, Kumar, A, Kumar, GA, Kumar, N, Kurmi, OP, Kuttikkattu, A, La Vecchia, C, Lahiri, A, Lal, DK, Lam, J, Lan, Q, Landires, I, Larijani, B, Lasrado, S, Lau, J, Lauriola, P, Ledda, C, Lee, S-W, Lee, SWH, Lee, W-C, Lee, YY, Lee, YH, Legesse, SM, Leigh, J, Leong, E, Li, M-C, Lim, SS, Liu, G, Liu, J, Lo, C-H, Lohiya, A, Lopukhov, PD, Lorenzovici, L, Lotfi, M, Loureiro, JA, Lunevicius, R, Madadizadeh, F, Mafi, AR, Magdeldin, S, Mahjoub, S, Mahmoodpoor, A, Mahmoudi, M, Mahmoudimanesh, M, Mahumud, RA, Majeed, A, Majidpoor, J, Makki, A, Makris, KC, Rad, EM, Malekpour, M-R, Malekzadeh, R, Malik, AA, Mallhi, TH, Mallya, SD, Mamun, MA, Manda, AL, Mansour-Ghanaei, F, Mansouri, B, Mansournia, MA, Mantovani, LG, Martini, S, Martorell, M, Masoudi, S, Masoumi, SZ, Matei, CN, Mathews, E, Mathur, MR, Mathur, V, McKee, M, Meena, JK, Mehmood, K, Nasab, EM, Mehrotra, R, Melese, A, Mendoza, W, Menezes, RG, Mengesha, SD, Mensah, LG, Mentis, A-FA, Mera-Mamian, AYM, Meretoja, TJ, Merid, MW, Mersha, AG, Meselu, BT, Meshkat, M, Mestrovic, T, Jonasson, JM, Miazgowski, T, Michalek, IM, Mijena, GFW, Miller, TR, Mir, SA, Mirinezhad, SK, Mirmoeeni, S, Mirza-Aghazadeh-Attari, M, Mirzaei, H, Mirzaei, HR, Misganaw, AS, Misra, S, AbdulmuhsinMohammad, K, Mohammadi, E, Mohammadi, M, Mohammadian-Hafshejani, A, Mohammadpourhodki, R, Mohammed, A, Mohammed, S, Mohan, S, Mohseni, M, Moka, N, Mokdad, AH, Molassiotis, A, Molokhia, M, Momenzadeh, K, Momtazmanesh, S, Monasta, L, Mons, U, Al Montasir, A, Montazeri, F, Montero, A, Moosavi, MA, Moradi, A, Moradi, Y, Sarabi, MM, Moraga, P, Morawska, L, Morrison, SD, Morze, J, Mosapour, A, Mostafavi, E, Mousavi, SM, Isfahani, HM, Khaneghah, AM, Mpundu-Kaambwa, C, Mubarik, S, Mulita, F, Munblit, D, Munro, SB, Murillo-Zamora, E, Musa, J, Nabhan, AF, Nagarajan, AJ, Nagaraju, SP, Nagel, G, Naghipour, M, Naimzada, MD, Nair, TS, Naqvi, AA, Swamy, SN, Narayana, AI, Nassereldine, H, Natto, ZS, Nayak, BP, Ndejjo, R, Nduaguba, SO, Negash, WW, Nejadghaderi, SA, Nejati, K, Kandel, SN, Huy, VNN, Niazi, RK, Noor, NM, Noori, M, Noroozi, N, Nouraei, H, Nowroozi, A, Nunez-Samudio, V, Nzoputam, CI, Nzoputam, OJ, Oancea, B, Odukoya, OO, Oghenetega, OB, Ogunsakin, RE, Oguntade, AS, Oh, I-H, Okati-Aliabad, H, Okekunle, AP, Olagunju, AT, Olagunju, TO, Olakunde, BO, Olufadewa, II, Omer, E, Omonisi, AEE, Ong, S, Onwujekwe, OE, Orru, H, Otstavnov, SS, Oulhaj, A, Oumer, B, Owopetu, OF, Oyinloye, BE, Mahesh, PA, Padron-Monedero, A, Padubidri, JR, Pakbin, B, Pakshir, K, Pakzad, R, Palicz, T, Pana, A, Pandey, A, Pant, S, Pardhan, S, Park, E-K, Park, S, Patel, J, Pati, S, Paudel, R, Paudel, U, Paun, M, Toroudi, HP, Peng, M, Pereira, J, Pereira, RB, Perna, S, Perumalsamy, N, Pestell, RG, Pezzani, R, Piccinelli, C, Pillay, JD, Piracha, ZZ, Pischon, T, Postma, MJ, Langroudi, AP, Pourshams, A, Pourtaheri, N, Prashant, A, Qadir, MMF, Syed, ZQ, Rabiee, M, Rabiee, N, Radfar, A, Radhakrishnan, RA, Radhakrishnan, V, Raeisi, M, Rafiee, A, Rafiei, A, Raheem, N, Rahim, F, Rahman, MO, Rahman, M, Rahman, MA, Rahmani, AM, Rahmani, S, Rahmanian, V, Rajai, N, Rajesh, A, Ram, P, Ramezanzadeh, K, Rana, J, Ranabhat, K, Ranasinghe, P, Rao, CR, Rao, SJ, Rashedi, S, Rashidi, A, Rashidi, M-M, Ratan, ZA, Rawaf, DL, Rawaf, S, Rawal, L, Rawassizadeh, R, Razeghinia, MS, Rehman, AU, Rehman, IU, Reitsma, MB, Renzaho, AMN, Rezaei, M, Rezaei, N, Rezaei, S, Rezaeian, M, Rezapour, A, Riad, A, Rikhtegar, R, Rios-Blancas, M, Roberts, TJ, Rohloff, P, Romero-Rodriguez, E, Roshandel, G, Rwegerera, GM, Manjula, S, Saber-Ayad, MM, Saberzadeh-Ardestani, B, Sabour, S, Saddik, B, Sadeghi, E, Saeb, MR, Saeed, U, Safaei, M, Safary, A, Sahebazzamani, M, Sahebkar, A, Sahoo, H, Sajid, MR, Salari, H, Salehi, S, Salem, MR, Salimzadeh, H, Samodra, YL, Samy, AM, Sanabria, J, Sankararaman, S, Sanmarchi, F, Santric-Milicevic, MM, Saqib, MAN, Sarveazad, A, Sarvi, F, Sathian, B, Satpathy, M, Sayegh, N, Schneider, IJC, Schwarzinger, M, Sekerija, M, Senthilkumaran, S, Sepanlou, SG, Seylani, A, Seyoum, K, Sha, F, Shafaat, O, Shah, PA, Shahabi, S, Shahid, I, Shahrbaf, MA, Shahsavari, HR, Shaikh, MA, Shaka, MF, Shaker, E, Shannawaz, M, Sharew, MMS, Sharifi, A, Sharifi-Rad, J, Sharma, P, Shashamo, BB, Sheikh, A, Sheikh, M, Sheikhbahaei, S, Sheikhi, RA, Sheikhy, A, Shepherd, PR, Shetty, A, Shetty, JK, Shetty, RS, Shibuya, K, Shirkoohi, R, Shirzad-Aski, H, Shivakumar, KM, Shivalli, S, Shivarov, V, Shobeiri, P, Varniab, ZS, Shorofi, SA, Shrestha, S, Sibhat, MM, Malleshappa, SS, Sidemo, NB, Silva, DAS, Silva, LMLR, Julian, GS, Silvestris, N, Simegn, W, Singh, AD, Singh, A, Singh, G, Singh, H, Singh, JA, Singh, JK, Singh, P, Singh, S, Sinha, DN, Sinke, AH, Siraj, MS, Sitas, F, Siwal, SS, Skryabin, VY, Skryabina, AA, Socea, B, Soeberg, MJ, Sofi-Mahmudi, A, Solomon, Y, Soltani-Zangbar, MS, Song, S, Song, Y, Sorensen, RJD, Soshnikov, S, Sotoudeh, H, Sowe, A, Sufiyan, MB, Suk, R, Suleman, M, Abdulkader, RS, Sultana, S, Sur, D, Szacska, M, Tabaeian, SP, Tabares-Seisdedos, R, Tabatabaei, SM, Tabuchi, T, Tadbiri, H, Taheri, E, Taheri, M, Soodejani, MT, Takahashi, K, Talaat, IM, Tampa, M, Tan, K-K, Tat, NY, Tat, VY, Tavakoli, A, Tehrani-Banihashemi, A, Tekalegn, Y, Tesfay, FH, Thapar, R, Thavamani, A, Chandrasekar, VT, Thomas, N, Thomas, NK, Ticoalu, JHV, Tiyuri, A, Tollosa, DN, Topor-Madry, R, Touvier, M, Tovani-Palone, MR, Traini, E, Mai, TNT, Tripathy, JP, Ukke, GG, Ullah, I, Ullah, S, Unnikrishnan, B, Vacante, M, Vaezi, M, Tahbaz, SV, Valdez, PR, Vardavas, C, Varthya, SB, Vaziri, S, Velazquez, DZ, Veroux, M, Villeneuve, PJ, Violante, FS, Vladimirov, SK, Vlassov, V, Vo, B, Vu, LG, Wadood, AW, Waheed, Y, Walde, MT, Wamai, RG, Wang, C, Wang, F, Wang, N, Wang, Y, Ward, P, Waris, A, Westerman, R, Wickramasinghe, ND, Woldemariam, M, Woldu, B, Xiao, H, Xu, S, Xu, X, Yadav, L, Jabbari, SHY, Yang, L, Yazdanpanah, F, Yeshaw, Y, Yismaw, Y, Yonemoto, N, Younis, MZ, Yousefi, Z, Yousefian, F, Yu, C, Yu, Y, Yunusa, I, Zahir, M, Zaki, N, Zaman, BA, Zangiabadian, M, Zare, F, Zare, I, Zareshahrabadi, Z, Zarrintan, A, Zastrozhin, MS, Zeineddine, MA, Zhang, D, Zhang, J, Zhang, Y, Zhang, Z-J, Zhou, L, Zodpey, S, Zoladl, M, Vos, T, Hay, S, Force, LM, and Murray, CJL
- Abstract
BACKGROUND: Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. METHODS: The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. FINDINGS: Globally, in 2019, the risk factors included in this analysis accounted for 4·45 million (95% uncertainty interval 4·01-4·94) deaths and 105 million (95·0-116) DALYs for both sexes combined, representing 44·4% (41·3-48·4) of all cancer deaths and 42·0% (39·1-45·6) of all DALYs. There were 2·88 million (2·60-3·18) risk-attributable cancer deaths in males (50·6% [47·8-54·1] of all male cancer deaths) and 1·58 million (1·36-1·84) risk-attributable cancer deaths in females (36·3% [32·5-41·3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20·4% (12·6-28·4) and DALYs by 16·8% (8·8-25·0), with the greatest percentage increase in metabolic risks (34·7% [2
- Published
- 2022
25. Pre-diagnostic C-reactive protein concentrations, CRP genetic variation and mortality among individuals with colorectal cancer in Western European populations
- Author
-
Nimptsch, K., Aleksandrova, K., Fedirko, V., Jenab, M., Gunter, M.J., Siersema, P.D., Wu, K., Katzke, V., Kaaks, R., Panico, S., Palli, D., May, A.M., Sieri, S., Bueno-de-Mesquita, B., Standahl, K., Sánchez, M.J., Perez-Cornago, A., Olsen, A., Tjønneland, A., Bonet, C.B., Dahm, C.C., Chirlaque, M.D., Fiano, V., Tumino, R., Gurrea, A.B., Boutron-Ruault, M.C., Menegaux, F., Severi, G., Guelpen, B. van, Lee, Y.A., Pischon, T., Nimptsch, K., Aleksandrova, K., Fedirko, V., Jenab, M., Gunter, M.J., Siersema, P.D., Wu, K., Katzke, V., Kaaks, R., Panico, S., Palli, D., May, A.M., Sieri, S., Bueno-de-Mesquita, B., Standahl, K., Sánchez, M.J., Perez-Cornago, A., Olsen, A., Tjønneland, A., Bonet, C.B., Dahm, C.C., Chirlaque, M.D., Fiano, V., Tumino, R., Gurrea, A.B., Boutron-Ruault, M.C., Menegaux, F., Severi, G., Guelpen, B. van, Lee, Y.A., and Pischon, T.
- Abstract
Contains fulltext : 252185.pdf (Publisher’s version ) (Open Access), BACKGROUND: The role of elevated pre-diagnostic C-reactive protein (CRP) concentrations on mortality in individuals with colorectal cancer (CRC) remains unclear. METHODS: We investigated the association between pre-diagnostic high-sensitivity CRP concentrations and CRP genetic variation associated with circulating CRP and CRC-specific and all-cause mortality based on data from 1,235 individuals with CRC within the European Prospective Investigation into Cancer and Nutrition cohort using multivariable-adjusted Cox proportional hazards regression. RESULTS: During a median follow-up of 9.3 years, 455 CRC-specific deaths were recorded, out of 590 deaths from all causes. Pre-diagnostic CRP concentrations were not associated with CRC-specific (hazard ratio, HR highest versus lowest quintile 0.92, 95% confidence interval, CI 0.66, 1.28) or all-cause mortality (HR 0.91, 95% CI 0.68, 1.21). Genetic predisposition to higher CRP (weighted score based on alleles of four CRP SNPs associated with higher circulating CRP) was not significantly associated with CRC-specific mortality (HR per CRP-score unit 0.95, 95% CI 0.86, 1.05) or all-cause mortality (HR 0.98, 95% CI 0.90, 1.07). Among four investigated CRP genetic variants, only SNP rs1205 was significantly associated with CRC-specific (comparing the CT and CC genotypes with TT genotype, HR 0.54, 95% CI 0.35, 0.83 and HR 0.58, 95% CI 0.38, 0.88, respectively) and all-cause mortality (HR 0.58, 95% CI 0.40, 0.85 and 0.64, 95% CI 0.44, 0.92, respectively). CONCLUSIONS: The results of this prospective cohort study do not support a role of pre-diagnostic CRP concentrations on mortality in individuals with CRC. The observed associations with rs1205 deserve further scientific attention.
- Published
- 2022
26. Pre-diagnostic C-reactive protein concentrations, CRP genetic variation and mortality among individuals with colorectal cancer in Western European populations.
- Author
-
Nimptsch, K, Aleksandrova, K, Fedirko, V, Jenab, M, Gunter, MJ, Siersema, PD, Wu, K, Katzke, V, Kaaks, R, Panico, S, Palli, D, May, AM, Sieri, S, Bueno-de-Mesquita, B, Standahl, K, Sánchez, M-J, Perez-Cornago, A, Olsen, A, Tjønneland, A, Bonet, CB, Dahm, CC, Chirlaque, M-D, Fiano, V, Tumino, R, Gurrea, AB, Boutron-Ruault, M-C, Menegaux, F, Severi, G, van Guelpen, B, Lee, Y-A, Pischon, T, Nimptsch, K, Aleksandrova, K, Fedirko, V, Jenab, M, Gunter, MJ, Siersema, PD, Wu, K, Katzke, V, Kaaks, R, Panico, S, Palli, D, May, AM, Sieri, S, Bueno-de-Mesquita, B, Standahl, K, Sánchez, M-J, Perez-Cornago, A, Olsen, A, Tjønneland, A, Bonet, CB, Dahm, CC, Chirlaque, M-D, Fiano, V, Tumino, R, Gurrea, AB, Boutron-Ruault, M-C, Menegaux, F, Severi, G, van Guelpen, B, Lee, Y-A, and Pischon, T
- Abstract
BACKGROUND: The role of elevated pre-diagnostic C-reactive protein (CRP) concentrations on mortality in individuals with colorectal cancer (CRC) remains unclear. METHODS: We investigated the association between pre-diagnostic high-sensitivity CRP concentrations and CRP genetic variation associated with circulating CRP and CRC-specific and all-cause mortality based on data from 1,235 individuals with CRC within the European Prospective Investigation into Cancer and Nutrition cohort using multivariable-adjusted Cox proportional hazards regression. RESULTS: During a median follow-up of 9.3 years, 455 CRC-specific deaths were recorded, out of 590 deaths from all causes. Pre-diagnostic CRP concentrations were not associated with CRC-specific (hazard ratio, HR highest versus lowest quintile 0.92, 95% confidence interval, CI 0.66, 1.28) or all-cause mortality (HR 0.91, 95% CI 0.68, 1.21). Genetic predisposition to higher CRP (weighted score based on alleles of four CRP SNPs associated with higher circulating CRP) was not significantly associated with CRC-specific mortality (HR per CRP-score unit 0.95, 95% CI 0.86, 1.05) or all-cause mortality (HR 0.98, 95% CI 0.90, 1.07). Among four investigated CRP genetic variants, only SNP rs1205 was significantly associated with CRC-specific (comparing the CT and CC genotypes with TT genotype, HR 0.54, 95% CI 0.35, 0.83 and HR 0.58, 95% CI 0.38, 0.88, respectively) and all-cause mortality (HR 0.58, 95% CI 0.40, 0.85 and 0.64, 95% CI 0.44, 0.92, respectively). CONCLUSIONS: The results of this prospective cohort study do not support a role of pre-diagnostic CRP concentrations on mortality in individuals with CRC. The observed associations with rs1205 deserve further scientific attention.
- Published
- 2022
27. Metaproteomics approach and pathway modulation in obesity and diabetes: a narrative review
- Author
-
Calabrese, F.M., Porrelli, A., Vacca, M., Comte, B., Nimptsch, K., Pinart, M., Pischon, T., Pujos-Guillot, E., and De Angelis, M.
- Subjects
Cardiovascular and Metabolic Diseases - Abstract
Low-grade inflammatory diseases revealed metabolic perturbations that have been linked to various phenotypes, including gut microbiota dysbiosis. In the last decade, metaproteomics has been used to investigate protein composition profiles at specific steps and in specific healthy/pathologic conditions. We applied a rigorous protocol that relied on PRISMA guidelines and filtering criteria to obtain an exhaustive study selection that finally resulted in a group of 10 studies, based on metaproteomics and that aim at investigating obesity and diabetes. This batch of studies was used to discuss specific microbial and human metaproteome alterations and metabolic patterns in subjects affected by diabetes (T1D and T2D) and obesity. We provided the main up- and down-regulated protein patterns in the inspected pathologies. Despite the available results, the evident paucity of metaproteomic data is to be considered as a limiting factor in drawing objective considerations. To date, ad hoc prepared metaproteomic databases collecting pathologic data and related metadata, together with standardized analysis protocols, are required to increase our knowledge on these widespread pathologies.
- Published
- 2022
28. Food ontologies
- Author
-
Tamma, V., Castellano-Escuder, Pol, González-Domínguez, Raúl, Wishart, David S, Andrés-Lacueva, Cristina, Sánchez-Pla, Alex, Snae, Chakkrit, Bruckner, Michael, Pizzuti, T., Mirabelli, G., Dragoni, M., Bailoni, Tania, Maimone, Rosa, Eccher, C., Vitali, F., Lombardo, Rosario, Rivero, Damaríz, Mattivi, F., Franceschi, P., Bordoni, A., Trimigno, Alessia, Capozzi, F., Felici, G., Taglino, F., Miglietta, F., De Cock, N., Lachat, C., De Baets, B., De Tré, G., Pinart, M., Nimptsch, K., Pischon, T., Bouwman, J., Cavalieri, D., Eftimov, T., Ispirova, Gordana, Potočnik, Doris, Ogrinc, N., Seljak, B. Koroušić, Jiomekong, Azanzi, Caracciolo, Caterina, Morshed, Ahsan, Stellato, Armando, Johannsen, Gudrun, Jaques, Yves, Keizer, Johannes, Cordier, Amélie, Dufour-Lussier, Valmi, Lieber, Jean, Nauer, Emmanuel, Badra, Fadi, Cojan, Julien, Gaillard, Emmanuelle, Infante-Blanco, Laura, Molli, Pascal, Napoli, Amedeo, Skaf-Molli, Hala, Karim, Shakir, Shaikh, Umair Uddin, Rajput, Quratulain, Asif, Zaheeruddin, Çelik, Duygu, Kolchin, Maxim, Chistyakov, A., Lapaev, Maxim, Khaydarova, R., Ibanescu, Liliana, Dibie, Juliette, Dervaux, Stéphane, Guichard, Elisabeth, Raad, Joe, Eftimov, Tome, Korošec, Peter, Seljak, Barbara Koroušić, Pizzuti, Teresa, Mirabelli, Giovanni, Grasso, Giovanni, Paldino, Giulia, Wang, Hongwei, Zhang, Fuzheng, Wang, Jialin, Zhao, Miao, Li, Wenjie, Xie, Xing, Guo, Minyi, Sherimon, Vinu, P.C, Sherimon, Ismaeel, Alaa, Varkey, Winny, B, Naveen, Padhiar, Ishita, Seneviratne, O., Chari, Shruthi, Gruen, Daniel, and McGuinness, D.
- Subjects
Semantic Web - Abstract
A review of: - Methodologies, methods and tools used for the construction and evaluation of food ontologies - Integration of food ontologies in real world application to solve real world problems
- Published
- 2022
- Full Text
- View/download PDF
29. Automated imaging-based abdominal organ segmentation and quality control in 20,000 participants of the UK Biobank and German National Cohort Studies
- Author
-
Kart, T., Fischer, M., Winzeck, S., Glocker, B., Bai, W., Bülow, R., Emmel, C., Friedrich, L., Kauczor, H.U., Keil, T., Kröncke, T., Mayer, P., Niendorf, T., Peters, A., Pischon, T., Schaarschmidt, B.M., Schmidt, B., Schulze, M.B., Umutle, L., Völzke, H., Küstner, T., Bamberg, F., Schölkopf, B., Rueckert, D., and Gatidis, S.
- Subjects
Quality Control ,Cardiovascular and Metabolic Diseases ,Image Processing, Computer-Assisted ,Medizin ,Humans ,ddc:610 ,Technology Platforms ,Magnetic Resonance Imaging ,United Kingdom ,Biological Specimen Banks - Abstract
Large epidemiological studies such as the UK Biobank (UKBB) or German National Cohort (NAKO) provide unprecedented health-related data of the general population aiming to better understand determinants of health and disease. As part of these studies, Magnetic Resonance Imaging (MRI) is performed in a subset of participants allowing for phenotypical and functional characterization of different organ systems. Due to the large amount of imaging data, automated image analysis is required, which can be performed using deep learning methods, e. g. for automated organ segmentation. In this paper we describe a computational pipeline for automated segmentation of abdominal organs on MRI data from 20,000 participants of UKBB and NAKO and provide results of the quality control process. We found that approx. 90% of data sets showed no relevant segmentation errors while relevant errors occurred in a varying proportion of data sets depending on the organ of interest. Image-derived features based on automated organ segmentations showed relevant deviations of varying degree in the presence of segmentation errors. These results show that large-scale, deep learning-based abdominal organ segmentation on MRI data is feasible with overall high accuracy, but visual quality control remains an important step ensuring the validity of down-stream analyses in large epidemiological imaging studies.
- Published
- 2022
30. Zunahme psychischer Störungen während der COVID-19-Pandemie – die Rolle beruflicher und finanzieller Belastungen. Eine Analyse der NAKO Gesundheitsstudie
- Author
-
Dragano, N., Reuter, M., Peters, A., Engels, M., Schmidt, B., Greiser, K.H., Bohn, B., Riedel-Heller, S., Karch, A., Mikolajczyk, R., Krause, G., Lang, O., Panreck, L., Rietschel, M., Brenner, H., Fischer, B., Franzke, C.W., Gastell, S., Holleczek, B., Jöckel, K.H., Kaaks, R., Keil, T., Kluttig, A., Kuß, O., Legath, N., Leitzmann, M., Lieb, W., Meinke-Franze, C., Michels, K.B., Obi, N., Pischon, T., Feinkohl, I., Rospleszcz, S., Schikowski, T., Schulze, M.B., Stang, A., Völzke, H., Willich, S.N., Wirkner, K., Zeeb, H., Ahrens, W., and Berger, K.
- Abstract
BACKGROUND: Numerous studies have reported an increase in mental disorders during the COVID-19 pandemic, but the exact reasons for this development are not well understood. In this study we investigate whether pandemic-related occupational and financial changes (e.g., reduced working hours, working from home, financial losses) were associated with increased symptoms of depression and anxiety compared with the situation before the pandemic. METHODS: We analyzed data from the German National Cohort (NAKO) Study. Between May and November 2020, 161 849 study participants answered questions on their mental state and social circumstances. Their responses were compared with data from the baseline survey before the pandemic (2014-2019). Linear fixed-effects models were used to determine whether individual changes in the severity of symptoms of depression (PHQ-9) or anxiety (GAD-7) were associated with occupational/financial changes (controlling for various covariates). RESULTS: The prevalence of moderate or severe symptoms of depression and anxiety increased by 2.4% and 1.5%, respectively, during the COVID-19 pandemic compared with the preceding years. The mean severity of the symptoms rose slightly. A pronounced increase in symptoms was observed among those who became unemployed during the pandemic (+ 1.16 points on the depression scale, 95% confidence interval [0.91; 1.41], range 0-27). Increases were also seen for reduced working hours with no short-time allowance, increased working hours, working from home, insecurity regarding employment, and financial strain. The deterioration in mental health was largely statistically explained by the occupational and financial changes investigated in the model. CONCLUSION: Depressive symptoms and anxiety disorders increased slightly in the study population during the first year of the COVID-19 pandemic. Occupational and financial difficulties were an essential contributory factor. These strains should be taken into account both in the care of individual patients and in the planning of targeted prevention measures.
- Published
- 2022
31. Development and evaluation of a short 24-h food list as part of a blended dietary assessment strategy in large-scale cohort studies
- Author
-
Freese, J., Feller, S., Harttig, U., Kleiser, C., Linseisen, J., Fischer, B., Leitzmann, M.F., Six-Merker, J., Michels, K.B., Nimptsch, K., Steinbrecher, A., Pischon, T., Heuer, T., Hoffmann, I., Jacobs, G., Boeing, H., and Nothlings, U.
- Subjects
Methods ,Health aspects ,Nutritional assessment -- Methods ,Food consumption -- Health aspects ,Nutrition -- Product/Service Evaluations - Abstract
INTRODUCTION The valid estimation of long-term dietary intake in large-scale cohort studies represents a methodological challenge. Food frequency questionnaires (FFQs) have long been the instrument of choice. However, FFQs measure [...], BACKGROUND/OBJECTIVES: The validity of dietary assessment in large-scale cohort studies has been questioned. Combining data sources for the estimation of usual intake in a blended approach may enhance the validity of dietary measurement. Our objective was to develop a web-based 24-h food list for Germany to identify foods consumed during the previous 24 h and to evaluate the performance of the new questionnaire in a feasibility study. SUBJECTS/METHODS: Available data from the German National Nutrition Survey II were used to develop a finite list of food items. A total of 508 individuals were invited to fill in the 24-h food list via the Internet up to three times during a 3-6-month time period. In addition, participants were asked to evaluate the questionnaire using a brief online evaluation form. RESULTS: In total, 246 food items were identified for the 24-h food list, reflecting > 75% variation in intake of 27 nutrients and four major food groups. Among the individuals invited, 64% participated in the feasibility study. Of these, 100%, 85% and 68% of participants completed the 24-h food list one, two or three times, respectively. The average time needed to complete the questionnaire was 9 min, and its acceptability by participants was rated as high. CONCLUSIONS: The 24-h food list represents a promising new dietary assessment tool that can be used as part of a blended approach combining multiple data sources for valid estimation of usual dietary intake in large-scale cohort studies. European Journal of Clinical Nutrition (2014) 68, 324-329; doi:10.1038/ejcn.2013.274; published online 8 January 2014 Keywords: nutritional epidemiology; dietary assessment; statistical modelling Keywords: nutritional epidemiology; dietary assessment; statistical modelling
- Published
- 2014
- Full Text
- View/download PDF
32. Microbiota in health and disease-potential clinical applications
- Author
-
Laudes, M., Geisler, C., Rohmann, N., Bouwman, J., Pischon, T., and Schlicht, K.
- Subjects
Cardiovascular and Metabolic Diseases - Abstract
Within the last two decades tremendous efforts in biomedicine have been undertaken to understand the interplay of commensal bacteria living in and on our human body with our own human physiology. It became clear that (1) a high diversity especially of the microbial communities in the gut are important to preserve health and that (2) certain bacteria via nutrition-microbe-host metabolic axes are beneficially affecting various functions of the host, including metabolic control, energy balance and immune function. While a large set of evidence indicate a special role for small chain fatty acids (SCFA) in that context, recently also metabolites of amino acids (e.g., tryptophan and arginine) moved into scientific attention. Of interest, microbiome alterations are not only important in nutrition associated diseases like obesity and diabetes, but also in many chronic inflammatory, oncological and neurological abnormalities. From a clinician's point of view, it should be mentioned, that the microbiome is not only interesting to develop novel therapies, but also as a modifiable factor to improve efficiency of modern pharmaceutics, e.g., immune-therapeutics in oncology. However, so far, most data rely on animal experiments or human association studies, whereas controlled clinical intervention studies are spare. Hence, the translation of the knowledge of the last decades into clinical routine will be the challenge of microbiome based biomedical research for the next years. This review aims to provide examples for future clinical applications in various entities and to suggest bacterial species and/or microbial effector molecules as potential targets for intervention studies.
- Published
- 2021
33. Variation of serum metabolites related to habitual diet: a targeted metabolomic approach in EPIC-Potsdam
- Author
-
Floegel, A., von Ruesten, A., Drogan, D., Schulze, M.B., Prehn, C., Adamski, J., Pischon, T., and Boeing, H.
- Subjects
Prevention ,Physiological aspects ,Research ,Health aspects ,Chronic diseases -- Prevention ,High fiber diet -- Health aspects ,Metabolites -- Physiological aspects ,Meat -- Health aspects ,Metabolomics -- Research ,High-fiber diet -- Health aspects - Abstract
INTRODUCTION Advancement of technologies from analytical chemistry, particularly nuclear magnetic resonance spectroscopy and mass spectrometry (MS), made high-throughput metabolomic analysis of biological specimen possible. To date, an increasing number of [...], BACKGROUND/OBJECTIVE: Serum metabolites have been linked to higher risk of chronic diseases but determinants of serum metabolites are not clear. We aimed to investigate the association between habitual diet as a modifiable risk factor and relevant serum metabolites. SUBJECTS/METHODS: This cross-sectional study comprised 2380 EPIC-Potsdam participants. Intake of 45 food groups was assessed by food frequency questionnaire and concentrations of 127 serum metabolites were measured by targeted metabolomics. Reduced rank regression was used to find dietary patterns that explain the maximum variation of metabolites. RESULTS: In the multivariable-adjusted model, the proportion of explained variation by habitual diet was ranked as follows: acyl-alkyl-phosphatidylcholines (5.7%), sphingomyelins (5.1%), diacyl-phosphatidylcholines (4.4%), lyso-phosphatidylcholines (4.1%), acylcarnitines (3.5%), amino acids (2.2%) and hexose (1.6%). A pattern with high intake of butter and low intake of margarine was related to acylcarnitines, acyl-alkyl-phosphatidylcholines, lyso-phosphatidylcholines and hydroxy-sphingomyelins, particularly with saturated and monounsaturated fatty acid side chains. A pattern with high intake of red meat and fish and low intake of whole-grain bread and tea was related to hexose and phosphatidylcholines. A pattern consisting of high intake of potatoes, dairy products and cornflakes particularly explained methionine and branched chain amino acids. Dietary patterns related to type 2 diabetes-relevant metabolites included high intake of red meat and low intake of whole-grain bread, tea, coffee, cake and cookies, canned fruits and fish. CONCLUSIONS: Dietary patterns characterized by intakes of red meat, whole-grain bread, tea and coffee were linked to relevant metabolites and could be potential targets for chronic disease prevention. European Journal of Clinical Nutrition (2013) 67, 1100-1108; doi: 10.1038/ejcn.2013.147; published online 14 August 2013 Keywords: metabolomics; metabolites; diet; food intake; reduced rank regression; systems epidemiology
- Published
- 2013
- Full Text
- View/download PDF
34. General and abdominal obesity parameters and their combination in relation to mortality: a systematic review and meta-regression analysis
- Author
-
Carmienke, S., Freitag, M.H., Pischon, T., Schlattmann, P., Fankhaenel, T., Goebel, H., and Gensichen, J.
- Subjects
Physiological aspects ,Research ,Mortality -- Research -- Germany ,Obesity -- Physiological aspects ,Meta-analysis -- Research ,Regression analysis -- Research - Abstract
INTRODUCTION Obesity is a major public health concern worldwide. (1) According to a recent estimate, there are 1.46 billion overweight adults (body mass index (BMI) ≥ 25 kg/[m.sup.2]) and 503 [...], Epidemiological studies assessing general and abdominal obesity measures or their combination for mortality prediction have shown inconsistent results. We aimed to systematically review the associations of body mass index (BMI), waist-to-hip ratio (WHR), waist circumference (WC) and waist-to-height ratio (WHtR) with all-cause mortality in prospective cohort studies. In this systematic review, which includes a meta-regression analysis, we analysed the associations with all-cause mortality of BMI, WHR, WC and WHtR in prospective cohort studies available in Medline, Embase, the Cochrane Database of Systematic Reviews and Esbiobase from inception through 7 May 2010. A total of 18 studies met the inclusion criteria, comprising 689465 participants and 48 421 deaths during 5-24 years of follow-up. The studies were heterogeneous, mainly due to differences in categorization of anthropometric parameters (AP) and different approaches to statistical analysis. Both general and abdominal obesity measures were significantly associated with mortality. In analyses using categorical variables, BMI and WC showed predominantly U- or J-shaped associations with mortality, whereas WHR and WHtR demonstrated positive relationships with mortality. All measures showed similar risk patterns for upper quantiles in comparison to reference quantiles. The parameters of general and abdominal obesity each remained significantly associated with mortality when adjusted for the other. This evidence suggests that abdominal obesity measures such as WC or WHR, show information independent to measures of general obesity and should be used in clinical practice, in addition to BMI, to assess obesity-related mortality in adults. European Journal of Clinical Nutrition (2013) 67, 573-585; doi: 10.1038/ejcn.2013.61; published online 20 March 2013 Keywords: body mass index; waist circumference; waist-to-hip ratio; mortality
- Published
- 2013
- Full Text
- View/download PDF
35. Die NAKO Gesundheitsstudie – Design, Methoden und Datennutzung für wissenschaftliche Auswertungen
- Author
-
Peters, A, additional, Völzke, H, additional, Pischon, T, additional, Löffler, M, additional, Schmidt, M, additional, Albrecht, M, additional, Bohn, B, additional, Panreck, L, additional, and Greiser, KH, additional
- Published
- 2021
- Full Text
- View/download PDF
36. Body iron stores and risk of type 2 diabetes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study
- Author
-
Montonen, J., Boeing, H., Steffen, A., Lehmann, R., Fritsche, A., Joost, H.-G., Schulze, M. B., and Pischon, T.
- Published
- 2012
- Full Text
- View/download PDF
37. Association of changes in body mass index during earlier adulthood and later adulthood with circulating obesity biomarker concentrations in middle-aged men and women
- Author
-
Montonen, J., Boeing, H., Schleicher, E., Fritsche, A., and Pischon, T.
- Published
- 2011
- Full Text
- View/download PDF
38. Reliability of fasting plasma alkylresorcinol concentrations measured 4 months apart
- Author
-
Montonen, J, Landberg, R, Kamal-Eldin, A, Åman, P, Knueppel, S, Boeing, H, and Pischon, T
- Published
- 2010
- Full Text
- View/download PDF
39. Linking diet, physical activity, cardiorespiratory fitness and obesity to serum metabolite networks: findings from a population-based study
- Author
-
Floegel, A, Wientzek, A, Bachlechner, U, Jacobs, S, Drogan, D, Prehn, C, Adamski, J, Krumsiek, J, Schulze, M B, Pischon, T, and Boeing, H
- Published
- 2014
- Full Text
- View/download PDF
40. Association between genetic variants of the cholinergic system and postoperative delirium and cognitive dysfunction in elderly patients
- Author
-
Heinrich, M., Sieg, M., Kruppa, J., Nürnberg, P., Schreier, P.H., Heilmann-Heimbach, S., Hoffmann, P., Nöthen, M.M., Janke, J., Pischon, T., Slooter, A.J.C., Winterer, G., Spies, C.D., Neuroprotection & Neuromodulation, Clinical sciences, and Neurology
- Subjects
Male ,Genome-wide association study ,Research ,Delirium ,Genetic Variation ,CHRM2 ,QH426-470 ,CHRM4 ,RC31-1245 ,Polymorphism, Single Nucleotide ,Postoperative Complications ,Cardiovascular and Metabolic Diseases ,Genetics ,Humans ,Neurocognitive disorder ,Cognitive Dysfunction ,Female ,Receptors, Cholinergic ,Prospective Studies ,Internal medicine ,600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit ,Aged - Abstract
Background Postoperative delirium (POD) and postoperative cognitive dysfunction (POCD) are frequent and serious complications after surgery. We aim to investigate the association between genetic variants in cholinergic candidate genes according to the Kyoto encyclopedia of genes and genomes - pathway: cholinergic neurotransmission with the development of POD or POCD in elderly patients. Methods This analysis is part of the European BioCog project (www.biocog.eu), a prospective multicenter observational study with elderly surgical patients. Patients with a Mini-Mental-State-Examination score ≤ 23 points were excluded. POD was assessed up to seven days after surgery using the Nursing Delirium Screening Scale, Confusion Assessment Method and a patient chart review. POCD was assessed three months after surgery with a neuropsychological test battery. Genotyping was performed on the Illumina Infinium Global Screening Array. Associations with POD and POCD were analyzed using logistic regression analysis, adjusted for age, comorbidities and duration of anesthesia (for POCD analysis additionally for education). Odds ratios (OR) refer to minor allele counts (0, 1, 2). Results 745 patients could be included in the POD analysis, and 452 in the POCD analysis. The rate of POD within this group was 20.8% (155 patients), and the rate of POCD was 10.2% (46 patients). In a candidate gene approach three genetic variants of the cholinergic genes CHRM2 and CHRM4 were associated with POD (OR [95% confidence interval], rs8191992: 0.61[0.46; 0.80]; rs8191992: 1.60[1.22; 2.09]; rs2067482: 1.64[1.10; 2.44]). No associations were found for POCD. Conclusions We found an association between genetic variants of CHRM2 and CHRM4 and POD. Further studies are needed to investigate whether disturbances in acetylcholine release and synaptic plasticity are involved in the development of POD. Trial registration: ClinicalTrials.gov: NCT02265263. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-021-01071-1.
- Published
- 2021
41. General and abdominal adiposity and risk of death in Europe
- Author
-
Pischon, T., Boeing, H, Hoffmann, K., Bergmann, M., Schulze, M.B., Overvad, K., van der Schouw, Y.T., Spencer E., Moons, K.G.M., Tjonneland, A., Halkjaer, J., Jensen, M.K., Stegger, J., Clavel-Chapelon, F., Boutron-Ruault, M.C., Chajes, V., Linseisen, J., Kaaks, R., Trichopoulou, A., Trichopoulou, D., Bamia, C., Sieri, S., Palli, D., Tumino, R., Vineis, P., Panico, S., Peeters, P.H.M., May, A.M., Bueno-de-Mesquita, H.B, van Duijnhoven, F.J.B., Hallmans, G., Weinehall, L., Manjer, J., Hedblad, B., Lund, E., Agudo, A., Arriola, L., Barricarte, A., Navarro, C., Martinez, C., Quiros, J.R., Key, T., Bingham, S., Khaw, K.T., Chir, B., Boffetta, P., Jenab, M., Ferrari, P., and Riboli, E.
- Subjects
Body mass index -- Research ,Obesity -- Risk factors ,Europe -- Health aspects - Abstract
The study aims to investigate whether general and abdominal adiposity is a contributory factor in increasing the risk of death in Europe. The results indicate that both general and abdominal adiposity are associated with a higher risk of death.
- Published
- 2008
42. Sugar-sweetened beverage and sugar intake during adolescence and risk of colorectal cancer precursors: a large prospective U.S. cohort study
- Author
-
Joh, H.K., Lee, D.H., Hur, J., Nimptsch, K., Chang, Y., Joung, H., Zhang, X., Rezende, L.F.M., Lee, J.E., Ng, K., Chen, Y., Meyerhardt, J.A., Chan, A.T, Pischon, T., Song, M., Fuchs, C.S., Willett, W.C., Cao, Y., Ogino, S., Giovannucci, E., and Wu, K.
- Subjects
Cardiovascular and Metabolic Diseases - Abstract
OBJECTIVE: To examine the associations of adolescent sugar-sweetened beverage (SSB) and sugar intake with risk of colorectal cancer (CRC) precursors. DESIGN: Prospective cohort study. SETTING: Nurses' Health Study II (1998-2015), United States. PARTICIPANTS: 33106 women who completed a validated high school food frequency questionnaire about adolescent diet in 1998 and underwent lower gastrointestinal endoscopy between 1999 and 2015. MAIN OUTCOME MEASURES: Incident CRC precursors confirmed by medical record review. RESULTS: During follow-up, 2909 conventional adenoma, 1082 high-risk adenoma (≥1 cm in size, villous, high-grade dysplasia, or number ≥2), and 2355 serrated lesions were identified. Independent of adult intake, adolescent SSB and sugar intake was positively associated with risk of total and high-risk adenoma. Comparing ≥2 servings/day v
- Published
- 2020
43. Plasma leptin, but not adiponectin, is associated with cognitive impairment in older adults
- Author
-
Feinkohl, I., Janke, J., Slooter, A.J.C., Winterer, G., Spies, C., Pischon, T., Clinical sciences, and Neuroprotection & Neuromodulation
- Subjects
Adipose Tissue/metabolism ,Male ,Leptin/analysis ,Blood Glucose/metabolism ,Receptors, Leptin/blood ,Plasma/chemistry ,Cross-Sectional Studies ,Cardiovascular and Metabolic Diseases ,Adipokines/metabolism ,Adiponectin/analysis ,Germany ,Cognitive Dysfunction/blood ,Obesity/metabolism ,Humans ,Female ,Receptors, Adiponectin ,aged, 80 and over ,hormones, hormone substitutes, and hormone antagonists ,Body mass index ,Aged ,Netherlands - Abstract
BACKGROUND: Leptin and adiponectin are adipose-tissue derived hormones primarily involved in glucose, lipid, and energy metabolism, inflammation, and atherosclerosis. Both adipokines may cross the blood-brain barrier but evidence on their roles in cognitive impairment is limited and conflicting. Here, we determined associations of plasma adipokine concentration with cognitive impairment in older adults. METHODS: Cross-sectional analysis of baseline data from 669 participants aged ≥65 years of the Biomarker Development for Postoperative Cognitive Impairment in the Elderly (BioCog) study were recruited 2014–2017 at study sites in Berlin, Germany and Utrecht, the Netherlands. Cognitive impairment was defined as the lowest tertile of a cognitive summary score derived from six neuropsychological tests. RESULTS: After adjustment for age, sex, fasting, BMI, diabetes, hypertension, cerebrovascular disease, and coronary heart disease, higher leptin concentrations and a higher leptin/adiponectin ratio (LAR) were associated with a higher odds of cognitive impairment (OR per 1 SD higher leptin concentration, 1.33; 95 % CI 1.05, 1.69; p = 0.02; OR per 1 SD higher LAR, 1.26; 95 % CI 1.01, 1.57; p = 0.04). Sensitivity analyses determined that these findings were driven by the non-obese group (BMI
- Published
- 2020
- Full Text
- View/download PDF
44. Plasma amyloid concentration in Alzheimer's disease: performance of a high-throughput amyloid assay in distinguishing Alzheimer's disease cases from controls
- Author
-
Feinkohl, I., Schipke, C.G., Kruppa, J., Menne, F., Winterer, G., Pischon, T., and Peters, O.
- Subjects
Cardiovascular and Metabolic Diseases - Abstract
BACKGROUND: Collection of cerebrospinal fluid (CSF) for measurement of amyloid-β (Aβ) species is a gold standard in Alzheimer's disease (AD) diagnosis, but has risks. Thus, establishing a low-risk blood Aβ test with high AD sensitivity and specificity is of outmost interest. OBJECTIVE: We evaluated the ability of a commercially available plasma Aβ assay to distinguish AD patients from biomarker-healthy controls. METHOD: In a case-control design, we examined plasma samples from 44 AD patients (A + N+) and 49 controls (A-N-) from a memory clinic. AD was diagnosed using a combination of neuropsychological examination, CSF biomarker analysis and brain imaging. Total Aβ40 and total Aβ42 in plasma were measured through enzyme-linked immunosorbent assay (ELISA) technology using ABtest40 and ABtest42 test kits (Araclon Biotech Ltd.). Receiver operating characteristic (ROC) analyses with outcome AD were performed, and sensitivity and specificity were calculated. RESULTS: Plasma Aβ42/40 was weakly positively correlated with CSF Aβ42/40 (Spearman's rho 0.22; p = 0.037). Plasma Aβ42/40 alone was not able to statistically significantly distinguish between AD patients and controls (AUC 0.58; 95% CI 0.46, 0.70). At a cut-point of 0.076 maximizing sensitivity and specificity, plasma Aβ42/40 had a sensitivity of 61.2% and a specificity of 63.6%. CONCLUSION: In this sample, the high-throughput blood Aβ assay was not able to distinguish well between AD patients and controls. Whether or not the assay may be useful in large-scale epidemiological settings remains to be seen.
- Published
- 2020
45. Selbst berichtete Infektionen in der NAKO Gesundheitsstudie - Einordnung in die gegenwärtige Forschungslandschaft [Self-reported infections in the German National Cohort (GNC) in the context of the current research landscape]
- Author
-
Hassenstein, M.J., Aarabi, G., Ahnert, P., Becher, H., Franzke, C.-W., Fricke, J., Krause, G., Glöckner, S., Gottschick, C., Karch, A., Kemmling, Y., Kerrinnes, T., Lange, B., Mikolajczyk, R., Nieters, A., Ott, J.J., Ahrens, W., Berger, K., Meinke-Franze, C., Gastell, S., Günther, K., Greiser, K.H., Holleczek, B., Horn, J., Jaeschke, L., Jagodzinski, A., Jansen, L., Jochem, C., Jöckel, K.H., Kaaks, R., Krist, L., Kuß, O., Langer, S., Legath, N., Leitzmann, M., Lieb, W., Loeffler, M., Mangold, N., Michels, K.B., Meisinger, C., Obi, N., Pischon, T., Schikowski, T., Schipf, S., Schulze, M.B., Stang, A., Waniek, S., Wirkner, K., Willich, S.N., and Castell, S.
- Subjects
Cardiovascular and Metabolic Diseases - Abstract
BACKGROUND: Infectious diseases continue to play an important role for disease perception, health-economic considerations and public health in Germany. In recent years, infectious diseases have been linked to the development of non-communicable diseases. Analyses of the German National Cohort (GNC) may provide deeper insights into this issue and pave the way for new targeted approaches in disease prevention. OBJECTIVES: The aim was to describe the tools used to assess infectious diseases and to present initial data on infectious disease frequencies, as well as to relate the GNC assessment tools to data collection methods in other studies in Germany. METHODS: As part of the baseline examination, questions regarding infectious diseases were administered using both an interview and a self-administered touchscreen questionnaire. Data from the initial 101,787 GNC participants were analysed. RESULTS: In the interview, 0.2% (HIV/AIDS) to 8.6% (shingles) of respondents reported ever having a medical diagnosis of shingles, postherpetic neuralgia (in cases where shingles was reported), hepatitis B/C, HIV/AIDS, tuberculosis or sepsis if treated in hospital. In the questionnaire, 12% (cystitis) to 81% (upper respiratory tract infections) of respondents reported having experienced at least one occurrence of upper or lower respiratory tract infections, gastrointestinal infections, cystitis or fever within the past 12 months. OUTLOOK: The cross-sectional analyses of data and tools presented here - for example on determinants of susceptibility to self-reported infections - can be anticipated from the year 2021 onward. Beyond that, more extensive research into infectious disease epidemiology will follow, particularly once analyses of GNC biological materials have been performed.
- Published
- 2020
46. Das Fundament ist gelegt - für verbesserte Vorbeugung und Früherkennung der großen Volkskrankheiten [The foundation has been laid - for improved prevention and early detection of major common diseases]
- Author
-
Ahrens, W., Pigeot, I., and Pischon, T.
- Subjects
Cardiovascular and Metabolic Diseases - Published
- 2020
47. Erforschung von Erkrankungen in der NAKO Gesundheitsstudie: die wichtigsten gesundheitlichen Endpunkte und ihre Erfassung [The investigation of health outcomes in the German National Cohort: the most relevant endpoints and their assessment]
- Author
-
Ahrens, W., Greiser, K.H., Linseisen, J., Pischon, T., and Pigeot, I.
- Subjects
Cardiovascular and Metabolic Diseases - Abstract
The focus of the German National Cohort, the largest population-based cohort study in Germany to date, is the investigation of the most important widespread diseases, such as cardiovascular diseases, diabetes, cancer, neurological and psychiatric disorders, and frequent respiratory and infectious diseases. This cohort will answer questions on the development of these diseases and on the impact of genetic, environmental and lifestyle-related risk factors. Another focus is on the identification of early, subclinical markers of emerging diseases. To answer these questions, a comprehensive assessment of these health outcomes as well as of all potential determinants and precursors is mandatory.This paper describes the various health outcomes that are assessed in the German National Cohort, as well as the examination modules that are applied for deep phenotyping of study participants. Repeated collection of biosamples as well as functional measurements and application of modern imaging techniques at various time points allow for assessing the dynamics of physiological changes related to the individuals' health status. The prognostic value of these changes for disease development will be explored and translated to novel approaches for prevention and personalised medicine. Incident diseases are being assessed through self-reports by study participants and through record linkage with data from health insurances and cancer registries. Additional information about clinical diagnoses is obtained from the treating physicians to ensure the highest possible validity.
- Published
- 2020
48. Häufigkeit von Asthma bronchiale und Alter bei der Erstdiagnose - erste Ergebnisse der NAKO Gesundheitsstudie [Occurrence of bronchial asthma and age at initial asthma diagnosis-first results of the German National Cohort]
- Author
-
Langer, S., Horn, J., Kluttig, A., Mikolajczyk, R., Karrasch, S., Schulz, H., Wichmann, H.E., Linseisen, J., Jaeschke, L., Pischon, T., Fricke, J., Keil, T., Ahrens, W., Günther, K., Kuß, O., Schikowski, T., Schmidt, B., Jöckel, K.H., Michels, K.B., Franzke, C.W., Becher, H., Jagodzinski, A., Castell, S., Kemmling, Y., Lieb, W., Waniek, S., Wirkner, K., Löffler, M., Kaaks, R., Greiser, K.H., Berger, K., Legath, N., Meinke-Franze, C., Schipf, S., Leitzmann, M., Baurecht, H., Weigl, K., Amitay, E., and Gottschick, C.
- Subjects
Cardiovascular and Metabolic Diseases - Abstract
BACKGROUND: Asthma is one of the most common chronic diseases in both children and adults. Asthma first occurring in adulthood (adult-onset asthma, AOA) is associated with poorer prognosis compared to childhood-onset asthma (COA), which urgently calls for more research in this area. The aim of this work was to analyze the data on asthma collected in the German National Cohort and compare it with the German Health Interview and Examination Survey for Adults (DEGS), in particular regarding AOA. MATERIAL AND METHODS: Our analysis was based on the dataset of the main questionnaire at mid-term of the German National Cohort baseline examination, comprising 101,723 participants. Variables considered in the analyses were self-reported diagnosis of asthma, age at first diagnosis, asthma treatment in the past 12 months, age, and sex. RESULTS: In the midterm dataset, 8.7% of women and 7.0% of men in the German National Cohort reported that they had ever been diagnosed with asthma. Approximately one third of participants with asthma received their initial diagnosis before their 18th birthday. COA affected 2.2% of women and 2.8% of men, whereas AOA affected 6.5% of women and 4.2% of men. During the previous 12 months, 33% of COA cases and 60% of AOA cases were medically treated. CONCLUSION: The proportion of persons affected by asthma in the German National Cohort, as well as observed patterns regarding age and gender, corresponds to other data sources such as DEGS. However, in our analysis, the proportion of individuals with AOA was higher than described in the literature. The increase in cumulative asthma diagnoses with age is markedly steeper in younger participants, indicating a rising trend over time.
- Published
- 2020
49. Häufigkeiten muskuloskelettaler Symptome und Erkrankungen in der bevölkerungsbezogenen NAKO Gesundheitsstudie [Frequencies of musculoskeletal symptoms and disorders in the population-based German National Cohort (GNC)]
- Author
-
Schmidt, C.O., Günther, K.P., Goronzy, J., Albrecht, K., Chenot, J.F., Callhoff, J., Richter, A., Kasch, R., Ahrens, W., Becher, H., Berger, K., Brenner, H., Fischer, B., Franzke, C.W., Hoffmann, W., Holleczek, B., Jaeschke, L., Jenning, C., Jöckel, K.H., Kaaks, R., Keil, T., Kluttig, A., Krause, G., Kuß, O., Leitzmann, M., Lieb, W., Linseisen, J., Löffler, M., Meinke-Franze, C., Meisinger, C., Michels, K.B., Mikolajczyk, R., Obi, N., Peters, A., Pischon, T., Schikowski, T., Schipf, S., Specker, C., Völzke, H., Wirkner, K., Zink, A., and Sander, O.
- Subjects
Cardiovascular and Metabolic Diseases - Abstract
BACKGROUND: Musculoskeletal diseases and symptoms are very common in the general population. They lead to high healthcare costs and pose a significant burden to the national economy. OBJECTIVES: Based on data from the population-based German National Cohort (GNC), frequencies of musculoskeletal symptoms and diseases are reported, including back pain, osteoporosis, osteoarthritis, and arthritis. MATERIALS AND METHODS: Data were collected from March 2014 to March 2017 in adults aged 20-75 years during the first half of the baseline survey of the GNC. The sample comprised 101,779 interviewed subjects, including 9370 subjects who underwent clinical musculoskeletal examinations. The interview included questions about specific musculoskeletal disorders. A clinical examination of the hand provided information about palpable swollen joints and pressure-sensitive joints. Resting pain of the knees and hips was also assessed by a clinical examination. Frequencies were standardized to the German standard population of the year 2011. RESULTS: Having ever been diagnosed with recurrent back pain (22.5%) or osteoarthritis (20.6%) were the most common complaints reported in the interview; osteoporosis (2.9%) and rheumatoid arthritis (1.9%) were stated more seldom. According to the hand examination, 6.0% of all participants experienced pain in at least one finger joint. Resting pain was present in at least one knee among 8.2% and in at least one hip among 5.1% of the participants as assessed during the clinical examination. Women were more likely to report musculoskeletal disorders and symptoms than men. The proportion of adults affected by musculoskeletal diseases increased strongly with age. CONCLUSION: Musculoskeletal disorders and symptoms occur frequently. The burden of complaints and diagnoses is comparable to previous population-based surveys.
- Published
- 2020
50. Blutdruckmessung in der NAKO - methodische Unterschiede, Blutdruckverteilung und Bekanntheit der Hypertonie im Vergleich zu anderen bevölkerungsbezogenen Studien in Deutschland [Blood pressure measurement in the NAKO German National Cohort (GNC) - differences in methods, distribution of blood pressure values, and awareness of hypertension compared to other population-based studies in Germany]
- Author
-
Schikowski, T., Wigmann, C., Fuks, K.B., Schipf, S., Heier, M., Neuhauser, H., Sarganas, G., Ahrens, W., Becher, H., Berger, K., Brenner, H., Castell, S., Damms-Machado, A., Dörr, M., Ebert, N., Efremov, L., Emmel, C., Felix, S.B., Fischer, B., Franzke, C.W., Gastell, S., Günther, K., Haerting, J., Ittermann, T., Jaeschke, L., Jagodzinski, A., Jöckel, K.H., Kaaks, R., Kalinowski, S., Keil, T., Kemmling, Y., Kluttig, A., Krist, L., Kuss, O., Legath, N., Leitzmann, M., Lieb, W., Löffler, M., Meinke-Franze, C., Michels, K.B., Mikolajczyk, R., Moebus, S., Nuding, S., Peters, A., Pischon, T., Rückert-Eheberg, I.M., Schöttker, B., Schmidt, B., Schmidt, C.O., Schulze, M.B., Stang, A., Thiele, I., Thierry, S., Thorand, B., Völzke, H., Waniek, S., Werdan, K., Wirkner, K., and Greiser, K.H.
- Subjects
Cardiovascular and Metabolic Diseases - Abstract
BACKGROUND: Arterial hypertension is animportant risk factor for cardiovascular diseases. Epidemiological studies typically perform three consecutive blood pressure measurements. The first measurement is discarded in subsequent analyses, as this value may be strongly affected by previous activities. Due to time constraints the German National Cohort (GNC NAKO) performed only two blood pressure measurements. OBJECTIVES: The present analysis examined the possible effects of methodological differences in blood pressure measurement by comparing the first 101,816 GNC participants (two blood pressure measurements) with those of five German population-based studies (three measurements). MATERIALS AND METHODS: Blood pressure data from participants aged 20 to 79 years from the GNC, the German Health Interview and Examination Survey for Adults by the Robert Koch Institute (DEGS1), and four regional population-based cohort studies (CARLA, HNR, KORA, SHIP) were used to calculate age- and sex-specific mean blood pressure values and hypertension frequencies based on the second blood pressure measurement, the arithmetic mean of the first and second value and of the second and third (the latter not available in the GNC). RESULTS: The mean blood pressure values of the two most recent studies (GNC, DEGS1) were very similar and lower than in the other studies. The difference of the second measurement and the mean of second and third measurement was small (maximum mean difference: 1.5mm Hg systolic blood pressure), but leads to higher estimated hypertension frequencies. CONCLUSIONS: The current results show that using the second blood pressure measurement should be recommended for scientific analyses of GNC data.
- Published
- 2020
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.