462 results on '"Piperi C"'
Search Results
2. Diagnostic and therapeutic impact of microRNAs in cutaneous T-cell lymphoma
- Author
-
Papadaki, M, primary, Bourdakou, M, additional, Piperi, C, additional, Spyrou, G, additional, and Papadavid, E, additional
- Published
- 2022
- Full Text
- View/download PDF
3. P10.23.B Polycystin-1 induces mechanotransduction pathways in gioblastoma cells under hydrostatic pressure
- Author
-
Zoi, I, primary, Gargalionis, A, additional, Papavassiliou, K, additional, Nasiri-Ansari, N, additional, Piperi, C, additional, Basdra, E, additional, and Papavassiliou, A, additional
- Published
- 2022
- Full Text
- View/download PDF
4. Combination of JAKi and MAPKi exerts antiangionenic potential in cutaneous T-cell lymphoma
- Author
-
Karagianni, F, primary, Piperi, C, additional, Casar, B, additional, and Papadavid, E, additional
- Published
- 2022
- Full Text
- View/download PDF
5. Evaluation of the role of different cell populations and immune regulators in mycosis fungoides microenvironment
- Author
-
Pavlidis, A, primary, Karagianni, F, additional, Vetsika, EK, additional, Koumourtzis, M, additional, Lampadaki, K, additional, Vaiopoulos, A, additional, Piperi, C, additional, Pappa, V, additional, and Papadavid, E, additional
- Published
- 2022
- Full Text
- View/download PDF
6. Advanced Glycation End Products in Polycystic Ovarian Syndrome
- Author
-
Diamanti-Kandarakis, E., Piperi, C., Nicolopoulou-Stamati, P., Nicolopoulou-Stamati, P., editor, Hens, L., editor, and Howard, C.V., editor
- Published
- 2007
- Full Text
- View/download PDF
7. Ag/Au Bimetallic Nanoparticles Trigger Different Cell Death Pathways and Affect Damage Associated Molecular Pattern Release in Human Cell Lines
- Author
-
Katifelis, H. Nikou, M.-P. Mukha, I. Vityuk, N. Lagopati, N. Piperi, C. Farooqi, A.A. Pippa, N. Efstathopoulos, E.P. Gazouli, M.
- Subjects
chemical and pharmacologic phenomena - Abstract
Apoptosis induction is a common therapeutic approach. However, many cancer cells are resistant to apoptotic death and alternative cell death pathways including pyroptosis and necroptosis need to be triggered. At the same time, danger signals that include HMGB1 and HSP70 can be secreted/released by damaged cancer cells that boost antitumor immunity. We studied the cytotoxic effects of AgAu NPs, Ag NPs and Au NPs with regard to the programmed cell death (apoptosis, necroptosis, pyroptosis) and the secretion/release of HSP70 and HMGB1. Cancer cell lines were incubated with 30, 40 and 50 µg/mL of AgAu NPs, Ag NPs and Au NPs. Cytotoxicity was estimated using the MTS assay, and mRNA fold change of CASP1, CASP3, BCL-2, ZPB1, HMGB1, HSP70, CXCL8, CSF1, CCL20, NLRP3, IL-1β and IL-18 was used to investigate the associated programmed cell death. Extracellular levels of HMGB1 and IL-1β were investigated using the ELISA technique. The nanoparticles showed a dose dependent toxicity. Pyroptosis was triggered for LNCaP and MDA-MB-231 cells, and necroptosis for MDA-MB-231 cells. HCT116 cells experience apoptotic death and show increased levels of extracellular HMGB1. Our results suggest that in a manner dependent of the cellular microenvironment, AgAu NPs trigger mixed programmed cell death in P53 deficient MDA-MB-231 cells, while they also trigger IL-1β release in MDA-MB-231 and LNCaP cells and release of HMGB1 in HCT116 cells. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
- Published
- 2022
8. Predominant Role of mTOR Signaling in Skin Diseases with Therapeutic Potential
- Author
-
Karagianni, F. Pavlidis, A. Malakou, L.S. Piperi, C. Papadavid, E.
- Abstract
The serine/threonine kinase mechanistic target of rapamycin (mTOR) plays a pivotal role in the regulation of cell proliferation, survival, and motility in response to availability of energy and nutrients as well as mitogens. The mTOR signaling axis regulates important biological processes, including cellular growth, metabolism, and survival in many tissues. In the skin, dysregulation of PI3K/AKT/mTOR pathway may lead to severe pathological conditions characterized by uncon-trolled proliferation and inflammation, including skin hyperproliferative as well as malignant dis-eases. Herein, we provide an update on the current knowledge regarding the pathogenic implica-tion of the mTOR pathway in skin diseases with inflammatory features (such as psoriasis, atopic dermatitis, pemphigus, and acne) and malignant characteristics (such as cutaneous T cell lymphoma and melanoma) while we critically discuss current and future perspectives for therapeutic targeting of mTOR axis in clinical practice. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
- Published
- 2022
9. Combination of Resminostat with Ruxolitinib Exerts Antitumor Effects in the Chick Embryo Chorioallantoic Membrane Model for Cutaneous T Cell Lymphoma
- Author
-
Karagianni, F. Piperi, C. Casar, B. de la Fuente-Vivas, D. García-Gómez, R. Lampadaki, K. Pappa, V. Papadavid, E.
- Abstract
The combination of Resminostat (HDACi) and Ruxolitinib (JAKi) exerted cytotoxic effects and inhibited proliferation of CTCL cell lines (MyLa, SeAx) in previously published work. A xenograft tumor formation was produced by implanting the MyLa or SeAx cells on top of the chick embryo chorioallantoic membrane (CAM). The CAM assay protocol was developed to monitor the metastatic properties of CTCL cells and the effects of Resminostat and/or Ruxolitinib in vivo. In the spontaneous CAM assays, Resminostat and Ruxolitinib treatment inhibited the cell proliferation (p < 0.001) of MyLa and SeAx, and induced cell apoptosis (p < 0.005, p < 0.001, respectively). Although monotherapies reduced the size of primary tumors in the metastasis CAM assay, the drug combination exhibited a significant inhibition of primary tumor size (p < 0.0001). Furthermore, the combined treatment inhibited the intravasation of MyLa (p < 0.005) and SeAx cells (p < 0.0001) in the organs, as well as their extravasation to the liver (p < 0.0001) and lung (p < 0.0001). The drug combination also exerted a stronger inhibitory effect in migration (p < 0.0001) rather in invasion (p < 0.005) of both MyLa and SeAx cells. It further reduced p-p38, p-ERK, p-AKT, and p-STAT in MyLa cells, while it decreased p-ERK and p-STAT in SeAx cells in CAM tumors. Our data demonstrated that the CAM assay could be employed as a preclinical in vivo model in CTCL for pharmacological testing. In agreement with previous in vitro data, the combination of Resminostat and Ruxolitinib was shown to exert antitumor effects in CTCL in vivo. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
- Published
- 2022
10. Emerging roles for the YAP/TAZ transcriptional regulators in brain tumour pathology and targeting options
- Author
-
Strepkos, D. Markouli, M. Papavassiliou, K.A. Papavassiliou, A.G. Piperi, C.
- Abstract
The transcriptional co-activators Yes-associated protein 1/transcriptional co-activator with PDZ-binding motif (YAP/TAZ) have emerged as significant regulators of a wide variety of cellular and organ functions with impact in early embryonic development, especially during the expansion of the neural progenitor cell pool. YAP/TAZ signalling regulates organ size development, tissue homeostasis, wound healing and angiogenesis by participating in a complex network of various pathways. However, recent evidence suggests an association of these physiologic regulatory effects of YAP/TAZ with pro-oncogenic activities. Herein, we discuss the physiological functions of YAP/TAZ as well as the extensive network of signalling pathways that control their expression and activity, leading to brain tumour development and progression. Furthermore, we describe current targeting approaches and drug options including direct YAP/TAZ and YAP-TEA domain transcription factor (TEAD) interaction inhibitors, G-protein coupled receptors (GPCR) signalling modulators and kinase inhibitors, which may be used to successfully attack YAP/TAZ-dependent tumours. © 2021 British Neuropathological Society
- Published
- 2022
11. Polycystin-1 regulates cell proliferation and migration through AKT/mTORC2 pathway in a human craniosynostosis cell model
- Author
-
Katsianou, M.A. Papavassiliou, K.A. Gargalionis, A.N. Agrogiannis, G. Korkolopoulou, P. Panagopoulos, D. Themistocleous, M.S. Piperi, C. Basdra, E.K. Papavassiliou, A.G.
- Subjects
endocrine system - Abstract
Craniosynostosis is the premature fusion of skull sutures and has a severe pathological impact on childrens’ life. Mechanical forces are capable of triggering biological responses in bone cells and regulate osteoblastogenesis in cranial sutures, leading to premature closure. The mechanosensitive proteins polycystin-1 (PC1) and polycystin-2 (PC2) have been documented to play an important role in craniofacial proliferation and development. Herein, we investigated the contribution of PC1 to the pathogenesis of non-syndromic craniosynostosis and the associated molecular mechanisms. Protein expression of PC1 and PC2 was detected in bone fragments derived from craniosynostosis patients via immunohistochemistry. To explore the modulatory role of PC1 in primary cranial suture cells, we further abrogated the function of PC1 extracellular mechanosensing domain using a specific anti-PC1 IgPKD1 antibody. Effect of IgPKD1 treatment was evaluated with cell proliferation and migration assays. Activation of PI3K/AKT/mTOR pathway components was further detected via Western blot in primary cranial suture cells following IgPKD1 treatment. PC1 and PC2 are expressed in human tissues of craniosynostosis. PC1 functional inhibition resulted in elevated proliferation and migration of primary cranial suture cells. PC1 inhibition also induced activation of AKT, exhibiting elevated phospho (p)-AKT (Ser473) levels, but not 4EBP1 or p70S6K activation. Our findings indicate that PC1 may act as a mechanosensing molecule in cranial sutures by modulating osteoblastic cell proliferation and migration through the PC1/AKT/mTORC2 cascade with a potential impact on the development of non-syndromic craniosynostosis. © 2022 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.
- Published
- 2022
12. Environmental Impact on the Epigenetic Mechanisms Underlying Parkinson’s Disease Pathogenesis: A Narrative Review
- Author
-
Angelopoulou, E. Paudel, Y.N. Papageorgiou, S.G. Piperi, C.
- Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder with an unclear etiology and no disease-modifying treatment to date. PD is considered a multifactorial disease, since both genetic and environmental factors contribute to its pathogenesis, although the molecular mechanisms linking these two key disease modifiers remain obscure. In this context, epigenetic mechanisms that alter gene expression without affecting the DNA sequence through DNA methylation, histone post-transcriptional modifications, and non-coding RNAs may represent the key mediators of the genetic–environmental interactions underlying PD pathogenesis. Environmental exposures may cause chemical alterations in several cellular functions, including gene expression. Emerging evidence has highlighted that smoking, coffee consumption, pesticide exposure, and heavy metals (manganese, arsenic, lead, etc.) may potentially affect the risk of PD development at least partially via epigenetic modifications. Herein, we discuss recent accumulating pre-clinical and clinical evidence of the impact of lifestyle and environmental factors on the epigenetic mechanisms underlying PD development, aiming to shed more light on the pathogenesis and stimulate future research. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
- Published
- 2022
13. Transcription Factors with Targeting Potential in Gliomas
- Author
-
Giannopoulou, A.-I. Kanakoglou, D.S. Piperi, C.
- Abstract
Gliomas portray a large and heterogeneous group of CNS tumors, encompassing a wide range of low-to high-grade tumors, as defined by histological and molecular characteristics. The identification of signature mutations and other molecular abnormalities has largely impacted tumor classification, diagnosis, and therapy. Transcription factors (TFs) are master regulators of gene expression programs, which ultimately shape cell fate and homeostasis. A variety of TFs have been detected to be aberrantly expressed in brain tumors, being highly implicated in critical pathological aspects and progression of gliomas. Herein, we describe a selection of oncogenic (GLI-1/2/3, E2F1–8, STAT3, and HIF-1/2) and tumor suppressor (NFI-A/B, TBXT, MYT1, and MYT1L) TFs that are deregulated in gliomas and are subsequently associated with tumor development, progression, and migratory potential. We further discuss the current targeting options against these TFs, including chemical (Bortezomib) and natural (Plumbagin) compounds, small molecules, and inhibitors, and address their potential implications in glioma therapy. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
- Published
- 2022
14. Pathogenic Molecular Mechanisms in Periodontitis and Peri-Implantitis: Role of Advanced Glycation End Products
- Author
-
Plemmenos, G. Piperi, C.
- Abstract
Advanced Glycation End Products (AGEs), the products of the non-enzymatic oxidation of proteins, nucleic acids, and lipids, are accumulated in periodontal tissues under hyperglycemic conditions such as Diabetes Mellitus (DM) and are responsible for sustained periodontal destruction. AGEs mediate their intracellular effects either directly or indirectly through receptor binding (via RAGE) in all types of periodontal ligament cells (osteocytes, gingival fibroblasts, stem cells, epithelial cells), indicating an important target for intervention. In combination with lipopolysaccharides (LPS) from Porphyromonas gingivalis (Pg), the negative impact of AGEs on periodontal tissue is further enhanced and accentuated. In addition, AGE accumulation is evident in peri-implantitis, yet through different underlying molecular mechanisms. Novel therapeutic approaches targeting the effects of AGEs in periodontal ligament cells show beneficial effects in pre-clinical studies. Herein, we provide evidence on the detrimental role of AGE accumulation in oral cavity tissues and their associated signaling pathways in periodontitis and peri-implantitis to further highlight the significance of oral or topical use of AGE blockers or inhibitors along with dental biofilms’ removal and DM regulation in patients’ management. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
- Published
- 2022
15. A-143 The role of OX-40 in tumor microenvironment of a Cutaneous T-cell Lymphoma (CTCL) in vivo chick embryo model.
- Author
-
Karagianni, F., Piperi, C., Valero-Diaz, S., Amato, C., Vaque, J.P., Casar, B., and Papadavid, E.
- Subjects
- *
ANTINEOPLASTIC agents , *CELL physiology , *TREATMENT effectiveness , *CONFERENCES & conventions , *CUTANEOUS T-cell lymphoma , *CELL receptors , *TUMOR necrosis factors , *PHARMACODYNAMICS - Published
- 2024
- Full Text
- View/download PDF
16. Novel therapeutic approaches for cutaneous T cell lymphomas
- Author
-
Pavlidis, A. Piperi, C. Papadavid, E.
- Subjects
hemic and lymphatic diseases - Abstract
Introduction: Cutaneous T-cell lymphoma (CTCL) is a rare non-Hodgkin’s lymphoma, characterized by malignant T cells infiltrating the skin. CTCL exhibits vast heterogeneity which complicates diagnosis and therapeutic strategies. Current CTCL treatment includes skin-directed therapies (such as topical corticosteroid, topical mechlorethamine, topical bexarotene, ultraviolet phototherapy and localized radiotherapy), total skin electron beam therapy and systemic therapies. Elucidation of molecular and signaling pathways underlying CTCL pathogenesis leads to identification of innovative and personalized treatment schemes. Areas covered: The authors reviewed the molecular and immunological aspects of CTCL with special focus on Mycosis Fungoides (MF), Sézary Syndrome (SS) and associated systemic treatment. A literature search was conducted in PubMed and Web of Science for peer-reviewed articles published until November 2020. Novel treatment approaches including retinoids, targeted therapies, immune checkpoint and JAK/STAT inhibitors, histones deacetylase (HDAC) and mTOR inhibitors as well as proteasome inhibitors, are discussed as potential therapeutic tools for the treatment of CTCL. Expert opinion: Novel therapeutic agents exhibit potential beneficial effects in CTCL patients of high need for therapy such as refractory early stage cutaneous and advanced stage disease. Therapeutic schemes employing a combination of novel agents with current treatment options may prove valuable for the future management of CTCL patients. © 2021 Informa UK Limited, trading as Taylor & Francis Group.
- Published
- 2021
17. Emerging role of S100B protein implication in Parkinson’s disease pathogenesis
- Author
-
Angelopoulou, E. Paudel, Y.N. Piperi, C.
- Abstract
The exact etiology of Parkinson’s disease (PD) remains obscure, lacking effective diagnostic and prognostic biomarkers. In search of novel molecular factors that may contribute to PD pathogenesis, emerging evidence highlights the multifunctional role of the calcium-binding protein S100B that is widely expressed in the brain and predominantly in astrocytes. Preclinical evidence points towards the possible time-specific contributing role of S100B in the pathogenesis of neurodegenerative disorders including PD, mainly by regulating neuroinflammation and dopamine metabolism. Although existing clinical evidence presents some contradictions, estimation of S100B in the serum and cerebrospinal fluid seems to hold a great promise as a potential PD biomarker, particularly regarding the severity of motor and non-motor PD symptoms. Furthermore, given the recent development of S100B inhibitors that are able to cross the blood brain barrier, novel opportunities are arising in the research field of PD therapeutics. In this review, we provide an update on recent advances in the implication of S100B protein in the pathogenesis of PD and discuss relevant studies investigating the biomarker potential of S100B in PD, aiming to shed more light on clinical targeting approaches related to this incurable disorder. © 2020, Springer Nature Switzerland AG.
- Published
- 2021
18. Polycystin-1 modulates RUNX2 activation and osteocalcin gene expression via ERK signalling in a human craniosynostosis cell model
- Author
-
Katsianou, M. Papavassiliou, K.A. Zoi, I. Gargalionis, A.N. Panagopoulos, D. Themistocleous, M.S. Piperi, C. Papavassiliou, A.G. Basdra, E.K.
- Abstract
Craniosynostosis refers to the premature fusion of one or more cranial sutures leading to skull shape deformities and brain growth restriction. Among the many factors that contribute to abnormal suture fusion, mechanical forces seem to play a major role. Nevertheless, the underlying mechanobiology-related mechanisms of craniosynostosis still remain unknown. Understanding how aberrant mechanosensation and mechanotransduction drive premature suture fusion will offer important insights into the pathophysiology of craniosynostosis and result in the development of new therapies, which can be used to intervene at an early stage and prevent premature suture fusion. Herein, we provide evidence for the first time on the role of polycystin-1 (PC1), a key protein in cellular mechanosensitivity, in craniosynostosis, using primary cranial suture cells isolated from patients with trigonocephaly and dolichocephaly, two common types of craniosynostosis. Initially, we showed that PC1 is expressed at the mRNA and protein level in both trigonocephaly and dolichocephaly cranial suture cells. Followingly, by utilizing an antibody against the mechanosensing extracellular N-terminal domain of PC1, we demonstrated that PC1 regulates runt-related transcription factor 2 (RUNX2) activation and osteocalcin gene expression via extracellular signal–regulated kinase (ERK) signalling in our human craniosynostosis cell model. Altogether, our study reveals a novel mechanotransduction signalling axis, PC1-ERK-RUNX2, which affects osteoblastic differentiation in cranial suture cells from trigonocephaly and dolichocephaly patients. © 2021 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.
- Published
- 2021
19. Pivotal Role of Fyn Kinase in Parkinson’s Disease and Levodopa-Induced Dyskinesia: a Novel Therapeutic Target?
- Author
-
Angelopoulou, E. Paudel, Y.N. Julian, T. Shaikh, M.F. Piperi, C.
- Abstract
The exact etiology of Parkinson’s disease (PD) remains obscure, although many cellular mechanisms including α-synuclein aggregation, oxidative damage, excessive neuroinflammation, and dopaminergic neuronal apoptosis are implicated in its pathogenesis. There is still no disease-modifying treatment for PD and the gold standard therapy, chronic use of levodopa is usually accompanied by severe side effects, mainly levodopa-induced dyskinesia (LID). Hence, the elucidation of the precise underlying molecular mechanisms is of paramount importance. Fyn is a tyrosine phospho-transferase of the Src family nonreceptor kinases that is highly implicated in immune regulation, cell proliferation and normal brain development. Accumulating preclinical evidence highlights the emerging role of Fyn in key aspects of PD and LID pathogenesis: it may regulate α-synuclein phosphorylation, oxidative stress-induced dopaminergic neuronal death, enhanced neuroinflammation and glutamate excitotoxicity by mediating key signaling pathways, such as BDNF/TrkB, PKCδ, MAPK, AMPK, NF-κB, Nrf2, and NMDAR axes. These findings suggest that therapeutic targeting of Fyn or Fyn-related pathways may represent a novel approach in PD treatment. Saracatinib, a nonselective Fyn inhibitor, has already been tested in clinical trials for Alzheimer’s disease, and novel selective Fyn inhibitors are under investigation. In this comprehensive review, we discuss recent evidence on the role of Fyn in the pathogenesis of PD and LID and provide insights on additional Fyn-related molecular mechanisms to be explored in PD and LID pathology that could aid in the development of future Fyn-targeted therapeutic approaches. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
- Published
- 2021
20. Targeting post-translational histone modifying enzymes in glioblastoma
- Author
-
Kunadis, E. Lakiotaki, E. Korkolopoulou, P. Piperi, C.
- Subjects
nervous system diseases - Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults, and the most lethal form of glioma, characterized by variable histopathology, aggressiveness and poor clinical outcome and prognosis. GBMs constitute a challenge for oncologists because of their molecular heterogeneity, extensive invasion, and tendency to relapse. Glioma cells demonstrate a variety of deregulated genomic pathways and extensive interplay with epigenetic alterations. Epigenetic modifications have emerged as essential players in GBM research, with biomarker potential for tumor classification and prognosis and for drug targeting. Histone posttranslational modifications (PTMs) are crucial regulators of chromatin architecture and gene expression, playing a pivotal role in malignant transformation, tumor development and progression. Alteration in the expression of genes coding for lysine and arginine methyltransferases (G9a, SUV39H1 and SETDB1) and acetyltransferases and deacetylases (KAT6A, SIRT2, SIRT7, HDAC4, 6, 9) contribute to GBM pathogenesis. In addition, proteins of the sumoylation pathway are upregulated in GBM cell lines, including E1 (SAE1), E2 (Ubc9) components, and a SUMO-specific protease (SENP1). Preclinical and clinical studies are currently in progress targeting epigenetic enzymes in gliomas, including a new generation of histone deacetylase (HDAC), protein arginine methyltransferase (PRMT) and bromodomain (BRD) inhibitors. Herein, we provide an update on recent advances in glioma epigenetic research, focusing on the role of histone modifications and the use of epigenetic therapy as a valid treatment option for glioblastoma. © 2020 Elsevier Inc.
- Published
- 2021
21. Impact of the apelin/APJ axis in the pathogenesis of Parkinson’s disease with therapeutic potential
- Author
-
Angelopoulou, E. Paudel, Y.N. Bougea, A. Piperi, C.
- Abstract
The pathogenesis of Parkinson's disease (PD) remains elusive. There is still no available disease-modifying strategy against PD, whose management is mainly symptomatic. A growing amount of preclinical evidence shows that a complex interplay between autophagy dysregulation, mitochondrial impairment, endoplasmic reticulum stress, oxidative stress, and excessive neuroinflammation underlies PD pathogenesis. Identifying key molecules linking these pathological cellular processes may substantially aid in our deeper understanding of PD pathophysiology and the development of novel effective therapeutic approaches. Emerging preclinical evidence indicates that apelin, an endogenous neuropeptide acting as a ligand of the orphan G protein-coupled receptor APJ, may play a key neuroprotective role in PD pathogenesis, via inhibition of apoptosis and dopaminergic neuronal loss, autophagy enhancement, antioxidant effects, endoplasmic reticulum stress suppression, as well as prevention of synaptic dysregulation in the striatum, excessive neuroinflammation, and glutamate-induced excitotoxicity. Underlying signaling pathways involve phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin, extracellular signal-regulated kinase 1/2, and inositol requiring kinase 1α/XBP1/C/EBP homologous protein. Herein, we discuss the role of apelin/APJ axis and associated molecular mechanisms on the pathogenesis of PD in vitro and in vivo and provide evidence for its challenging therapeutic potential. © 2021 Wiley Periodicals, Inc.
- Published
- 2021
22. Histone Methyltransferase SETDB1: A Common Denominator of Tumorigenesis with Therapeutic Potential
- Author
-
Strepkos, D. Markouli, M. Klonou, A. Papavassiliou, A.G. Piperi, C.
- Abstract
Epigenetic regulation of gene expression has been ultimately linked to cancer development, with posttranslational histone modifications representing attractive targets for disease monitoring and therapy. Emerging data have demonstrated histone lysine (K) methylation by methyltransferase SETDB1 as a common denominator of gene regulation in several cancer types. SETDB1 reversibly catalyzes the di- and trimethylation of histone 3 (H3) K9 in euchromatic regions of chromosomes, inhibiting gene transcription within these regions and promoting a switch from euchromatic to heterochromatic states. Recent studies have implicated aberrant SETDB1 activity in the development of various types of cancers, including brain, head and neck, lung, breast, gastrointestinal, ovarian, endometrial and prostate cancer, mesothelioma, melanoma, leukemias, and osteosarcoma. Although its role has not been fully elucidated in every case, most data point toward a pro-oncogenic potential of SETDB1 via the downregulation of critical tumor-suppressive genes. Less commonly, however, SETDB1 can also acquire a tumor-suppressive role, depending on cancer type and stage. Here we provide an updated overview of the cellular and molecular effects underlying SETDB1 activity in cancer development and progression along with current targeting strategies in different cancer types, with promising effects either as a standalone therapy or in conjunction with other therapeutic agents. ©2020 American Association for Cancer Research.
- Published
- 2021
23. Bivalent genes targeting of glioma heterogeneity and plasticity
- Author
-
Markouli, M. Strepkos, D. Papavassiliou, K.A. Papavassiliou, A.G. Piperi, C.
- Abstract
Gliomas account for most primary Central Nervous System (CNS) neoplasms, characterized by high aggressiveness and low survival rates. Despite the immense research efforts, there is a small improvement in glioma survival rates, mostly attributed to their heterogeneity and complex pathophysiology. Recent data indicate the delicate interplay of genetic and epigenetic mechanisms in regulating gene expression and cell differentiation, pointing towards the pivotal role of bivalent genes. Bivalency refers to a property of chromatin to acquire more than one histone marks during the cell cycle and rapidly transition gene expression from an active to a suppressed transcriptional state. Although first identified in embryonal stem cells, bivalent genes have now been associated with tumorigenesis and cancer progression. Emerging evidence indicates the implication of bivalent gene regulation in glioma heterogeneity and plasticity, mainly involving Homeobox genes, Wingless-Type MMTV Integration Site Family Members, Hedgehog protein, and Solute Carrier Family members. These genes control a wide variety of cellular functions, including cellular differentiation during early organism development, regulation of cell growth, invasion, migration, angiogenesis, therapy resistance, and apoptosis. In this review, we discuss the implication of bivalent genes in glioma pathogenesis and their potential therapeutic targeting options. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
- Published
- 2021
24. Recent developments in diagnosis of epilepsy: Scope of microRNA and technological advancements
- Author
-
Bandopadhyay, R. Singh, T. Ghoneim, M.M. Alshehri, S. Angelopoulou, E. Paudel, Y.N. Piperi, C. Ahmad, J. Alhakamy, N.A. Alfaleh, M.A. Mishra, A.
- Abstract
Epilepsy is one of the most common neurological disorders, characterized by recurrent seizures, resulting from abnormally synchronized episodic neuronal discharges. Around 70 million people worldwide are suffering from epilepsy. The available antiepileptic medications are capable of controlling seizures in around 60–70% of patients, while the rest remain refractory. Poor seizure control is often associated with neuro-psychiatric comorbidities, mainly including memory impairment, depression, psychosis, neurodegeneration, motor impairment, neuroendocrine dysfunction, etc., resulting in poor prognosis. Effective treatment relies on early and correct detection of epileptic foci. Although there are currently a few well-established diagnostic techniques for epilepsy, they lack accuracy and cannot be applied to patients who are unsupportive or harbor metallic implants. Since a single test result from one of these techniques does not provide complete information about the epileptic foci, it is necessary to develop novel diagnostic tools. Herein, we provide a comprehensive overview of the current diagnostic tools of epilepsy, including electroencephalography (EEG) as well as structural and functional neuroimaging. We further discuss recent trends and advances in the diagnosis of epilepsy that will enable more effective diagnosis and clinical management of patients. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
- Published
- 2021
25. Neuroprotective potential of chrysin: Mechanistic insights and therapeutic potential for neurological disorders
- Author
-
Mishra, A. Mishra, P.S. Bandopadhyay, R. Khurana, N. Angelopoulou, E. Paudel, Y.N. Piperi, C.
- Abstract
Chrysin, a herbal bioactive molecule, exerts a plethora of pharmacological effects, including anti-oxidant, anti-inflammatory, neuroprotective, and anti-cancer. A growing body of evidence has highlighted the emerging role of chrysin in a variety of neurological disorders, including Alzheimer’s and Parkinson’s disease, epilepsy, multiple sclerosis, ischemic stroke, traumatic brain injury, and brain tumors. Based on the results of recent pre-clinical studies and evidence from studies in humans, this review is focused on the molecular mechanisms underlying the neuroprotective effects of chrysin in different neurological diseases. In addition, the potential challenges, and opportunities of chrysin’s inclusion in the neurotherapeutics repertoire are critically discussed. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
- Published
- 2021
26. Impact of epigenetic alterations in the development of oral diseases
- Author
-
Emfietzoglou, R. Pachymanolis, E. Piperi, C.
- Subjects
stomatognathic diseases - Abstract
2 Abstract: Background: Epigenetic mechanisms alter gene expression and regulate vital cellular processes that contribute to the onset and progression of major dental diseases. Their reversible char-acter may prove beneficial for therapeutic targeting. This review aims to provide an update on the main epigenetic changes that contribute to the pathogenesis of Oral Squamous Cell Carcinoma (OSCC), pulpitis and periodontitis as well as dental caries and congenital orofacial malformations, in an effort to identify potential therapeutic targets. Methods: We undertook a structured search of bibliographic databases (PubMed and MEDLINE) for peer-reviewed epigenetic research studies focused on oral diseases in the last ten years. A qualitative content analysis was performed in screened papers and a critical discussion of main findings is pro-vided. Results: Several epigenetic modifications have been associated with OSCC pathogenesis, including promoter methylation of genes involved in DNA repair, cell cycle regulation and proliferation leading to malignant transformation. Additionally, epigenetic inactivation of tumor suppressor genes, overex-pression of histone chaperones and several microRNAs are implicated in OSCC aggressiveness. Changes in the methylation patterns of IFN-γ and trimethylation of histone Η3Κ27 have been detected in pulpitis, along with an aberrant expression of several microRNAs, mainly affecting cytokine pro-duction. Chronic periodontal disease has been associated with modifications in the methylation patterns of Toll-Like Receptor 2, Prostaglandin synthase 2, E-cadherin and some inflammatory cytoki-nes, along with the overexpression of miR-146a and miR155. Furthermore, DNA methylation was found to regulate amelogenesis and has been implicated in the pathogenesis of dental caries as well as in several congenital orofacial malformations. Conclusion: Strong evidence indicates that epigenetic changes participate in the pathogenesis of oral diseases and epigenetic targeting may be considered as a complementary therapeutic scheme to the current management of oral health. © 2021 Bentham Science Publishers.
- Published
- 2021
27. Assessment of early markers of cardiovascular risk in polycystic ovary syndrome
- Author
-
Alexandraki, K.I. Kandaraki, E.A. Poulia, K.-A. Piperi, C. Papadimitriou, E. Papaioannou, T.G.
- Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous syndrome, with long-term sequelae from birth to senescence. The long-term effects of PCOS are attributed to several metabolic aberrations ensuing the syndrome. In a systematic review of literature regarding the cardiovascular risk factors that accompany PCOS, we found that macrovascular function has been assessed by flow-mediated dilatation (FMD), microvascular function by venous occlusion plethysmography (VOP), and arterial structure by ultrasonographic assessment of intima-media thickness (IMT) usually of the carotid artery. Contradictory results have been reported; however, in most studies, endothelial dysfunction, an early marker of atherosclerosis assessed either by haemodynamic methods such as FMD or by biochemical methods such as endothelin-1 levels, was found to be impaired. VOP is a less-studied method, with few indices altered. IMT was found to be altered in most of the included studies, but the population was more heterogeneous. Inflammatory markers, including C-reactive protein, were also found to be altered in most studies. On the other hand, a number of interventions have been shown beneficial for the markers of cardiovascular risk, in the context of insulin-sensitizers. However, other interventions such as oral contraceptive pills or statins did not consistently show a similar beneficial effect. In summary, the early identification and eventual treatment of cardiovascular clinical and biochemical risk factors may be used in clinical practice to prevent potential 'silent' triggers of cardiovascular disease. © Touch Medical Media 2021
- Published
- 2021
28. Prominent role of histone modifications in the regulation of tumor metastasis
- Author
-
Markouli, M. Strepkos, D. Basdra, E.K. Papavassiliou, A.G. Piperi, C.
- Abstract
Tumor aggressiveness and progression is highly dependent on the process of metastasis, regulated by the coordinated interplay of genetic and epigenetic mechanisms. Metastasis involves several steps of epithelial to mesenchymal transition (EMT), anoikis resistance, intra-and extrava-sation, and new tissue colonization. EMT is considered as the most critical process allowing cancer cells to switch their epithelial characteristics and acquire mesenchymal properties. Emerging evidence demonstrates that epigenetics mechanisms, DNA methylation, histone modifications, and non-coding RNAs participate in the widespread changes of gene expression that characterize the metastatic phenotype. At the chromatin level, active and repressive histone post-translational modifications (PTM) in association with pleiotropic transcription factors regulate pivotal genes involved in the initiation of the EMT process as well as in intravasation and anoikis resistance, playing a central role in the progression of tumors. Herein, we discuss the main epigenetic mechanisms associated with the different steps of metastatic process, focusing in particular on the prominent role of histone modifications and the modifying enzymes that mediate transcriptional regulation of genes associated with tumor progression. We further discuss the development of novel treatment strate-gies targeting the reversibility of histone modifications and highlight their importance in the future of cancer therapy. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
- Published
- 2021
29. Central regulatory role of cytokines in periodontitis and targeting options
- Author
-
Plemmenos, G. Evangeliou, E. Polizogopoulos, N. Chalazias, A. Deligianni, M. Piperi, C.
- Abstract
Background: Periodontitis is an immune-inflammatory disease that leads to the progressive destruction of bone and connective tissue in the periodontal area. The cytokine network plays a primary role in tissue homeostasis, the recruitment of immune cells to control the pathogenic impact and the regulation of osteoclastic function, thus modulating the inten-sity and duration of the immune response. This review provides an update on the main cyto-kines implicated in the pathogenesis and progression of periodontitis and their targeting potential in order to enrich current treatment options. Methods: A structured search of bibliographic databases (PubMed, MEDLINE, Scopus) was performed for peer-reviewed cytokine studies focused on periodontitis the last ten years. A qualitative content analysis was performed in screened papers and a critical discussion of main findings is provided. Results: An altered cytokine profile has been detected in periodontitis patients and the interplay of pro-inflammatory and/or anti-inflammatory cytokines has been associated with disease pathogenesis. Among the most prominent pro-inflammatory cytokines, TNF-α, IL-1β, IL-17, IL-6 and the chemokines CXCL-6, CXCL-8 are overexpressed in periodontitis patients and correlate with disease progression. On the other hand, the anti-inflammatory IL-4 and IL-11 levels are reduced while IL-12 and IFN-γ expression play a dual role in periodontal dis-ease. Current periodontitis treatment strategies include selective antibiotics, antimicrobial photodynamic therapy and probiotics, which can modulate the cytokine network and when applied in combination with specific anti-cytokine agents can exert additional beneficial effects. Conclusion: It is evident that cytokines play a central regulatory role in the inflammatory process and immune cell response that underlies bone destruction in periodontitis. Specific cytokine targeting should be considered as a complementary therapeutic scheme to current periodontal management. © 2021 Bentham Science Publishers.
- Published
- 2021
30. Role of Liver Growth Factor (LGF) in Parkinson’s Disease: Molecular Insights and Therapeutic Opportunities
- Author
-
Angelopoulou, E. Paudel, Y.N. Piperi, C.
- Abstract
Parkinson’s disease is the most common neurodegenerative movement disorder with unclear etiology and only symptomatic treatment to date. Toward the development of novel disease-modifying agents, neurotrophic factors represent a reasonable and promising therapeutic approach. However, despite the robust preclinical evidence, clinical trials using glial-derived neurotrophic factor (GDNF) and neurturin have been unsuccessful. In this direction, the therapeutic potential of other trophic factors in PD and the elucidation of the underlying molecular mechanisms are of paramount importance. The liver growth factor (LGF) is an albumin–bilirubin complex acting as a hepatic mitogen, which also exerts regenerative effects on several extrahepatic tissues including the brain. Accumulating evidence suggests that intracerebral and peripheral administration of LGF can enhance the outgrowth of nigrostriatal dopaminergic axonal terminals; promote the survival, migration, and differentiation of neuronal stem cells; and partially protect against dopaminergic neuronal loss in the substantia nigra of PD animal models. In most studies, these effects are accompanied by improved motor behavior of the animals. Potential underlying mechanisms involve transient microglial activation, TNF-α upregulation, and activation of the extracellular signal-regulated kinases 1/2 (ERK1/2) and of the transcription factor cyclic AMP response-element binding protein (CREB), along with anti-inflammatory and antioxidant pathways. Herein, we summarize recent preclinical evidence on the potential role of LGF in PD pathogenesis, aiming to shed more light on the underlying molecular mechanisms and reveal novel therapeutic opportunities for this debilitating disease. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.
- Published
- 2021
31. Neuroprotective potential of cinnamon and its metabolites in Parkinson's disease: Mechanistic insights, limitations, and novel therapeutic opportunities
- Author
-
Angelopoulou, E. Paudel, Y.N. Piperi, C. Mishra, A.
- Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder with obscure etiology and no disease-modifying therapy to date. Hence, novel, safe, and low cost-effective approaches employing medicinal plants are currently receiving increased attention. A growing body of evidence has revealed that cinnamon, being widely used as a spice of unique flavor and aroma, may exert neuroprotective effects in several neurodegenerative diseases, including PD. In vitro evidence has indicated that the essential oils of Cinnamomum species, mainly cinnamaldehyde and sodium benzoate may protect against oxidative stress-induced cell death, reactive oxygen species generation, and autophagy dysregulation, thus acting in a potentially neuroprotective manner. In vivo evidence has demonstrated that oral administration of cinnamon powder and sodium benzoate may protect against dopaminergic cell death, striatal neurotransmitter dysregulation, and motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse models of PD. The underlying mechanisms of its action include autophagy regulation, antioxidant effects, upregulation of Parkin, DJ-1, glial cell line-derived neurotrophic factor, as well as modulation of the TLR/NF-κB pathway and inhibition of the excessive proinflammatory responses. In addition, in vitro and in vivo studies have shown that cinnamon extracts may affect the oligomerization process and aggregation of α-synuclein. Herein, we discuss recent evidence on the novel therapeutic opportunities of this phytochemical against PD, indicating additional mechanistic aspects that should be explored, and potential obstacles/limitations that need to be overcome, for its inclusion in experimental PD therapeutics. © 2021 Wiley Periodicals LLC
- Published
- 2021
32. Histone lysine methyltransferase SETDB1 as a novel target for central nervous system diseases
- Author
-
Markouli, M. Strepkos, D. Chlamydas, S. Piperi, C.
- Abstract
Epigenetic changes that regulate chromatin structure have a major impact in genome stabilization and maintenance of cellular homeostasis, been recently implicated in the pathophysiology of central nervous system (CNS). Aberrant expression and dysregulation of histone modification enzymes has been associated with the development of several CNS disorders, revealing these enzymes as putative targets for drug development and novel therapeutic approaches. SETDB1 is a histone lysine methyltransferase responsible for the di- and tri-methylation of histone 3 (H3) at lysine (K) 9 in euchromatic regions further promoting gene silencing through heterochromatin formation. By this way, SETDB1 has been shown to regulate gene expression and influence normal cellular homeostasis required for nervous system function while it is also implicated in the pathogenesis of CNS disorders. Among them, brain tumors, schizophrenia, Huntington's disease, autism spectrum disorders along with alcohol-induced fetal neurobehavioral deficits and Prader-Willi syndrome are representative examples, indicating the aberrant expression and function of SETDB1 as a common pathogenic factor. In this review, we focus on SETDB1-associated molecular mechanisms implicated in CNS physiology and disease while we further discuss current pharmacological approaches targeting SETDB1 enzymatic activity with beneficial effects. © 2020 Elsevier Ltd
- Published
- 2021
33. Histone Mark Profiling in Pediatric Astrocytomas Reveals Prognostic Significance of H3K9 Trimethylation and Histone Methyltransferase SUV39H1
- Author
-
Klonou, A. Korkolopoulou, P. Gargalionis, A.N. Kanakoglou, D.S. Katifelis, H. Gazouli, M. Chlamydas, S. Mitsios, A. Kalamatianos, T. Stranjalis, G. Themistocleous, M.S. Papavassiliou, K.A. Sgouros, S. Papavassiliou, A.G. Piperi, C.
- Abstract
Alterations in global histone methylation regulate gene expression and participate in cancer onset and progression. The profile of histone methylation marks in pediatric astrocytomas is currently understudied with limited data on their distribution among grades. The global expression patterns of repressive histone marks H3K9me3, H3K27me3, and H4K20me3 and active H3K4me3 and H3K36me3 along with their writers SUV39H1, SETDB1, EZH2, MLL2, and SETD2 were investigated in 46 pediatric astrocytomas and normal brain tissues. Associations between histone marks and modifying enzymes with clinicopathological characteristics and disease-specific survival were studied along with their functional impact in proliferation and migration of pediatric astrocytoma cell lines using selective inhibitors in vitro. Upregulation of histone methyltransferase gene expression and deregulation of histone code were detected in astrocytomas compared to normal brain tissues, with higher levels of SUV39H1, SETDB1, and SETD2 as well as H4K20me3 and H3K4me3 histone marks. Pilocytic astrocytomas exhibited lower MLL2 levels compared to diffusely infiltrating tumors indicating a differential pattern of epigenetic regulator expression between the two types of astrocytic neoplasms. Moreover, higher H3K9me3, H3K36me3, and SETDB1 expression was detected in grade IIΙ/IV compared to grade II astrocytomas. In univariate analysis, elevated H3K9me3 and MLL2 and diminished SUV39H1 expression adversely affected survival. Upon multivariate survival analysis, only SUV39H1 expression was revealed as an independent prognostic factor of adverse significance. Treatment of pediatric astrocytoma cell lines with SUV39H1 inhibitor reduced proliferation and cell migration. Our data implicate H3K9me3 and SUV39H1 in the pathobiology of pediatric astrocytomas, with SUV39H1 yielding prognostic information independent of other clinicopathologic variables. © 2021, The American Society for Experimental NeuroTherapeutics, Inc.
- Published
- 2021
34. Unraveling the Role of Receptor for Advanced Glycation End Products (RAGE) and Its Ligands in Myasthenia Gravis
- Author
-
Angelopoulou, E. Paudel, Y.N. Piperi, C.
- Abstract
Myasthenia gravis (MG) is an autoimmune T cell-dependent B cell-mediated disorder of the neuromuscular junction (NMJ) characterized by fluctuating skeletal muscle weakness, most commonly attributed to pathogenic autoantibodies against postsynaptic nicotinic acetylcholine receptors (AChRs). Although MG pathogenesis is well-documented, there are no objective biomarkers that could effectively correlate with disease severity or MG clinical subtypes, and current treatment approaches are often ineffective. The receptor for advanced glycation end products (RAGE) is a multiligand cell-bound receptor highly implicated in proinflammatory responses and autoimmunity. Preclinical evidence demonstrates that RAGE and its ligand S100B are upregulated in rat models of experimental autoimmune myasthenia gravis (EAMG). S100B-mediated RAGE activation has been shown to exacerbate EAMG, by enhancing T cell proinflammatory responses, aggravating T helper (Th) subset imbalance, increasing AChR-specific T cell proliferative capacity, and promoting the production of antibodies against AChRs from the spleen. Soluble sRAGE and esRAGE, acting as decoys of RAGE ligands, are found to be significantly reduced in MG patients. Moreover, MG has been associated with increased serum levels of S100A12, S100B and HMGB1. Several studies have shown that the presence of thymic abnormalities, the onset age of MG, and the duration of the disease may affect the levels of these proteins in MG patients. Herein, we discuss the emerging role of RAGE and its ligands in MG immunopathogenesis, their clinical significance as promising biomarkers, as well as the potential therapeutic implications of targeting RAGE signaling in MG treatment. Copyright © 2020 American Chemical Society.
- Published
- 2020
35. Exploring the role of high-mobility group box 1 (HMGB1) protein in the pathogenesis of Huntington’s disease
- Author
-
Angelopoulou, E. Paudel, Y.N. Piperi, C.
- Subjects
chemical and pharmacologic phenomena - Abstract
Huntington’s disease (HD) is an autosomal-dominant neurodegenerative disorder caused by an increased and unstable CAG DNA expansion in the Huntingtin (HTT) gene, resulting in an elongated polyglutamine tract in huntingtin protein. Despite its monogenic cause, HD pathogenesis remains elusive and without any approved disease-modifying therapy as yet. A growing body of evidence highlights the emerging role of high-mobility group box 1 (HMGB1) protein in HD pathology. HMGB1, being a nuclear protein, is primarily implicated in DNA repair, but it can also translocate to the cytoplasm and participate into numerous cellular functions. Cytoplasmic HMGB1 was shown to directly interact with huntingtin under oxidative stress conditions and induce its nuclear translocation, a key process in the HD pathogenic cascade. Nuclear HMGB1 acting as a co-factor of ataxia telangiectasia mutated and base excision repair (BER) complexes can exert dual roles in CAG repeat instability and affect the final DNA repair outcome. HMGB1 can inhibit mutant huntingtin aggregation, protecting against polyglutamine-induced neurotoxicity and acting as a chaperon-like molecule, possibly via autophagy regulation. In addition, HMGB1 being a RAGE and TLR-2, TLR-3, and TLR-4 ligand may further contribute to HD pathogenesis by triggering neuroinflammation and apoptosis. Furthermore, HMGB1 participates at the unfolded protein response (UPR) system and can induce protein degradation and apoptosis associated with HD. In this review, we discuss the multiple role of HMGB1 in HD pathology, providing mechanistic insights that could direct future studies towards the development of targeted therapeutic approaches. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.
- Published
- 2020
36. Targeting of endoplasmic reticulum (ER) stress in gliomas
- Author
-
Markouli, M. Strepkos, D. Papavassiliou, A.G. Piperi, C.
- Abstract
Gliomas remain a group of malignant brain tumors with dismal prognosis and limited treatment options with molecular mechanisms being constantly investigated. The past decade, extracellular stress and intracellular DNA damage have been shown to disturb proteostasis leading to Endoplasmic Reticulum (ER) stress that is implicated in the regulation of gene expression and the pathogenesis of several tumor types, including gliomas. Upon ER stress induction, neoplastic cells activate the adaptive mechanism of unfolded protein response (UPR), an integrated signaling system that either restores ER homeostasis or induces cell apoptosis. Recently, the manipulation of the UPR has emerged as a new therapeutic target in glioma treatment. General UPR activators or selective GRP78, ATF6 and PERK inducers have been detected to modulate cell proliferation and induce apoptosis of glioma cells. At the same time, target-specific UPR inhibitors and small molecule proteostasis disruptors, work in reverse to increase misfolded proteins and cause a dysregulation in protein maturation and sorting, thus preventing the growth of neoplastic cells. Herein, we discuss the pathogenic implication of ER stress in gliomas onset and progression, providing an update on the current UPR modifying agents that can be potentially used in glioma treatment. © 2020 Elsevier Ltd
- Published
- 2020
37. Insights in the immunobiology of glioblastoma
- Author
-
Strepkos, D. Markouli, M. Klonou, A. Piperi, C. Papavassiliou, A.G.
- Abstract
Glioblastoma, a grade IV astrocytoma, is considered as the most malignant intracranial tumor, characterized by poor prognosis and therapy resistance. Tumor heterogeneity that often leads to distinct functional phenotypes contributes to glioblastoma (GB) indispensable growth and aggressiveness. The complex interaction of neoplastic cells with tumor microenvironment (TME) along with the presence of cancer stem-like cells (CSCs) largely confers to extrinsic and intrinsic GB heterogeneity. Recent data indicate that glioma cells secrete a variety of soluble immunoregulatory factors to attract different cell types to TME including astrocytes, endothelial cells, circulating stem cells, and a range of immune cells. These further induce a local production of cytokines, chemokines, and growth factors which upon crosstalk with extracellular matrix (ECM) components reprogram immune cells to inflammatory or anti-inflammatory phenotypes and manipulate host’s immune response in favor of cancer growth and metastasis. Herein, we provide an overview of the immunobiologic factors that orchestrate the complex network of glioma cells and TME interactions in an effort to identify potential therapeutic targets for GB malignancy. Current therapeutic schemes and advances in targeting GB-TME crosstalk are further discussed. Key messages: • Intrinsic and extrinsic tumor heterogeneity affects GB growth and aggressiveness. • GB cells secrete growth factors and chemoattractants to recruit immune cells to TME. • GAMs are a critical cell type in promoting GB growth. • GAMs change from pro-inflammatory, anti-tumor M1 phenotype to pro-tumorigenic M2. • Novel therapeutic agents target the crosstalk of neoplastic cells with TME. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
- Published
- 2020
38. Potential Neuroprotective Effect of the HMGB1 Inhibitor Glycyrrhizin in Neurological Disorders
- Author
-
Paudel, Y.N. Angelopoulou, E. Semple, B. Piperi, C. Othman, I. Shaikh, M.F.
- Abstract
Glycyrrhizin (glycyrrhizic acid), a bioactive triterpenoid saponin constituent of Glycyrrhiza glabra, is a traditional medicine possessing a plethora of pharmacological anti-inflammatory, antioxidant, antimicrobial, and antiaging properties. It is a known pharmacological inhibitor of high mobility group box 1 (HMGB1), a ubiquitous protein with proinflammatory cytokine-like activity. HMGB1 has been implicated in an array of inflammatory diseases when released extracellularly, mainly by activating intracellular signaling upon binding to the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4). HMGB1 neutralization strategies have demonstrated disease-modifying outcomes in several preclinical models of neurological disorders. Herein, we reveal the potential neuroprotective effects of glycyrrhizin against several neurological disorders. Emerging findings demonstrate the therapeutic potential of glycyrrhizin against several HMGB1-mediated pathological conditions including traumatic brain injury, neuroinflammation and associated conditions, epileptic seizures, Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Glycyrrhizin's effects in neurological disorders are mainly attributed to the attenuation of neuronal damage by inhibiting HMGB1 expression and translocation as well as by downregulating the expression of inflammatory cytokines. A large number of preclinical findings supports the notion that glycyrrhizin might be a promising therapeutic alternative to overcome the shortcomings of the mainstream therapeutic strategies against neurological disorders, mainly by halting disease progression. However, future research is warranted for a deeper exploration of the precise underlying molecular mechanism as well as for clinical translation. Copyright © 2020 American Chemical Society.
- Published
- 2020
39. From the molecular mechanism to pre-clinical results: Anti-epileptic effects of fingolimod
- Author
-
Paudel, Y.N. Angelopoulou, E. Piperi, C. Gnatkovsky, V. Othman, I. Shaikh, M.F.
- Abstract
Epilepsy is a devastating neurological condition characterized by long-term tendency to generate unprovoked seizures, affecting around 1-2 % of the population worldwide. Epilepsy is a serious health concern which often associates with other neurobehavioral comorbidities that further worsen disease conditions. Despite tremendous research, the mainstream anti-epileptic drugs (AEDs) exert only symptomatic relief leading to 30% of untreatable patients. This reflects the complexity of the disease pathogenesis and urges the precise understanding of underlying mechanisms in order to explore novel therapeutic strategies that might alter the disease progression as well as minimize the epilepsy-associated comorbidities. Unfortunately, the development of novel AEDs might be a difficult process engaging huge funds, tremendous scientific efforts and stringent regulatory compliance with a possible chance of end-stage drug failure. Hence, an alternate strategy is drug repurposing, where anti-epileptic effects are elicited from drugs that are already used to treat non-epileptic disorders. Herein, we provide evidence of the anti-epileptic effects of Fingolimod (FTY720), a modulator of sphingosine-1-phosphate (S1P) receptor, USFDA approved already for Relapsing-Remitting Multiple Sclerosis (RRMS). Emerging experimental findings suggest that Fingolimod treatment exerts disease-modifying anti-epileptic effects based on its anti-neuroinflammatory properties, potent neu-roprotection, anti-gliotic effects, myelin protection, reduction of mTOR signaling pathway and activation of microglia and astrocytes. We further discuss the underlying molecular crosstalk associated with the anti-epileptic effects of Fingolimod and provide evidence for repurposing Fingolimod to overcome the limitations of current AEDs. © 2020 Bentham Science Publishers.
- Published
- 2020
40. Hmgb1-mediated neuroinflammatory responses in brain injuries: Potential mechanisms and therapeutic opportunities
- Author
-
Paudel, Y.N. Angelopoulou, E. Piperi, C. Othman, I. Shaikh, M.F.
- Subjects
chemical and pharmacologic phenomena - Abstract
Brain injuries are devastating conditions, representing a global cause of mortality and morbidity, with no effective treatment to date. Increased evidence supports the role of neuroinflammation in driving several forms of brain injuries. High mobility group box 1 (HMGB1) protein is a pro-inflammatory-like cytokine with an initiator role in neuroinflammation that has been implicated in Traumatic brain injury (TBI) as well as in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Herein, we discuss the implication of HMGB1-induced neuroinflammatory responses in these brain injuries, mediated through binding to the receptor for advanced glycation end products (RAGE), toll-like receptor4 (TLR4) and other inflammatory mediators. Moreover, we provide evidence on the biomarker potential of HMGB1 and the significance of its nucleocytoplasmic translocation during brain injuries along with the promising neuroprotective effects observed upon HMGB1 inhibition/neutralization in TBI and EBI induced by SAH. Overall, this review addresses the current advances on neuroinflammation driven by HMGB1 in brain injuries indicating a future treatment opportunity that may overcome current therapeutic gaps. © 2020, MDPI AG. All rights reserved.
- Published
- 2020
41. Critical role of HOX transcript antisense intergenic RNA (HOTAIR) in gliomas
- Author
-
Angelopoulou, E. Paudel, Y.N. Piperi, C.
- Abstract
Despite extensive research, gliomas are associated with high morbidity and mortality, mainly attributed to the rapid growth rate, excessive invasiveness, and molecular heterogeneity, as well as regenerative potential of cancer stem cells. Therefore, elucidation of the underlying molecular mechanisms and the identification of potential molecular diagnostic and prognostic biomarkers are of paramount importance. HOX transcript antisense intergenic RNA (HOTAIR) is a well-studied long noncoding RNA, playing an emerging role in tumorigenesis of several human cancers. A growing amount of preclinical and clinical evidence highlights the pro-oncogenic role of HOTAIR in gliomas, mainly attributed to the enhancement of proliferation and migration, as well as inhibition of apoptosis. In vitro and in vivo studies demonstrate that HOTAIR modulates the activity of specific transcription factors, such as MXI1, E2F1, ATF5, and ASCL1, and regulates the expression of cell cycle–associated genes along with related signaling pathways, like the Wnt/β-catenin axis. Moreover, it can interact with specific miRNAs, including miR-326, miR-141, miR-148b-3p, miR-15b, and miR-126-5p. Of importance, HOTAIR has been demonstrated to enhance angiogenesis and affect the permeability of the blood–tumor barrier, thus modulating the efficacy of chemotherapeutic agents. Herein, we provide evidence on the functional role of HOTAIR in gliomas and discuss the benefits of its targeting as a novel approach toward glioma treatment. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.
- Published
- 2020
42. Neuroprotective potential of chrysin in Parkinson's disease: Molecular mechanisms and clinical implications
- Author
-
Angelopoulou, E. Pyrgelis, E.-S. Piperi, C.
- Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, with current treatment being mainly symptomatic and often accompanied by serious side effects. In search of novel and safe therapeutic agents for PD, natural flavonoids have been shown to exert significant neuroprotective effects. Among them, chrysin (5,7-dihydroxyflavone) has been demonstrated to exhibit anti-oxidative effects to dopaminergic neurons mainly by increasing the expression of Nuclear Factor Erythroid 2 -related factor 2 (NRF2) which reduces intracellular nitric oxide (NO) levels and regulates anti-oxidant pathways. Moreover, chrysin activates Myocyte Enhancer factor 2D (MEF2D), a critical transcription factor involved in dopaminergic survival. It suppresses the MPP-induced upregulation of c-caspase and Bax as well as the downregulation of anti-apoptotic protein Bcl 2. Chrysin also enhances the production of neurotrophic factors, contributing to neuronal survival. Of interest, the combination of chrysin with protocatechuic acid (PCA) has been demonstrated to inhibit neuronal loss in PD animal models. Along with anti-inflammatory properties, chrysin has also been shown to increase dopamine levels in the striatum via monoamino-oxidase B (MAO-B) inhibition while it restores the behavioral deficits in PD animal models. In this review, we discuss the molecular mechanisms that underlie the possible neuroprotective effects of chrysin in PD pathogenesis along with its therapeutic potential. © 2019 Elsevier Ltd
- Published
- 2020
43. Epigenetic mechanisms regulating COVID-19 infection
- Author
-
Chlamydas, S. Papavassiliou, A.G. Piperi, C.
- Abstract
Coronavirus disease 2019 (COVID-2019) outbreak originating in December 2019 in Wuhan, China has emerged as a global treat to human health. The highly contagious SARS-CoV-2 infection and transmission presents diversity of human host and increased disease risk with advancing age, highlighting the importance of in depth understanding of its biological properties. Structural analyses have elucidated hot spots in viral binding domains, mutations and specific proteins in the host such as the receptor angiotensin-converting enzyme 2 (ACE2) and the transmembrane protease serine 2 (TMPRSS2) to be implicated in cell entry and viral infectivity. Furthermore, epigenetic changes that regulate chromatin structure have shown a major impact in genome stabilization and maintenance of cellular homeostasis and they have been implicated in the pathophysiology of the virus infection. Epigenetic research has revealed that global DNA methylation along with ACE2 gene methylation and post-translational histone modifications may drive differences in host tissue-, biological age- and sex-biased patterns of viral infection. Moreover, modulation of the host cells epigenetic landscape following infection represents a molecular tool used by viruses to antagonize cellular signaling as well as sensing components that regulate induction of the host innate immune and antiviral defense programs in order to enhance viral replication and infection efficiency. In this review, we provide an update of the main research findings at the interface of epigenetics and coronavirus infection. In particular, we highlight the epigenetic factors that interfere with viral replication and infection and may contribute to COVID-19 susceptibility, offering new ways of thinking in respect to host viral response. © 2020, Informa UK Limited, trading as Taylor & Francis Group.
- Published
- 2020
44. Cutaneous T-cell lymphoma: aetiopathogenesis and current diagnostic and therapeutic developments
- Author
-
Papadaki, M. Saraki, K. Karagianni, F. Piperi, C. Papadavid, E.
- Abstract
Cutaneous T-cell lymphoma is a heterogeneous group of non-Hodgkin’s lymphoma, characterized by an infiltration of malignant T cells in the skin. The most common subgroups include mycosis fungoides followed by the aggressive leukaemic variant, Sézary syndrome. The pathophysiology of this neoplasm is poorly understood. The diagnosis of mycosis fungoides at the early stages can be challenging due to phenotypic similarities with other skin conditions. A lack of understanding of the aetiopathology of this neoplasia makes prognosis and diagnosis, as well as the development of targeted therapies aimed at long remission, challenging. This review provides an update on the aetiopathology of cutaneous T-cell lymphoma with regards to genetic and epigenetic alterations, current diagnostic tools and treatments, as well as emerging therapies. © 2020, JLE/Springer.
- Published
- 2020
45. Polycystin-1 induces activation of the PI3K/AKT/mTOR pathway and promotes angiogenesis in renal cell carcinoma
- Author
-
Gargalionis, A.N. Sarlani, E. Stofas, A. Malakou, L.S. Adamopoulos, C. Bamias, A. Boutati, E. Constantinides, C.A. Stravodimos, K.G. Piperi, C. Papavassiliou, A.G. Korkolopoulou, P.
- Subjects
endocrine system ,urologic and male genital diseases ,female genital diseases and pregnancy complications - Abstract
In the present study we investigated the expression and the functional role of mechanosensitive polycystins in renal cell carcinoma (RCC). In 115 RCC patients we evaluated the protein expression of polycystin-1 (PC1), polycystin-2 (PC2), VEGF and protein components of the PI3K/Akt/mTOR pathway, which have been implicated both in RCC and polycystic kidney disease. PC1 and PC2 demonstrated reduced expression throughout the RCC tissue compared to the adjacent normal tissue. PC1 and PC2 revealed high expression when they were associated with higher grade and decreased 5-year survival respectively. PC1 and PC2 were positively correlated with p110γ subunit of PI3K and high PC1 expressing cells tended to display activation/phosphorylation of Akt. There was also a positive association between PC1 and VEGF expression, whereas PC1 augmented the tumor's microvascular network in stage IV carcinomas. In human RCC cells, functional inhibition of PC1 resulted in upregulation of the PI3K/Akt/mTOR pathway, enhanced cell proliferation and led to inhibition of cell migration. Conclusively, aberrant PC1 regulation is associated with increased angiogenesis and features of advanced disease in RCC tissues. © 2020 Elsevier B.V.
- Published
- 2020
46. Fractalkine (CX3CL1) signaling and neuroinflammation in Parkinson's disease: Potential clinical and therapeutic implications
- Author
-
Angelopoulou, E. Paudel, Y.N. Shaikh, M.F. Piperi, C.
- Abstract
Neuroinflammation plays a crucial role in the pathogenesis of Parkinson's disease (PD) with the dysregulation of microglial activity being tightly linked to dopaminergic degeneration. Fractalkine (CX3CL1), a chemokine mainly expressed by neurons, can modulate microglial activity through binding to its sole G-protein-coupled receptor (CX3CR1), expressed by microglia. Fractalkine/CX3CR1 signaling is one of the most important mediators of the communication between neurons and microglia, and its emerging role in neurodegenerative disorders including PD has been increasingly recognized. Pre-clinical evidence has revealed that fractalkine signaling axis exerts dual effects on PD-related inflammation and degeneration, which greatly depend on the isoform type (soluble or membrane-bound), animal model (mice or rats, toxin- or proteinopathy-induced), route of toxin administration, time course and specific brain region (striatum, substantia nigra). Furthermore, although existing clinical evidence is scant, it has been indicated that fractalkine may be possibly associated with PD progression, paving the way for future studies investigating its biomarker potential. In this review, we discuss recent evidence on the role of fractalkine/CX3CR1 signaling axis in PD pathogenesis, aiming to shed more light on the molecular mechanisms underlying the neuroinflammation commonly associated with the disease, as well as potential clinical and therapeutic implications. © 2020 Elsevier Ltd
- Published
- 2020
47. Impact of HMGB1, RAGE, and TLR4 in Alzheimer's Disease (AD): From Risk Factors to Therapeutic Targeting
- Author
-
Paudel, Y.N. Angelopoulou, E. Piperi, C. Othman, I. Aamir, K. Shaikh, M.F.
- Subjects
chemical and pharmacologic phenomena - Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder and a leading cause of dementia, with accumulation of amyloid-beta (Aβ) and neurofibrillary tangles (NFTs) as defining pathological features. AD presents a serious global health concern with no cure to date, reflecting the complexity of its pathogenesis. Recent evidence indicates that neuroinflammation serves as the link between amyloid deposition, Tau pathology, and neurodegeneration. The high mobility group box 1 (HMGB1) protein, an initiator and activator of neuroinflammatory responses, has been involved in the pathogenesis of neurodegenerative diseases, including AD. HMGB1 is a typical damage-associated molecular pattern (DAMP) protein that exerts its biological activity mainly through binding to the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4). RAGE and TLR4 are key components of the innate immune system that both bind to HMGB1. Targeting of HMGB1, RAGE, and TLR4 in experimental AD models has demonstrated beneficial effects in halting AD progression by suppressing neuroinflammation, reducing Aβ load and production, improving spatial learning, and inhibiting microglial stimulation. Herein, we discuss the contribution of HMGB1 and its receptor signaling in neuroinflammation and AD pathogenesis, providing evidence of its beneficial effects upon therapeutic targeting.
- Published
- 2020
48. Flotillin: A promising biomarker for alzheimer’s disease
- Author
-
Angelopoulou, E. Paudel, Y.N. Shaikh, M.F. Piperi, C.
- Abstract
Alzheimer’s disease (AD) is characterized by the accumulation of beta amyloid (Aβ) in extracellular senile plaques and intracellular neurofibrillary tangles (NFTs) mainly consisting of tau protein. Although the exact etiology of the disease remains elusive, accumulating evidence highlights the key role of lipid rafts, as well as the endocytic pathways in amyloidogenic amyloid precursor protein (APP) processing and AD pathogenesis. The combination of reduced Aβ42 levels and increased phosphorylated tau protein levels in the cerebrospinal fluid (CSF) is the most well established biomarker, along with Pittsburgh compound B and positron emission tomography (PiB-PET) for amyloid imaging. However, their invasive nature, the cost, and their availability often limit their use. In this context, an easily detectable marker for AD diagnosis even at preclinical stages is highly needed. Flotillins, being hydrophobic proteins located in lipid rafts of intra-and extracellular vesicles, are mainly involved in signal transduction and membrane–protein interactions. Accumulating evidence highlights the emerging implication of flotillins in AD pathogenesis, by affecting APP endocytosis and processing, Ca2+ homeostasis, mitochondrial dysfunction, neuronal apoptosis, Aβ-induced neurotoxicity, and prion-like spreading of Aβ. Importantly, there is also clinical evidence supporting their potential use as biomarker candidates for AD, due to reduced serum and CSF levels that correlate with amyloid burden in AD patients compared with controls. This review focuses on the emerging preclinical and clinical evidence on the role of flotillins in AD pathogenesis, further addressing their potential usage as disease biomarkers. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
- Published
- 2020
49. Role of Innate Immune Receptor TLR4 and its endogenous ligands in epileptogenesis
- Author
-
Paudel, Y.N. Angelopoulou, E. Akyuz, E. Piperi, C. Othman, I. Shaikh, M.F.
- Abstract
Understanding the interplay between the innate immune system, neuroinflammation, and epilepsy might offer a novel perspective in the quest of exploring new treatment strategies. Due to the complex pathology underlying epileptogenesis, no disease-modifying treatment is currently available that might prevent epilepsy after a plausible epileptogenic insult despite the advances in pre-clinical and clinical research. Neuroinflammation underlies the etiopathogenesis of epilepsy and convulsive disorders with Toll-like receptor (TLR) signal transduction being highly involved. Among TLR family members, TLR4 is an innate immune system receptor and lipopolysaccharide (LPS) sensor that has been reported to contribute to epileptogenesis by regulating neuronal excitability. Herein, we discuss available evidence on the role of TLR4 and its endogenous ligands, the high mobility group box 1 (HMGB1) protein, the heat shock proteins (HSPs) and the myeloid related protein 8 (MRP8), in epileptogenesis and post-traumatic epilepsy (PTE). Moreover, we provide an account of the promising findings of TLR4 modulation/inhibition in experimental animal models with therapeutic impact on seizures. © 2020 Elsevier Ltd
- Published
- 2020
50. Lymphocyte-activation gene 3 (LAG3) protein as a possible therapeutic target for Parkinson’s disease: Molecular mechanisms connecting neuroinflammation to α-synuclein spreading pathology
- Author
-
Angelopoulou, E. Paudel, Y.N. Villa, C. Shaikh, M.F. Piperi, C.
- Abstract
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder without any objective biomarker available to date. Increasing evidence highlights the critical role of neuroinflammation, including T cell responses, and spreading of aggregated α-synuclein in PD progression. Lymphocyte-activation gene 3 (LAG3) belongs to the immunoglobulin (Ig) superfamily expressed by peripheral immune cells, microglia and neurons and plays a key role in T cell regulation. The role of LAG3 has been extensively investigated in several human cancers, whereas until recently, the role of LAG3 in the central nervous system (CNS) has been largely unknown. Accumulating evidence highlights the potential role of LAG3 in PD pathogenesis, mainly by binding to α-synuclein fibrils and affecting its endocytosis and intercellular transmission, which sheds more light on the connection between immune dysregulation and α-synuclein spreading pathology. Serum and cerebrospinal fluid (CSF) soluble LAG3 (sLAG3) levels have been demonstrated to be potentially associated with PD development and clinical phenotype, suggesting that sLAG3 could represent an emerging PD biomarker. Specific single nucleotide polymorphisms (SNPs) of the LAG3 gene have been also related to PD occurrence especially in the female population, enlightening the pathophysiological background of gender-related PD clinical differences. Given also the ongoing clinical trials investigating various LAG3-targeting strategies in human diseases, new opportunities are being developed for PD treatment research. In this review, we discuss recent preclinical and clinical evidence on the role of LAG3 in PD pathogenesis and biomarker potential, aiming to elucidate its underlying molecular mechanisms. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
- Published
- 2020
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.