1. A platform of functional studies of ESCC-associated gene mutations identifies the roles of TGFBR2 in ESCC progression and metastasis
- Author
-
Jian Wang, Jiajia Du, Xiangmeng Luo, Linjie Guo, Yixin Liu, Jianfeng Zhou, Yang Zou, Zhenghao Lu, Xiangyu Pan, Xuelan Chen, Ailing Zhong, Xudong Wan, Lu Wang, Hongyu Liu, Siqi Dai, Shiyu Zhang, Xingyu Xiong, Ping Tan, Manli Wang, Baohong Wu, Qi Zhang, Yingjie Wang, Mengsha Zhang, Runda Lu, Huahang Lin, Yuan Li, Yaxin Li, Zongkai Han, Longqi Chen, Bing Hu, Yu Liu, Feifei Na, and Chong Chen
- Subjects
CP: Cancer ,Biology (General) ,QH301-705.5 - Abstract
Summary: Genomics studies have detected numerous genetic alterations in esophageal squamous cell carcinoma (ESCC). However, the functions of these mutations largely remain elusive, partially due to a lack of feasible animal models. Here, we report a convenient platform with CRISPR-Cas9-mediated introduction of genetic alterations and orthotopic transplantation to generate a series of primary ESCC models in mice. With this platform, we validate multiple frequently mutated genes, including EP300, FAT1/2/4, KMT2D, NOTCH2, and TGFBR2, as tumor-suppressor genes in ESCC. Among them, TGFBR2 loss dramatically promotes tumorigenesis and multi-organ metastasis. Paradoxically, TGFBR2 deficiency leads to Smad3 activation, and disruption of Smad3 partially restrains the progression of Tgfbr2-mutated tumors. Drug screening with tumor organoids identifies that pinaverium bromide represses Smad3 activity and restrains Tgfbr2-deficient ESCC. Our studies provide a highly efficient platform to investigate the in vivo functions of ESCC-associated mutations and develop potential treatments for this miserable malignancy.
- Published
- 2024
- Full Text
- View/download PDF