65 results on '"Pierre-Yves Meslin"'
Search Results
2. Manganese-Iron Phosphate Nodules at the Groken Site, Gale Crater, Mars
- Author
-
Allan H. Treiman, Nina L. Lanza, Scott VanBommel, Jeff Berger, Roger Wiens, Thomas Bristow, Jeffrey Johnson, Melissa Rice, Reginald Hart, Amy McAdam, Patrick Gasda, Pierre-Yves Meslin, Albert Yen, Amy J. Williams, Ashwin Vasavada, David Vaniman, Valerie Tu, Michael Thorpe, Elizabeth D. Swanner, Christina Seeger, Susanne P. Schwenzer, Susanne Schröder, Elizabeth Rampe, William Rapin, Silas J. Ralston, Tanya Peretyazhko, Horton Newsom, Richard V. Morris, Douglas Ming, Matteo Loche, Stéphane Le Mouélic, Christopher House, Robert Hazen, John P. Grotzinger, Ralf Gellert, Olivier Gasnault, Woodward W. Fischer, Ari Essunfeld, Robert T. Downs, Gordon W. Downs, Erwin Dehouck, Laura J. Crossey, Agnes Cousin, Jade M. Comellas, Joanna V. Clark, Benton Clark, Steve Chipera, Gwenaël Caravaca, John Bridges, David F. Blake, and Ryan Anderson
- Subjects
Mars ,Gale Crater ,diagenesis ,manganese ,phosphate ,laueite ,Mineralogy ,QE351-399.2 - Abstract
The MSL Curiosity rover investigated dark, Mn-P-enriched nodules in shallow lacustrine/fluvial sediments at the Groken site in Glen Torridon, Gale Crater, Mars. Applying all relevant information from the rover, the nodules are interpreted as pseudomorphs after original crystals of vivianite, (Fe2+,Mn2+)3(PO4)2·8H2O, that cemented the sediment soon after deposition. The nodules appear to have flat faces and linear boundaries and stand above the surrounding siltstone. ChemCam LIBS (laser-induced breakdown spectrometry) shows that the nodules have MnO abundances approximately twenty times those of the surrounding siltstone matrix, contain little CaO, and have SiO2 and Al2O3 abundances similar to those of the siltstone. A deconvolution of APXS analyses of nodule-bearing targets, interpreted here as representing the nodules’ non-silicate components, shows high concentrations of MnO, P2O5, and FeO and a molar ratio P/Mn = 2. Visible to near-infrared reflectance of the nodules (by ChemCam passive and Mastcam multispectral) is dark and relatively flat, consistent with a mixture of host siltstone, hematite, and a dark spectrally bland material (like pyrolusite, MnO2). A drill sample at the site is shown to contain minimal nodule material, implying that analyses by the CheMin and SAM instruments do not constrain the nodules’ mineralogy or composition. The fact that the nodules contain P and Mn in a small molar integer ratio, P/Mn = 2, suggests that the nodules contained a stoichiometric Mn-phosphate mineral, in which Fe did (i.e., could) not substitute for Mn. The most likely such minerals are laueite and strunzite, Mn2+Fe3+2(PO4)2(OH)2·8H2O and –6H2O, respectively, which occur on Earth as alteration products of other Mn-bearing phosphates including vivianite. Vivianite is a common primary and diagenetic precipitate from low-oxygen, P-enriched waters. Calculated phase equilibria show Mn-bearing vivianite could be replaced by laueite or strunzite and then by hematite plus pyrolusite as the system became more oxidizing and acidic. These data suggest that the nodules originated as vivianite, forming as euhedral crystals in the sediment, enclosing sediment grains as they grew. After formation, the nodules were oxidized—first to laueite/strunzite yielding the diagnostic P/Mn ratio, and then to hematite plus an undefined Mn oxy-hydroxide (like pyrolusite). The limited occurrence of these Mn-Fe-P nodules, both in space and time (i.e., stratigraphic position), suggests a local control on their origin. By terrestrial analogies, it is possible that the nodules precipitated near a spring or seep of Mn-rich water, generated during alteration of olivine in the underlying sediments.
- Published
- 2023
- Full Text
- View/download PDF
3. Post-Landing Major Element Quantification Using SuperCam Laser Induced Breakdown Spectroscopy
- Author
-
Ryan B Anderson, Olivier Forni, Agnes Cousin, Roger C Wiens, Samuel M Clegg, Jens Frydenvang, Travis S J Gabriel, Ann M Ollila, Susanne Schroder, Olivier Beyssac, Erin Gibbons, David S Vogt, Elise Clave, Jose-Antonio Manrique, Carey Legett IV, Paolo Pilleri, Raymond T Newell, Joseph Sarao, Sylvestre Maurice, Gorka Arana, Karim Benzerara, Pernelle Bernardi, Sylvian Bernard, Bruno Bousquet, Adrian J Brown, Cesar-Alvarez Llamas, Baptiste Chide, Edward Cloutis, Jade Comellas, Stephanie Connell, Erwin Dehouck, Dorothea M Delapp, Ari Essunfeld, Cecile Fabre, Thierry C Fouchet, Cristina Garcia-Florentino, Laura Garcia-Gomez, Patrick Gasda, Olivier Gasnault, Elisabeth Hausrath, Nina L Lanza, Javier Laserna, Jeremie Lasue, Guillermo Lopez, Juan Manuel Madariaga, Lucia Mandon, Nicolas Mangold, Pierre-Yves Meslin, Anthony E Nelson, Horton Newsom, Adriana L Reyes-Newell, Scott Robinson, Fernando Rull, Shiv Sharma, Justin I Simon, Pablo Sobron, Imanol Torre Fernandez, Arya Udry, Dawn Venhaus, Scott M McLennan, Richard V Morris, and Bethany Ehlmann
- Subjects
Geosciences (General) - Abstract
The SuperCam instrument on the PerseveranceMars 2020 rover uses a pulsed 1064 nm laser to ablate targets at a distance and conduct laser induced breakdown spectroscopy (LIBS) by analyzing the light from the resulting plasma. SuperCam LIBS spectra are preprocessed to remove ambient light, noise, and the continuum signal present in LIBS observations. Prior to quantification, spectra are masked to remove noisier spectrometer regions andspectra are normalized to minimize signal fluctuations and effectsof target distance.In some cases, the spectra are also standardized or binned prior to quantification. To determine quantitative elemental compositionsof diverse geologic materials at Jezero crater, Mars, we use a suite of 1198 laboratory spectra of 334 well-characterized reference samples. The samples were selected to span a wide range of compositions and include typical silicate rocks, pure minerals (e.g.,silicates, sulfates, carbonates, oxides),more unusual compositions (e.g.,Mn oreand sodalite), andreplicates of the sintered SuperCam calibration targets (SCCTs) onboardthe rover. For each major element (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O), the database was subdivided into five“folds” with similar distributions of the element of interest. One fold was held out as an independent test set, and the remaining fourfolds were used to optimize multivariate regression models relating the spectrum to the composition. We considered a variety of models, and selected several for further investigation for each element, based primarily on the root mean squared error of prediction (RMSEP) on the test set, when analyzed at 3m. In cases with several models of comparable performance at 3 m, we incorporated the SCCT performance at different distances to choose the preferred model. Shortly after landing on Mars and collecting initial spectra of geologic targets, we selected one model per element. Subsequently, with additional data from geologic targets, some models were revised to ensure results that are more consistent with geochemical constraints. The calibration discussed here is a snapshot of an ongoing effort to deliver the most accurate chemical compositions with SuperCam LIBS.
- Published
- 2021
- Full Text
- View/download PDF
4. The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests
- Author
-
Roger C. Wiens, Sylvestre Maurice, Scott H. Robinson, Anthony E. Nelson, Philippe Cais, Pernelle Bernardi, Raymond T. Newell, Sam Clegg, Shiv K. Sharma, Steven Storms, Jonathan Deming, Darrel Beckman, Ann M. Ollila, Olivier Gasnault, Ryan B. Anderson, Yves André, S. Michael Angel, Gorka Arana, Elizabeth Auden, Pierre Beck, Joseph Becker, Karim Benzerara, Sylvain Bernard, Olivier Beyssac, Louis Borges, Bruno Bousquet, Kerry Boyd, Michael Caffrey, Jeffrey Carlson, Kepa Castro, Jorden Celis, Baptiste Chide, Kevin Clark, Edward Cloutis, Elizabeth C. Cordoba, Agnes Cousin, Magdalena Dale, Lauren Deflores, Dorothea Delapp, Muriel Deleuze, Matthew Dirmyer, Christophe Donny, Gilles Dromart, M. George Duran, Miles Egan, Joan Ervin, Cecile Fabre, Amaury Fau, Woodward Fischer, Olivier Forni, Thierry Fouchet, Reuben Fresquez, Jens Frydenvang, Denine Gasway, Ivair Gontijo, John Grotzinger, Xavier Jacob, Sophie Jacquinod, Jeffrey R. Johnson, Roberta A. Klisiewicz, James Lake, Nina Lanza, Javier Laserna, Jeremie Lasue, Stéphane Le Mouélic, Carey Legett, Richard Leveille, Eric Lewin, Guillermo Lopez-Reyes, Ralph Lorenz, Eric Lorigny, Steven P. Love, Briana Lucero, Juan Manuel Madariaga, Morten Madsen, Soren Madsen, Nicolas Mangold, Jose Antonio Manrique, J. P. Martinez, Jesus Martinez-Frias, Kevin P. McCabe, Timothy H. McConnochie, Justin M. McGlown, Scott M. McLennan, Noureddine Melikechi, Pierre-Yves Meslin, John M. Michel, David Mimoun, Anupam Misra, Gilles Montagnac, Franck Montmessin, Valerie Mousset, Naomi Murdoch, Horton Newsom, Logan A. Ott, Zachary R. Ousnamer, Laurent Pares, Yann Parot, Rafal Pawluczyk, C. Glen Peterson, Paolo Pilleri, Patrick Pinet, Gabriel Pont, Francois Poulet, Cheryl Provost, Benjamin Quertier, Heather Quinn, William Rapin, Jean-Michel Reess, Amy H. Regan, Adriana L. Reyes-Newell, Philip J. Romano, Clement Royer, Fernando Rull, Benigno Sandoval, Joseph H. Sarrao, Violaine Sautter, Marcel J. Schoppers, Susanne Schröder, Daniel Seitz, Terra Shepherd, Pablo Sobron, Bruno Dubois, Vishnu Sridhar, Michael J. Toplis, Imanol Torre-Fdez, Ian A. Trettel, Mark Underwood, Andres Valdez, Jacob Valdez, Dawn Venhaus, and Peter Willis
- Published
- 2020
- Full Text
- View/download PDF
5. On the occurrence of jahnsite/whiteite phases on Mars: A thermodynamic study
- Author
-
Christophe Drouet, Matteo Loche, Sébastien Fabre, and Pierre-Yves Meslin
- Subjects
Geophysics ,Geochemistry and Petrology - Abstract
Jahnsites/whiteites are a large family of phosphate hydrate minerals of relevance to terrestrial and martian mineralogy. It was recently hypothesized as being present in Gale Crater sediments from XRD analyses performed by the CheMin analyzer aboard the Curiosity rover. However, the conditions of formation and thermodynamic properties of these compounds are essentially unknown. In this work, we have optimized the ThermAP predictive thermodynamic approach to the analysis of these phases, allowing us to estimate for the first time the standard formation enthalpy (ΔHfo), Gibbs free energy (ΔGfo), and entropy (S°) of 15 jahnsite/whiteite end-member compositions, as well as of related phases such as segelerite and alluaudites. These estimations were then used to feed speciation/phase diagram calculation tools to evaluate the relative ease of formation and stability of these hydrated minerals, including considering present martian conditions. Selected laboratory experiments confirmed calculation outcomes. All of our data suggest that the formation of jahnsites is an unlikely process, and point instead to the formation of other simpler phosphate compounds. The stability domain, as calculated here, also raises serious questions about the possible presence of jahnsites on Mars as in Gale Crater, which appears rather improbable.
- Published
- 2022
6. CALOTRITON: A convective boundary layer height estimation algorithm from UHF wind profiler data
- Author
-
Alban Philibert, Marie Lothon, Julien Amestoy, Pierre-Yves Meslin, Solène Derrien, Yannick Bezombes, Bernard Campistron, Fabienne Lohou, Antoine Vial, Guylaine Canut-Rocafort, Joachim Reuder, and Jennifer Brooke
- Abstract
Long series of observation of the atmospheric dynamics and composition are collected at the French Pyrenean Platform for the Observation of the Atmosphere (P2OA). Planetary boundary layer depth is a key variable of the climate system, but it remains difficult to estimate and analyse statistically by use of long series. In order to obtain reliable estimates of the convective boundary layer height (Zi) and to allow long-term series analyses, a new restitution algorithm, named CALOTRITON, has been developed, based on the observations of a Ultra High Frequency (UHF) wind profiler radar from P2OA, with the help of other instruments for evaluation. Zi estimates are based on the principle that the top of the convective boundary layer is associated with both a marked inversion and a decrease of turbulence. Those two criteria are respectively manifested by larger radar reflectivity and smaller vertical velocity Doppler spectral width. With this in mind, we introduce a new UHF- deduced dimensionless parameter which weights the air refractive index coefficient with the inverse of vertical velocity standard deviation to the power x. We then search for the most appropriate local maxima of this parameter for Zi estimates, with defined criteria and constraints, like temporal continuity. Given that Zi should correspond to fair weather cloud base height, we use ceilometer data to optimize our choice of the power x, and find that x = 3 gives the best comparisons/results. The estimates of Zi by CALOTRITON are evaluated using different Zi estimates deduced from radiosounding, according to different definitions. The comparison shows excellent results with a regression coefficient of up to 0.96 and a root mean square error of 80 m, close to the vertical resolution of the UHF of 75 m, when conditions are optimal. In more complex situations, that is when the atmospheric vertical structure is itself particularly ambiguous, secondary retrievals allow us to identify potential thermal internal boundary layers or residual layers, and help to qualify the Zi estimations. Frequent estimate errors are nevertheless observed when Zi is below the UHF first reliable gate, but also at the end of the day, when the boundary layer begins its transition to a stable nighttime boundary layer.
- Published
- 2023
7. Detection of Copper by the ChemCam Instrument Along Curiosity's Traverse in Gale Crater, Mars: Elevated Abundances in Glen Torridon
- Author
-
Walter Goetz, Erwin Dehouck, Patrick J. Gasda, Jeffrey R. Johnson, Pierre‐Yves Meslin, Nina L. Lanza, Roger C. Wiens, William Rapin, Jens Frydenvang, Valerie Payré, and Olivier Gasnault
- Subjects
Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) - Abstract
Laser-Induced Breakdown Spectroscopy, as utilized by the ChemCam instrument onboard the Curiosity rover, detected enhanced abundances of the element copper. Since landing in Gale crater (August 6, 2012) 10 enhancements in copper abundance were observed during 3007 Martian days (sols) of rover operations and 24 km of driving (as of January 20, 2021). The most prominent ones were found in the Kimberley area on the crater floor (Aeolis Palus) and in Glen Torridon on the lower flanks of Aeolis Mons (Mt. Sharp). Enhancements in copper record the former existence of modestly acidic and oxidizing fluids, which were more oxidizing in Kimberley than in Glen Torridon. Of the two main types of bedrock in the lowest part of Glen Torridon, Mg-rich ‘coherent’ and K-rich ‘rubbly’ (named based on their outcrop expression), copper was only detected in coherent, not in rubbly bedrock. The difference between these two types of bedrock may be due to difference in provenance. Alternatively, based on a recently developed lacustrine-groundwater mixing model, we suggest that rubbly bedrock was altered by modestly acidic, shallow-subsurface lake water that leached out both copper and manganese, while coherent bedrock was affected by dominantly alkaline fluids which would be consistent with its mineralogical composition (including siderite) as returned by the CheMin instrument onboard the rover. Higher up in Glen Torridon, ChemCam data indicated significant gradients in copper concentration in coherent bedrock on a local scale of only few meters, which suggests a different alteration style and possibly different types of diagenetic fluids.
- Published
- 2023
8. Early Mars sub-aerial environments conducive to prebiotic evolution
- Author
-
William Rapin, Gilles Dromart, Benton Clark, Jürgen Schieber, Edwin Kite, Linda Kah, Lucy Thompson, Olivier Gasnault, Jérémie Lasue, Pierre-Yves Meslin, Patrick Gasda, and Nina Lanza
- Abstract
Mars provides a unique record for early habitable environments 1–3 but its potential for an independent origin of life is uncertain 4,5. Prebiotic chemical evolution leading to incipient life requires specific environments and processes to occur 6. In particular, wet-dry cycling is known to strongly promote the self-assembly of organics, generating opportunistic mixtures and combinations of essential biopolymers 7–9. However, evidence for such process has been missing from the geological record of Mars explored so far. Here we report on new observations by the Curiosity rover at Gale crater indicating wet-dry cycling occurred on early Mars. We observed exhumed centimetric polygonal ridges, with distinct Y-junctions, which are characteristic of a fossilized cracking pattern that initially formed in fresh mud by the sustained action of wet-dry cycles. Given organics are present in the ancient sediments of Gale, our results suggest the evaporitic basin has been particularly conducive to prebiotic polymerization processes. The features are physically and temporally associated with the transition from clay to sulfate-bearing strata, a key mineral assemblage found elsewhere across Mars. It suggests that the Noachian-Hesperian transition (3.8 – 3.6 Gyrs ago) as a whole has been favorable to prebiotic evolution.
- Published
- 2022
9. First detection of fluorine on Mars: Implications for Gale Crater's geochemistry
- Author
-
Olivier Forni, Michael Gaft, Michael J. Toplis, Samuel M. Clegg, Sylvestre Maurice, Roger C. Wiens, Nicolas Mangold, Olivier Gasnault, Violaine Sautter, Stéphane Le Mouélic, Pierre‐Yves Meslin, Marion Nachon, Rhonda E. McInroy, Ann M. Ollila, Agnès Cousin, John C. Bridges, Nina L. Lanza, and Melinda D. Dyar
- Published
- 2015
- Full Text
- View/download PDF
10. Overview of Secondary Phosphate Facies observed by Chemcam in Gale Crater, Mars
- Author
-
Pierre-Yves Meslin, Olivier Forni, Matteo Loche, Sébastien Fabre, Nina Lanza, Patrick Gasda, Allan Treiman, Jeff Berger, Agnès Cousin, Olivier Gasnault, William Rapin, Jérémie Lasue, Nicolas Mangold, Erwin Dehouck, Gilles Dromart, Sylvestre Maurice, and Roger C. Wiens
- Abstract
Phosphorus was essential to the development of life on Earth because it enters into the composition of molecules important for biology. Since the development of organisms is often limited by phosphorus supply, secondary phosphate facies are often controlled by biological activity, especially in lacustrine and marine environments. Understanding the formation of phosphate minerals on Mars is therefore interesting not only from an astrobiological standpoint, but also to understand the phosphorus cycle in a presumably abiotic world. Here, we provide an overview of the different secondary P-rich facies that have been observed by the ChemCam instrument. Since 2012, Curiosity has been exploring geological records of a paleo-lacustrine environment in Gale crater. After encountering fluvio-deltaic and lacustrine deposits in the lowermost unit, Bradbury, it explored ~300m of stratigraphy through the Murray formation, composed predominantly of laminated clay-rich mudstones and fine-grained sandstones deposited in an extended lacustrine environment. While crossing the Sutton Island member of this formation (an heterolithic unit composed of mudstones and sandstones), a series of subhorizontal dark laminae enriched in Fe and P were found, progressively giving way to mm-size dark nodules enriched in Mn, Mg and P in the overlying Blunts Point member, growing in size with elevation [1], and to Mn-rich sandstones [1,2,3]. These laminae and nodules were interpreted as syndepositional or early diagenetic features formed in a shallow lake or lake margin environment [1,2,3]. An initial interpretation of their mineralogy, based on chemical measurements, suggested they could be hydrous Fe- and Mn-oxides formed under oxidizing conditions (with Eh increasing along the stratigraphy) at the water-sediment interface, having sorbed (MgHPO4) complexes [1], with nodules’ growth possibly controlled by reworking and winnowing. Dark nodules enriched in (Fe,Mg,P) were also observed in Ca-sulfate-filled fractures across all these units [1]. These dark features suddenly disappeared when the rover reached the Vera Rubin ridge, where only isolated and detached nodules enriched in (Mn,Fe,P), probably eroded from overlying strata, and dark-toned rock patina enriched in (Fe,P) were observed. None of these facies were then observed during the first ~500 Sols of the traverse through the Glen Torridon region, including the base of an unconformity with an overlying Aeolian sandstone unit. In the Groken area of the Glen Torridon region, dark mm-sized nodules arranged in thin layers were again discovered. A rock sample was analyzed by X-ray diffraction by CheMin, which did not detect any crystalline forms of oxides nor phosphates [4]. Meanwhile, the phosphorus and manganese abundances measured by ChemCam have been quantified, which led us to revise prior interpretations. The constant P/Mn ratio in the Groken nodules and their P abundance (too large to be explained by P-sorption to oxides) suggest they are composed of nano-crystalline or amorphous hydrous (Mn,Mg)-phosphates. Previous occurrences are now interpreted as hydrous (Fe,Mn,Mg)-phosphates with varying (Fe,Mn,Mg) proportions. Several formation scenarios are being explored by geochemical modeling [5]. [1] Meslin et al., LPSC, 2018[2] Gasda et al., LPSC, 2018[3] Lanza et al., LPSC, 2018[4] Treiman et al., LPSC, 2022[5] Loche et al., LPSC, 2022
- Published
- 2022
11. SIGNIFICANT HALITE ENRICHMENT IN THE SULFATE-UNIT OF GALE CRATER, MARS
- Author
-
Pierre-Yves Meslin, William Rapin, Olivier Forni, Agnès Cousin, Olivier Gasnault, Matteo Loche, Erwin Dehouck, Nicolas Mangold, Gwénaël CARAVACA, Susanne Schröder, Patrick Gasda, Stéphane Le Mouélic, Jérémie Lasue, Jens Frydenvang, Clark, Benton C., Fairen, A., Sylvestre Maurice, Wiens, Roger C., Lanza, Nina L., Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Los Alamos National Laboratory (LANL), University of Copenhagen = Københavns Universitet (UCPH), Space Science Institute [Boulder] (SSI), Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), and Lunar and Planetary Institute
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy ,Mars ,halite ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,MSL ,Gale crater ,Sulfate - Abstract
International audience; Since its landing in 2012, the Curiosity rover has been exploring geological records of a paleolacustrine environment in Gale crater. It started with the fluvio-deltaic and lacustrine deposits in the lowermost Bradbury Group, followed by 300 m of stratigraphy through the Murray formation (from the Pahrump Hills to the Jura member) dominated by mudstones and occasionally heterolithic mudstones, siltstones and sandstones. Along this traverse, it also crossed the unconformity with the overlying Stimson formation, dominated by aeolian sandstones, and the Vera Rubin Ridge, an erosion-resistant section of the Murray fm., which has undergone extensive diagenesis [1]. From Sol 2300 to 3072 (Jan. 2019 to Jan. 2021), Curiosity has explored the Glen Torridon region, previously named "Claybearing unit" because of the orbital signatures of clays detected in this area. Since Sol 3100 (Mont Mercou), the rover entered the basal Layered Sulfate unit (also named after orbital observations) with the objective of documenting a possible major change in Mars climate history. Evaporitic salts could represent a geochemical marker of this transition. Here, we provide an overview of previous halite detections by ChemCam [2, 3] and report on new detections made in the sulfate-bearing unit. Data and Method: This study covers data acquired by the ChemCam instrument over the first 3300 sols of the mission and corresponding to ~27800 LIBS analysis points. The detection of halite is made possible by measuring the chlorine emission line at 837.8 nm. Comparing the chlorine peak area to the Na abundance reveals the presence of a group of points showing a strong linear correlation between the two elements (Fig. 1).
- Published
- 2022
12. Bedrock Geochemistry and Alteration History of the Clay‐Bearing Glen Torridon Region of Gale Crater, Mars
- Author
-
Erwin Dehouck, Agnès Cousin, Nicolas Mangold, Jens Frydenvang, Olivier Gasnault, Olivier Forni, William Rapin, Patrick J. Gasda, Gwénaël Caravaca, Gaël David, Candice C. Bedford, Jérémie Lasue, Pierre‐Yves Meslin, Kristin Rammelkamp, Marine Desjardins, Stéphane Le Mouélic, Michael T. Thorpe, Valerie K. Fox, Kristen A. Bennett, Alexander B. Bryk, Nina L. Lanza, Sylvestre Maurice, Roger C. Wiens, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), University of Copenhagen = Københavns Universitet (UCPH), Los Alamos National Laboratory (LANL), Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), UniLaSalle, Department of Earth and Planetary Science [UC Berkeley] (EPS), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, and ANR-16-CE31-0012,MARS-PRIME,Environnement Primitif de Mars(2016)
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) - Abstract
International audience; Glen Torridon is a topographic trough located on the slope of Aeolis Mons, Gale crater, Mars. It corresponds to what was previously referred to as the “clay-bearing unit”, due to the relatively strong spectral signatures of clay minerals (mainly ferric smectites) detected from orbit. Starting in January 2019, the Curiosity rover explored Glen Torridon for more than 700 sols (Martian days). The objectives of this campaign included acquiring a detailed understanding of the geologic context in which the clay minerals were formed, and determining the intensity of aqueous alteration experienced by the sediments. Here, we present the major-element geochemistry of the bedrock as analyzed by the ChemCam instrument. Our results reveal that the two main types of bedrock exposures identified in the lower part of Glen Torridon are associated with distinct chemical compositions (K-rich and Mg-rich), for which we are able to propose mineralogical interpretations. Moreover, the topmost stratigraphic member exposed in the region displays a stronger diagenetic overprint, especially at two locations close to the unconformable contact with the overlying Stimson formation, where the bedrock composition significantly deviates from the rest of Glen Torridon. Overall, the values of the Chemical Index of Alteration determined with ChemCam are elevated by Martian standards, suggesting the formation of clay minerals through open-system weathering. However, there is no indication that the alteration was stronger than in some terrains previously visited by Curiosity, which in turn implies that the enhanced orbital signatures are mostly controlled by non-compositional factors.
- Published
- 2022
13. Overview of the Morphology and Chemistry of Diagenetic Features in the Clay-Rich Glen Torridon Unit of Gale Crater, Mars
- Author
-
Patrick J. Gasda, Jade Comellas, Ari Essunfeld, Debarati Das, Alexander B. Bryk, Erwin Dehouck, Susanne P. Schwenzer, Laura Crossey, Kenneth Herkenhoff, Jeffrey R. Johnson, Horton Newsom, Nina L. Lanza, William Rapin, Walter Goetz, Pierre‐Yves Meslin, John C. Bridges, Ryan Anderson, Gael David, Stuart M. R. Turner, Michael T. Thorpe, Linda Kah, Jens Frydenvang, Rachel Kronyak, Gwénaël Caravaca, Ann Ollila, Stéphane Le Mouélic, Matthew Nellessen, Megan Hoffman, Deirdra Fey, Anges Cousin, Roger C. Wiens, Samuel M. Clegg, Sylvestre Maurice, Olivier Gasnault, Dorothea Delapp, Adriana Reyes‐Newell, Los Alamos National Laboratory (LANL), McGill University = Université McGill [Montréal, Canada], University of California [Berkeley] (UC Berkeley), University of California (UC), The Open University [Milton Keynes] (OU), The University of New Mexico [Albuquerque], US Geological Survey [Flagstaff], United States Geological Survey [Reston] (USGS), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Max-Planck-Gesellschaft, University of Leicester, Texas State University, NASA Johnson Space Center (JSC), NASA, The University of Tennessee [Knoxville], Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Malin Space Science Systems (MSSS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Max Planck Institute for Solar System Research (MPS), Laboratoire de Planétologie et Géosciences - Angers (LPG-ANGERS), and Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST)
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,Geophysics ,ChemCam ,Space and Planetary Science ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) ,Mars Science Laboratory ,Glen Torridon ,Gale crater ,diagenesis ,Gale Crater ,Diagenesis - Abstract
International audience; The clay-rich Glen Torridon region of Gale crater, Mars, was explored between sols 2300 and 3007. Here, we analyzed the diagenetic features observed by Curiosity, including veins, cements, nodules, and nodular bedrock, using the ChemCam, Mastcam, and Mars Hand Lens Imager instruments. We discovered many diagenetic features in Glen Torridon, including dark-toned iron- and manganese-rich veins, magnesium- and fluorine-rich linear features, Ca-sulfate cemented bedrock, manganese-rich nodules, and iron-rich strata. We have characterized the chemistry and morphology of these features, which are most widespread in the higher stratigraphic members in Glen Torridon, and exhibit a wide range of chemistries. These discoveries are strong evidence for multiple generations of fluids from multiple chemical endmembers that likely underwent redox reactions to form some of these features. In a few cases, we may be able to use mineralogy and chemistry to constrain formation conditions of the diagenetic features. For example, the dark-toned veins likely formed in warmer, highly alkaline, and highly reducing conditions, while manganese-rich nodules likely formed in oxidizing and circumneutral conditions. We also hypothesize that an initial enrichment of soluble elements, including fluorine, occurred during hydrothermal alteration early in Gale crater history to account for elemental enrichment in nodules and veins. The presence of redox-active elements, including Fe and Mn, and elements required for life, including P and S, in these fluids is strong evidence for habitability of Gale crater groundwater. Hydrothermal alteration also has interesting implications for prebiotic chemistry during the earliest stages of the crater’s evolution and early Mars.
- Published
- 2022
14. Time-resolved Raman and luminescence spectroscopy of synthetic REE-doped hydroxylapatites and natural apatites
- Author
-
Amaury Fau, Olivier Beyssac, Michel Gauthier, Gérard Panczer, Olivier Gasnault, Pierre-Yves Meslin, Sylvain Bernard, Sylvestre Maurice, Olivier Forni, Jean-Claude Boulliard, Françoise Bosc, Christophe Drouet, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Spectroscopies optiques des matériaux verres, amorphes et à nanoparticules (SOPRANO), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,010502 geochemistry & geophysics ,01 natural sciences ,REE ,time-resolved spectroscopy ,Geophysics ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,Geochemistry and Petrology ,[SDU]Sciences of the Universe [physics] ,apatite ,luminescence ,Raman ,0105 earth and related environmental sciences ,[SDU.STU.MI]Sciences of the Universe [physics]/Earth Sciences/Mineralogy - Abstract
International audience; Using continuous and time-resolved spectroscopy, we investigate Raman and luminescence signals from synthetic hydroxylapatites doped with trivalent REE including Dy 3+ , Eu 3+ , Nd 3+ , and Sm 3+ , as well as REE in natural apatites, with laser excitations at 532 nm and 785 nm. We demonstrate that time-resolved spectroscopy is an extremely efficient method to tone down the luminescence from Raman spectra or, alternatively, to investigate the luminescence signal without the interference from the Raman contribution. Time-resolved luminescence spectroscopy is found to be a powerful technique for generating specific high-quality luminescence spectra for the REE emission activators in apatites by using appropriate combinations of delay and gate width for the time synchronization of the laser pulse and ICCD detector. This allows for the unambiguous detection and identification of the activators by avoiding the overlapping of various emission signals in the luminescence spectra. This is particularly useful in the case of natural samples, which often have several activators for luminescence. In the case of synthetic REE-doped apatites, a quenching process for luminescence due to activator concentration is seen for Eu 3+ and Sm 3+ , i.e. the higher the concentration, the shorter the luminescence decay time. The interpretation of luminescence decay time in natural apatites is promising but more complex because of energy transfers between the various luminescence activators present in the crystal lattice. Luminescence is a powerful technique for detecting the presence of REE in apatites down to ppm levels, though quantifying the concentration is still a challenge.
- Published
- 2022
15. First Sounds from Mars
- Author
-
sylvestre Maurice, Baptiste Chide, Naomi Murdoch, Ralph Lorenz, David Mimoun, Roger Wiens, Alexander Stott, Xavier Jacob, Tanguy Bertrand, Franck Montmessin, Nina Lanza, Cesar Alvarez Llamas, S. M. Angel, M. Aung, J. Balaram, Olivier Beyssac, Agnès Cousin, Greg Delory, Olivier Forni, Thierry Fouchet, Olivier Gasnault, Havard Grip, Mike hecht, Jeff Hoffman, Javier Laserna, Jérémie Lasue, Justin Maki, John McClean, Pierre-Yves Meslin, Stéphane Le Mouélic, Asier Munguira, Claire Newman, Jose Rodriguez-Manfredi, Javier Moros, Paolo Pilleri, Susanne Schroeder, Manuel de la Torre, Ann Ollila, Thoedore Tzanetos, Ken Farley, Kathryn Stack, and Ken Williford
- Abstract
The authors have requested that this preprint be removed from Research Square.
- Published
- 2021
16. The K and Th concentration in the Martian crust: insights from multi-scale analyses
- Author
-
Lenka Baratoux, Olivier Vanderhaeghe, Fall Makhoudia, Pierre-Yves Meslin, P. Ndiaye, David Baratoux, Mark Jessell, and Jean-François Moyen
- Subjects
Martian ,chemistry ,Potassium ,Continental crust ,Geochemistry ,Thorium ,chemistry.chemical_element ,Crust ,Scale (map) ,Earth (classical element) ,Geology - Abstract
The univariate statistics of potassium (K) and thorium (Th) concentrations in the oceanic and continental crust of the Earth has been recently investigated from geochemical databases and airborne r...
- Published
- 2021
17. Transition Metals in Gale Crater, Mars: Perspectives on Global Abundances and Future Exploration
- Author
-
Valérie Payré, Marion Nachon, Roger C. Wiens, Jérémie Lasue, Mark Salvatore, Ann M. Ollila, Nina L. Lanza, and Pierre-Yves Meslin
- Published
- 2021
18. Comparing SuperCam first shots at Jezero with ChemCam eolian dust analysis at Gale
- Author
-
Jeremie Lasue, Pierre-Yves Meslin, Agnes Cousin, Olivier Forni, Ryan Anderson, Erwin Dehouck, Jens Frydenvang, Olivier Gasnault, William Rapin, Paolo Pilleri, Sam Clegg, Roger Wiens, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), US Geological Survey [Flagstaff], United States Geological Survey [Reston] (USGS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), University of Copenhagen = Københavns Universitet (UCPH), and Los Alamos National Laboratory (LANL)
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
Context:On February 18th 2021, the NASA Perseverance rover landed at Jezero crater, Mars, a 50 km Noachian-aged open-basin lake system located on the western side of the Isidis impact structure. The bottom of the crater indicates the presence of a fluvial delta with associated inlet and outlet valleys and infrared observations from orbit have detected the presence of carbonate, mafic and hydrated minerals [1] Since its arrival at the Octavia E. Butler landing site, the rover explored about 100 meters around it initial landing position and analyzed the local bedrocks surrounding it.Located on the top of the mast of the Perseverance rover is SuperCam, a multipurpose remote sensing instrument able to acquire high resolution color images, infrared, laser-induced breakdown spectroscopy (LIBS) and Raman spectra, and including also a microphone [2, 3]. The LIBS technique is similar to the one used by ChemCam onboard the Curiosity rover, which has been exploring Gale crater since 2012: a powerful laser pulsed at 1064 nm ablates targets at a distance, inducing a plasma spark, the light of which is analyzed by spectroscopy to determine its elemental composition (e.g. [4]). During such an analysis, spectra obtained from the first several laser shots at each location are contaminated by dust deposited on the surface of the rock targets and these spectra are usually removed from further analysis [5]. These spectra present a very homogeneous composition that is different from those of the underlying targets, and are interpreted to represent the analysis of eolian dust deposited over time on the surface of Mars [6].In this study, we compare the spectral results obtained with the SuperCam first shots on the targets analyzed at the Octavia E. Butler landing site with the average first shot spectra obtained by ChemCam on the rock targets at Gale Crater to confirm whether the signal corresponds to a global microns-thick eolian dust cover of Mars.Method: We have used all the LIBS first shot spectra acquired since the landing of Perseverance. This corresponds to ~106 different spectra processed by denoising, background removal, wavelength calibration, and correction for instrument response. The average spectrum obtained from these data can then be appropriately compared with the average first shot spectrum obtained by ChemCam at Gale crater, which was built over 1500 sols (~ 8500 spectra). There is a 2 orders of magnitude difference between the number of first shots acquired by SuperCam and ChemCam at this time, so we can expect the SuperCam results to be less representative than the ChemCam ones. Results: The comparison of the LIBS spectra (Figure 1.) indicate strong similarities in major element compositions The only disparity comes from apparent elevated Mg and Ca lines in the SuperCam signal, which are possibly due to a local contribution. The minor elements, such as H, Li, Mn, Cr, also present peaks with intensities similar to the ones detected on the ChemCam spectrum, indicating a similar level of hydration and minor elements contents of the dust fraction at Jezero and at Gale. While the rocks analyzed by SuperCam at Jezero crater appear visually to be less covered by dust than the ones seen at Gale crater, our analysis indicates that the rocks studied at Jezero remain covered by a thin layer of homogeneous material similar in composition to the eolian deposited dust. This result is consistent with a global mixing of the eolian dust cover on Mars at the micron scale, or possibly a single origin for the eolian dust on Mars as described in previous studies (e.g. [7, 8]).Conclusion: The average of the first LIBS shot spectra acquired by SuperCam at Jezero crater compare very well with the average spectrum of ChemCam’s first shots at Gale crater. The intensity of the emission lines in the two spectra are very similar indicating the probable global mixing of the dust deposited all over the surface of Mars. Figure 1: Comparison of average first shots LIBS spectra of ChemCam at Gale Crater ([6] in red) and average first shots LIBS spectra of SuperCam at Jezero Crater (in blue). A) UV range, B) blue-violet range, C) green range D) orange range E) red range.Acknowledgements: The Perseverance rover and the SuperCam instrument were funded by NASA, CNES and LANL.References: [1] Stack, K. M., et al. (2020) Space Science Reviews, 216(8), 1-47. [2] Maurice, S., et al. (2021) Space Science Reviews, 217(3), 1-108. [3] Wiens, R. C., et al. (2021) Space Science Reviews, 217(1), 1-87. [4] Maurice, S., et al. (2016) Journal of Analytical Atomic Spectrometry, 31(4), 863-889. [5] Clegg, S. M., et al. (2017) Spectrochimica Acta Part B: Atomic Spectroscopy, 129, 64-85. [6] Lasue, J., et al. (2018) Geophysical Research Letters, 45(20), 10-968. [7] Berger, J. A., et al. (2016). Geophysical Research Letters, 43(1), 67-75. [8] Ojha, L., et al. (2018) Nature communications, 9(1), 1-7.
- Published
- 2021
19. Bedrock geochemistry measured by ChemCam along a 2-km eastward traverse in the Glen Torridon region, Gale crater, Mars
- Author
-
Erwin Dehouck, Agnès Cousin, Nicolas Mangold, Jens Frydenvang, Olivier Gasnault, Kristin Rammelkamp, William Rapin, Olivier Forni, Patrick J. Gasda, Gaël David, Gwénaël Caravaca, Jérémie Lasue, Pierre-Yves Meslin, Candice C. Bedford, Nina L. Lanza, Valerie K. Fox, Kristen A. Bennett, Alexander B. Bryk, Sylvestre Maurice, Roger C. Wiens, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), University of Copenhagen = Københavns Universitet (UCPH), Los Alamos National Laboratory (LANL), Lunar and Planetary Institute [Houston] (LPI), Department of Earth Sciences [Minneapolis], University of Minnesota [Twin Cities] (UMN), University of Minnesota System-University of Minnesota System, Astrogeology Science Center [Flagstaff], United States Geological Survey [Reston] (USGS), Department of Earth and Planetary Science [UC Berkeley] (EPS), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), and Europlanet
- Subjects
Geochemistry ,LIBS ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,ChemCam ,[SDU]Sciences of the Universe [physics] ,[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy ,Mars ,Stratigrpahy ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Glen Torridon ,Gale crater ,Sedimentology - Abstract
Introduction In January 2019, the Mars Science Laboratory (MSL) rover Curiosity started exploring the Glen Torridon (GT) region of Gale crater, which corresponds to the topographic trough between the Vera Rubin ridge and the Greenheugh pediment (Fig. 1). From orbit, this region stands out due to the relatively strong near-infrared signatures of clay minerals [1,2]. The in-situ data collected so far by Curiosity have allowed the MSL team to confirm and quantify the presence of these clay minerals [3], to characterize their organic content [4], and to document in detail their geochemical and sedimentological settings [5]. In particular, the bedrock chemistry measured by ChemCam shows elevated values of the Chemical Index of Alteration (CIA) throughout most of Glen Torridon [6,7], which indicates an open-system type of alteration [8]. In addition, the ChemCam observations suggest the presence of illite in the fine-grained rocks [9] and reveal a possible relationship between grain size and geochemical variations [10]. Finally, they show that the light-toned rocks located just below the unconformity at the base of the Greenheugh pediment (Fig. 1) are associated with “anomalous” bedrock compositions that may be related to a late-stage diagenetic event at Gale [7]. Here, we report the findings of the ChemCam instrument along a ~2-km eastward traverse within the upper member – named Glasgow – of the Glen Torridon region (Fig. 1). This traverse allowed Curiosity to investigate the lateral variability of this member, while also getting gradually closer to the transition into the overlying sulfate-bearing unit [11]. Dataset ChemCam measures the chemical composition of targeted rocks and soils within a few meters of the rover using laser-induced breakdown spectroscopy (LIBS). Quantification of eight major rock-forming oxides is performed routinely [12]. Each ChemCam analysis consists of a raster of several points a few millimeters apart from each other, and each point itself consists of a series of laser shots (typically 30). For bedrock targets, this approach allows removal of unwanted contributions from Ca-sulfate veins or soil material by discarding the corresponding points [e.g., 8]. On sol 3007, ChemCam experienced a technical issue, which required halting the use of the laser during the time of the investigation, while imaging and passive spectroscopy activities continued. LIBS analyses on Mars targets resumed on sol 3107, in the Mont Mercou area (Fig. 1), ~600 m to the east and ~19 m higher in elevation. In addition, data acquired between sols 2816 and 2956 are not used here, since they correspond to a downsection excursion into the underlying Knockfarril Hill member [13]. Results Variations in MgO, K2O and FeOT abundances along the rover path within the Glasgow member are shown in Figures 2, 3 and 4 (respectively). The bedrock composition is overall homogeneous, although small variations are observed for some oxides. In particular, the mean MgO abundance was well below 5 wt% in the western part of the traverse, but reached nearly 6 wt% after the downsection excursion (Fig. 2). This increase in MgO is accompanied by slightly lower Al2O3 abundances (not shown here). In contrast, the K2O content does not show a clear change after the excursion (Fig. 3); however, it decreases slightly during the exploration of an area with rougher terrain (previously mapped as “fIU rubbly” [14]), between sols 2973 and 3000. Regarding FeOT, large variations have been observed at small scale (i.e., within a given LIBS raster) in a group of targets characterized by the presence of dark nodules, likely of diagenetic origin [15,16]. These nodules have high FeOT (up to ~50 wt%), whereas the points in between the nodules show low FeOT (down to ~12.5 wt%). However, at the scale of the whole Glasgow member, the mean FeOT content is quite stable, with only a subtle increase in the eastern part of the traverse (Fig. 4). As mentioned above, the most recent data (last bin in Fig. 2-4) were acquired after a gap of ~600 m laterally and ~19 m vertically. Despite this gap, the bedrock compositions appear remarkably similar to those measured earlier in the Glasgow member, especially after the downsection excursion. This suggests that no major change of environment occurred during the time when LIBS was unavailable. Discussion and conclusion Curiosity’s eastward traverse within the Glasgow member is a rare opportunity to investigate the lateral variability of Gale sedimentary strata at the kilometer scale. The compositions appear overall homogeneous, but some variations are observed. As previously seen in Glen Torridon [6,7,10], Mg and K are the two most varying elements; however, their variations are not always well correlated, as illustrated by the trends observed after the downsection excursion (Fig. 2-3). In addition, while FeOT displays significant variations within some LIBS rasters due to the presence of dark nodules in the bedrock, it is stable at the scale of the whole Glasgow member, which suggests that diagenetic remobilization of iron occurred at small scale only. Finally, the latest data acquired in the Mont Mercou area show that the bedrock compositions are still remarkably similar to those measured ~2 km to the west, when Curiosity first encountered the Glasgow member. As the rover continues to progress uphill, ChemCam will continue surveying the bedrock in search of the first chemical indications of the clay-to-sulfate transition. References: [1] Milliken et al. (2010) GRL, 37. [2] Fraeman et al. (2016) JGR-Planets, 121. [3] Thorpe et al. (2021) LPSC, abstract #1519. [4] Millan et al. (2021) LPSC, abstract #2039. [5] Fedo et al. (2020) LPSC, abstract #2345. [6] Dehouck et al. (2020) LPSC, abstract #2770. [7] Dehouck et al. (2020) AGU Fall Meeting, abstract #P070-06. [8] Mangold et al. (2019) Icarus, 321. [9] Cousin et al. (2021) LPSC, abstract #2127. [10] Caravaca et al. (2021) LPSC, abstract #1455. [11] Rapin et al. (2021) Geology, 49. [12] Clegg et al. (2017) Spectrochim. Acta B, 129. [13] Dehouck et al. (2021) LPSC, abstract #1858. [14] Hughes et al. (2021) LPSC, abstract #1586. [15] David et al. (2021) LPSC, abstract #1433. [16] Gasda et al. (2021) LPSC, abstract #1271.
- Published
- 2021
20. The Methane Diurnal Variation and Microseepage Flux at Gale Crater, Mars as Constrained by the ExoMars Trace Gas Orbiter and Curiosity Observations
- Author
-
Penelope L. King, Sushil K. Atreya, Christina L. Smith, Andrew C. Schuerger, Paul R. Mahaffy, Pierre-Yves Meslin, Claire E. Newman, German Martinez, Christopher R. Webster, John E. Moores, and Scott D. Guzewich
- Subjects
010504 meteorology & atmospheric sciences ,Diurnal temperature variation ,Gale crater ,Flux ,ComputingMilieux_LEGALASPECTSOFCOMPUTING ,Mars Exploration Program ,010502 geochemistry & geophysics ,01 natural sciences ,Methane ,Astrobiology ,law.invention ,Trace gas ,Atmosphere ,Orbiter ,chemistry.chemical_compound ,ComputingMethodologies_PATTERNRECOGNITION ,Geophysics ,chemistry ,law ,General Earth and Planetary Sciences ,Geology ,0105 earth and related environmental sciences - Abstract
Funding for this work was provided by the Canadian Space Agency's Mars Science Laboratory Participating Scientist Program
- Published
- 2019
21. Methane seasonal cycle at Gale Crater on Mars consistent with regolith adsorption and diffusion
- Author
-
Claire E. Newman, John E. Moores, Paul R. Mahaffy, Raina V. Gough, Christina L. Smith, Pierre-Yves Meslin, German Martinez, Sushil K. Atreya, and Christopher R. Webster
- Subjects
010504 meteorology & atmospheric sciences ,Mineralogy ,Mars Exploration Program ,010502 geochemistry & geophysics ,01 natural sciences ,Regolith ,Methane ,Plume ,chemistry.chemical_compound ,chemistry ,Martian surface ,Sample Analysis at Mars ,Mixing ratio ,General Earth and Planetary Sciences ,Diffusion (business) ,Geology ,0105 earth and related environmental sciences - Abstract
A strong, repeatable seasonal cycle in the background methane mixing ratio has been observed at the Gale Crater landing site of the Mars Science Laboratory rover with the Tunable Laser Spectrometer of the Sample Analysis at Mars instrument. However, as of yet, no physical process has been proposed that can explain both the timing and amplitude of the observations. Here we show that a one-dimensional numerical model considering adsorption onto and diffusion through the regolith can reproduce the variation, including a phase lag, if the regolith is impregnated with methane from a prior plume or supplied from below by microseepage. Combining the model results with geological constraints, we estimate that the amount of microseepage at Gale is at most 3 × 10−5 tonnes km−2 yr−1. Gale’s unique dynamical environment makes such seeps easier to detect in surface sampling measurements. Over most of the Martian surface, atmospheric mixing is stronger or atmospheric transport more effective, and we expect the amplitude of the seasonal cycle to be smaller for the same strength of seep. The seasonal cycle in the methane mixing ratio observed at Gale Crater on Mars can be explained by adsorption onto and diffusion through the regolith, suggests a one-dimensional numerical model with geological constraints.
- Published
- 2019
22. Listening to laser sparks: a link between Laser-Induced Breakdown Spectroscopy, acoustic measurements and crater morphology
- Author
-
Agnes Cousin, Jean-François Fronton, M. Bassas-Portus, Anthony Sournac, Roger C. Wiens, Xavier Jacob, Pierre-Yves Meslin, Sylvestre Maurice, Olivier Gasnault, Naomi Murdoch, David Mimoun, Olivier Forni, Jérémie Lasue, Bruno Bousquet, Alexandre Cadu, B. Chide, Département Electronique, Optronique et Signal (DEOS), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut de mécanique des fluides de Toulouse (IMFT), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Centre National d'Études Spatiales [Toulouse] (CNES), Los Alamos National Laboratory (LANL), Commissariat à l'Energie Atomique et aux énergies alternatives - CEA (FRANCE), Centre National d'Études Spatiales - CNES (FRANCE), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Los Alamos National Laboratory - LANL (USA), Université de Bordeaux (FRANCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Bordeaux (UB), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université Fédérale Toulouse Midi-Pyrénées
- Subjects
[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Materials science ,Microphone ,Shock-waves- Depth profile ,01 natural sciences ,Signal ,Analytical Chemistry ,law.invention ,Mars Microphone ,Optics ,Crater morphology ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,law ,Ablated volume ,0103 physical sciences ,Laser-induced breakdown spectroscopy ,Emission spectrum ,Acoustic ,Spectroscopy ,Instrumentation ,010302 applied physics ,LIBS ,business.industry ,010401 analytical chemistry ,Optique / photonique ,Plasma ,Mars Exploration Program ,Laser ,Atomic and Molecular Physics, and Optics ,[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] ,0104 chemical sciences ,SuperCam ,13. Climate action ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,business - Abstract
International audience; In preparation for the SuperCam/Mars Microphone scientific investigation, the acoustic signal associated with the plasma formation during Laser-Induced Breakdown Spectroscopy (LIBS) experiment is studied with regard to the shot-to-shot evolution of the laser induced crater morphology and plasma emission lines. A set of geological targets are depth profiled using a specifically designed LIBS setup coupled with acoustic test bench under ambient terrestrial atmosphere. Experiments confirm that the decrease of the acoustic energy as a function of the number of shots is well correlated with the target hardness/density and also demonstrate that the acoustic energy can be used as a remote tracer of the ablated volume of the target. Listening to LIBS sparks provides a new information relative to the ablation process that is independent from the LIBS spectrum.
- Published
- 2019
23. The impact of measurement scale on the univariate statistics of K, Th, and U in the Earth crust
- Author
-
David Baratoux, Makhoudia Fall, Pierre-Yves Meslin, Mark Jessell, Olivier Vanderheaghe, Jean-François Moyen, Papa Moussa Ndiaye, Kwame Boamah, Lenka Baratoux, and Anne-Sylvie André-Mayer
- Published
- 2021
24. Continued Use of Exogenic Materials found on Mars as Planetary Research Tools
- Author
-
James Ashley, Christian Schröder, Alastair W. Tait, Andrew G. Tomkins, Penelope J. Boston, Roger C. Wiens, Danika F. Wellington, Pierre-Yves Meslin, Amy C. McAdam, Matthew P. Golombek, Michael A. Velbel, Phil A. Bland, Steven W. Ruff, John F. Mustard, Aaron G. Curtis, Sara Motaghian, Brandi L. Carrier, William H. Farrand, Marc D. Fries, Peter Grindrod, Andrew Langedam, and Jérémie Lasue
- Subjects
Engineering ,Planetary science ,business.industry ,Mars Exploration Program ,business ,Astrobiology - Abstract
Whitepaper submitted to the Planetary Science and Astrobiology Decadal Survey 2023-2032. Additional co-authors: Sara Motaghian, Brandi L. Carrier, William H. Farrand, Marc D. Fries, Peter Grindrod, Andrew Langedam, Jeremie Lasue .
- Published
- 2021
25. CHEMISTRY OF MANGANESE-BEARING MATERIALS AT THE GROKEN DRILL SITE, GALE CRATER, MARS
- Author
-
Lanza, Nina L., Patrick Gasda, Essunfeld Ari, Jade Comellas, Gwénaël Caravaca, Rampe, Elizabeth B., Williams, Amy J., Pierre-Yves Meslin, Erwin Dehouck, Nicolas Mangold, William Rapin, Hazen, Robert M., Fischer, Woodward W., Ollila, Ann M., Christopher House, Wiens, Roger C., Los Alamos National Laboratory (LANL), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), NASA Johnson Space Center (JSC), NASA, University of Florida [Gainesville] (UF), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Carnegie Institution for Science [Washington], Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Pennsylvania State University (Penn State), Penn State System, Lunar and Planetary Institute, Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), and Carnegie Institution for Science
- Subjects
Groken ,Manganese ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy ,drill ,Mars ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Glen Torridon ,Gale crater - Abstract
International audience; In July 2020, the Curiosity rover encountered a region of bedrock that contained an abundance of layered nodular features and highly unusual Mn- and sometimes P-rich chemistries (Fig.1a) in Glen Torridon (GT), a phyllosilicate-rich mudstone to sandstone deposit [1]. This sampling location was originally targeted at a distance as a site for the Sample Analysis at Mars (SAM) instrument to perform one of its two tetramethylammonium hydroxide (TMAH) wet chemistry experiments [2] in the hopes that the new location would provide similar rocks to the previously analyzed clay-rich Glen Etive targets at approximately the same elevation [3].
- Published
- 2021
26. Expected first results from the SuperCam microphone onboard the NASA Perseverance rover
- Author
-
Olivier Forni, Gaetan Lacombe, J. Javier Laserna, Stanley M. Angel, E. Clave, Cesar Alvarez, Alexandre Cadu, Jérémie Lasue, Olivier Gasnault, Bruno Bousquet, Pierre-Yves Meslin, P. Bernardi, Thierry Fouchet, Olivier Beyssac, Franck Montmessin, Xavier Jacob, David Mimoun, Ralph D. Lorenz, B. Chide, Nina Lanza, Los Alamos National Laboratory (LANL), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Departamento de Fisica Aplicada [Malaga], Universidad de Málaga [Málaga] = University of Málaga [Málaga], University of South Carolina [Columbia], Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Pôle Planétologie du LESIA, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Microphone ,business.industry ,Computer science ,Aerospace engineering ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,business - Abstract
The NASA Perseverance rover will land on Mars in February 2021, bringing with it a new suite of analytical instruments with which to explore its landing site in Jezero crater. The primary goal of this new mission is to assess the geology and past habitability in order to identify and cache samples with a high likelihood of preserving biosignatures, in preparation for a future sample return mission [1]. As part of its instrument payload, Perseverance will carry the SuperCam instrument [2-3]. SuperCam combines a number of analytical techniques, notably a laser-induced breakdown spectroscopy (LIBS) instrument for chemical analysis that is coupled with a microphone for acoustic studies. The SuperCam microphone is a commercial of-the-shelf electret (based on Knowles EK-23132) and is designed to record sounds in the audible range, from 100 Hz to 10 kHz, during the surface mission. There are three main science investigations of interest for the SuperCam microphone: 1) Analysis of the LIBS acoustic signal; 2) study of atmospheric phenomena; and 3) examination of rover mechanical sounds. Since the atmosphere will be the source of acoustic signals, the microphone may be used to better understand the nature of the atmosphere and related phenomena such as thermal gradient and convective behavior in the rover’s vicinity [4], the behavior of dust devils [5], and to refine current atmospheric attenuation models for Mars [6]. Under atmosphere, LIBS analysis produces an acoustic signal due to the creation of a shock wave during laser ablation of a target. This acoustic signal can provide critical information about a target’s hardness and ablation depth [7-8] and whether there are coatings or thin layers present [9]. Mechanisms on the rover itself will also provide a source of acoustic signal that may be examined by the SuperCam microphone, notably sounds produced by the Mars Oxygen ISRU Experiment (MOXIE, [10]) instrument pumps during oxygen production. By the time of the conference, the SuperCam microphone should have acquired the first sounds on Mars; we will report on these exciting initial results and compare them to our prelanding expectations.[1] Farley K.A. et al. (2020) SSR 216, 142. [2] Wiens R.C. et al. (2021) SSR 217(4). [3] Maurice, S. et al. (in revision) SSR. [4] Chide, B. et al. (2020) 52nd LPSC. [5] Murdoch, N. et al. (2021) 52nd LPSC. [6] Chide, B. et al. (2020) AGU Fall meeting, S007-02. [7] Chide, B. et al. (2019) SAB 153, 50-60. [8] Chide, B. et al. (2020) SAB 174, 106000. [9] Lanza, N.L. et al (2020) 51st LPSC, no. 2807. [10] Hecht, M. H. et al. (2015) 46th LPSC, no. 2774.
- Published
- 2021
27. The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests
- Author
-
Francois Poulet, Nina Lanza, John Michel, Kerry Boyd, Valerie Mousset, Fernando Rull, Anupam K. Misra, Horton E. Newsom, Magdalena Dale, Richard Leveille, Sylvain Bernard, Karim Benzerara, Logan Ott, Timothy H. McConnochie, M. George Duran, Jonathan Deming, C. Glen Peterson, Jorden Celis, Juan Manuel Madariaga, Anthony Nelson, Elizabeth C. Auden, Violaine Sautter, Paolo Pilleri, Naomi Murdoch, Susanne Schröder, Joseph H. Sarrao, Miles Egan, Bruno Dubois, Ann Ollila, Roberta A. Klisiewicz, M. Deleuze, K. McCabe, Ryan B. Anderson, Kevin Clark, Noureddine Melikechi, Jens Frydenvang, Matthew R. Dirmyer, A. Regan, Pierre Beck, Olivier Forni, A. Reyes-Newell, David Mimoun, Lauren DeFlores, Stéphane Le Mouélic, Nicolas Mangold, Eric Lorigny, Denine Gasway, John P. Grotzinger, M. Caffrey, Shiv K. Sharma, J. Javier Laserna, Olivier Gasnault, Steven P. Love, Eric Lewin, Sophie Jacquinod, Jeffrey R. Johnson, Dorothea Delapp, Soren N. Madsen, James Lake, Kepa Castro, Joan Ervin, Olivier Beyssac, C. Donny, Yann Parot, J. P. Martinez, Pierre-Yves Meslin, Gabriel Pont, Jean-Michel Reess, L. Parès, P. Bernardi, D. Venhaus, Guillermo Lopez-Reyes, Benjamin Quertier, Gorka Arana, Morten Madsen, Ivair Gontijo, Ralph D. Lorenz, Philip J. Romano, Ian A. Trettel, S. Michael Angel, Gilles Montagnac, Joseph Becker, Vishnu Sridhar, Rafal Pawluczyk, Jérémie Lasue, P. Cais, William Rapin, Jose Antonio Manrique, Xavier Jacob, Clement Royer, Jacob Valdez, I. Torre-Fdez, Amaury Fau, Peter Willis, Louis Borges, Cheryl Provost, Elizabeth C. Cordoba, M. L. Underwood, Justin McGlown, Daniel Seitz, S. A. Storms, Briana Lucero, Heather Quinn, Thierry Fouchet, Raymond Newell, Cécile Fabre, B. Chide, Y. André, Jeffrey Carlson, Roger C. Wiens, Scott M. McLennan, Woodward W. Fischer, Benigno Sandoval, S. Robinson, Patrick Pinet, Samuel M. Clegg, Agnes Cousin, Sylvestre Maurice, Edward A. Cloutis, Gilles Dromart, Franck Montmessin, C. Legett, Andres Valdez, Bruno Bousquet, Reuben Fresquez, Terra Shepherd, Zachary R. Ousnamer, Pablo Sobron, M. Toplis, Marcel J. Schoppers, Jesús Martínez-Frías, D. T. Beckman, Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), University of Hawai‘i [Mānoa] (UHM), Astrogeology Science Center [Flagstaff], United States Geological Survey [Reston] (USGS), Centre National d'Études Spatiales [Toulouse] (CNES), University of South Carolina [Columbia], Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), University of Winnipeg, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH), University of Copenhagen = Københavns Universitet (UCPH), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de mécanique des fluides de Toulouse (IMFT), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Universidad de Valladolid [Valladolid] (UVa), Universidad de Málaga [Málaga] = University of Málaga [Málaga], McGill University = Université McGill [Montréal, Canada], Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), University of Maryland [College Park], University of Maryland System, State University of New York (SUNY), University of Massachusetts [Lowell] (UMass Lowell), University of Massachusetts System (UMASS), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), The University of New Mexico [Albuquerque], Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), FiberTech Optica (FTO), Institut für Optische Sensorsysteme, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), SETI Institute, Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France, Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Bordeaux (UB), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), University of Copenhagen = Københavns Universitet (KU), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Laboratoire de Planétologie et Géodynamique - Angers (LPG-ANGERS), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Mars ,01 natural sciences ,7. Clean energy ,Article ,law.invention ,Telescope ,symbols.namesake ,Jezero crater ,Optics ,ChemCam instrument ,law ,Microphone on Mars ,0103 physical sciences ,SuperCam ,planetary exploration ,luminescence ,Traitement du signal et de l'image ,Perseverance rover ,Spectroscopy ,010303 astronomy & astrophysics ,Infrared spectroscopy ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Physics ,laboratory curiosity rover ,remote Raman system ,LIBS ,Spectrometer ,business.industry ,Detector ,Astronomy and Astrophysics ,Mars Exploration Program ,Gale crater ,Laser ,induced breakdown spectroscopy ,Wavelength ,in-situ ,mission ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Raman spectroscopy ,symbols ,business - Abstract
The SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas. SuperCam is built in three parts: The mast unit (MU), consisting of the laser, telescope, RMI, IR spectrometer, and associated electronics, is described in a companion paper. The on-board calibration targets are described in another companion paper. Here we describe SuperCam's body unit (BU) and testing of the integrated instrument. The BU, mounted inside the rover body, receives light from the MU via a 5.8 m optical fiber. The light is split into three wavelength bands by a demultiplexer, and is routed via fiber bundles to three optical spectrometers, two of which (UV and violet; 245-340 and 385-465 nm) are crossed Czerny-Turner reflection spectrometers, nearly identical to their counterparts on ChemCam. The third is a high-efficiency transmission spectrometer containing an optical intensifier capable of gating exposures to 100 ns or longer, with variable delay times relative to the laser pulse. This spectrometer covers 535-853 nm ( 105 - 7070 cm − 1 Raman shift relative to the 532 nm green laser beam) with 12 cm − 1 full-width at half-maximum peak resolution in the Raman fingerprint region. The BU electronics boards interface with the rover and control the instrument, returning data to the rover. Thermal systems maintain a warm temperature during cruise to Mars to avoid contamination on the optics, and cool the detectors during operations on Mars. Results obtained with the integrated instrument demonstrate its capabilities for LIBS, for which a library of 332 standards was developed. Examples of Raman and VISIR spectroscopy are shown, demonstrating clear mineral identification with both techniques. Luminescence spectra demonstrate the utility of having both spectral and temporal dimensions. Finally, RMI and microphone tests on the rover demonstrate the capabilities of these subsystems as well., Proyecto MINECO Retos de la Sociedad. Ref. ESP2017-87690-C3-1-R
- Published
- 2021
28. Experimental Wind Characterization with the SuperCam Microphone under a Simulated martian Atmosphere
- Author
-
Naomi Murdoch, Jonathan Merrison, David Mimoun, J. J. Iversen, Anthony Sournac, Pierre-Yves Meslin, Roger C. Wiens, Ralph D. Lorenz, Xavier Jacob, Sylvestre Maurice, B. Chide, M. Bassas-Portus, Alexandre Cadu, Yannick Bury, Bruno Dubois, Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE), Département Electronique, Optronique et Signal (DEOS), and Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)
- Subjects
010504 meteorology & atmospheric sciences ,Microphone ,Acoustics ,Mars 2020 Perseverance rover ,7. Clean energy ,01 natural sciences ,SuperCam Instrument ,Wind speed ,Mars Microphone ,0103 physical sciences ,Traitement du signal et de l'image ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Atmosphere ,Wind orientation ,Astronomy and Astrophysics ,Atmosphere of Mars ,Mars Exploration Program ,Wind direction ,Azimuth ,Sound recording and reproduction ,13. Climate action ,Space and Planetary Science ,Environmental science ,Dynamic pressure ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing - Abstract
Located on top of the mast of the Mars 2020 Perseverance rover, the SuperCam instrument suite includes a microphone to record audible sounds from 100 Hz to 10 kHz on the surface of Mars. It will support SuperCam’s Laser-Induced Breakdown Spectroscopy investigation by recording laser-induced shock-waves but it will also record aeroacoustic noise generated by wind flowing past the microphone. This experimental study was conducted in the Aarhus planetary wind-tunnel under low CO 2 pressure with wind generated at several velocities. It focused on understanding the wind-induced acoustic signal measured by microphones instrumented in a real scale model of the rover mast as a function of the wind speed and wind orientation. Acoustic spectra recorded under a wind flow show that the low-frequency range of the microphone signal is mainly influenced by the wind velocity. In contrast, the higher frequency range is seen to depend on the wind direction relative to the microphone. On the one hand, for the wind conditions tested inside the tunnel, it is shown that the Root Mean Square of the pressure, computed over the 100 Hz to 500 Hz frequency range, is proportional to the dynamic pressure. Therefore, the SuperCam microphone will be able to estimate the wind speed, considering an in situ cross-calibration with the Mars Environmental Dynamic Analyzer. On the other hand, for a given wind speed, it is observed that the root mean square of the pressure, computed over the 500 Hz to 2000 Hz frequency range, is at its minimum when the microphone is facing the wind whereas it is at its maximum when the microphone is pointing downwind. Hence, a full 360 ∘ rotation of the mast in azimuth in parallel with sound recording can be used to retrieve the wind direction. We demonstrate that the SuperCam Microphone has a priori the potential to determine both the speed and the direction of the wind on Mars, thus contributing to atmospheric science investigations.
- Published
- 2021
29. Recording laser-induced sparks on Mars with the SuperCam microphone
- Author
-
Pierre-Yves Meslin, Bruno Bousquet, David Mimoun, B. Chide, Sylvestre Maurice, Agnes Cousin, Olivier Beyssac, Roger C. Wiens, Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Bordeaux (UB)
- Subjects
[PHYS]Physics [physics] ,Laser ablation ,010504 meteorology & atmospheric sciences ,Atmospheric pressure ,Microphone ,business.industry ,Atmosphere of Mars ,Mars Exploration Program ,Laser ,01 natural sciences ,Signal ,Atomic and Molecular Physics, and Optics ,Analytical Chemistry ,law.invention ,Optics ,Impact crater ,13. Climate action ,law ,0103 physical sciences ,Environmental science ,business ,010303 astronomy & astrophysics ,Instrumentation ,Spectroscopy ,0105 earth and related environmental sciences - Abstract
The SuperCam instrument suite onboard the Mars 2020 Perseverance rover includes a microphone used to complement Laser-Induced Breakdown Spectroscopy investigations of the surface of Mars. The potential of the SuperCam microphone has already been demonstrated for laser ablation under Earth atmosphere in our preliminary study with a small set of samples and fixed experimental conditions. This new experimental study, conducted under Mars atmosphere, explores all the main environmental, instrumental and target dependent parameters that likely govern the laser-induced acoustic signal that will be generated on Mars. As SuperCam will observe targets at various distances from the rover, under an atmospheric pressure that follows diurnal and seasonal cycles, this study proposes a sequence of corrections to apply to Mars data in order to compare acoustic signal from targets sampled under different configurations. In addition, 17 samples, including pure metals but also rocks and minerals relevant to Mars' surface were tested to study the influence of target properties and laser-matter interactions on the acoustic signal and the ablated volume. A specific behavior is reported for metals and graphite, which rapidly disperse the incoming laser energy through heat diffusion. However, for other minerals and rocks, the growth of the crater is seen to be responsible for the shot-to-shot decrease in acoustic energy. As a consequence, it is confirmed that monitoring the acoustic energy during a burst of laser shots could be used to estimate the laser-induced cavity volume. Moreover, the amount of matter removed by the laser is all the more important when the target is soft. Hence, the decreasing rate of the acoustic energy is correlated with the target hardness. These complementary information will help to better document SuperCam targets.
- Published
- 2020
30. Post-landing major element quantification using SuperCam laser induced breakdown spectroscopy
- Author
-
Ryan B. Anderson, Olivier Forni, Agnes Cousin, Roger C. Wiens, Samuel M. Clegg, Jens Frydenvang, Travis S.J. Gabriel, Ann Ollila, Susanne Schröder, Olivier Beyssac, Erin Gibbons, David S. Vogt, Elise Clavé, Jose-Antonio Manrique, Carey Legett, Paolo Pilleri, Raymond T. Newell, Joseph Sarrao, Sylvestre Maurice, Gorka Arana, Karim Benzerara, Pernelle Bernardi, Sylvain Bernard, Bruno Bousquet, Adrian J. Brown, César Alvarez-Llamas, Baptiste Chide, Edward Cloutis, Jade Comellas, Stephanie Connell, Erwin Dehouck, Dorothea M. Delapp, Ari Essunfeld, Cecile Fabre, Thierry Fouchet, Cristina Garcia-Florentino, Laura García-Gómez, Patrick Gasda, Olivier Gasnault, Elisabeth M. Hausrath, Nina L. Lanza, Javier Laserna, Jeremie Lasue, Guillermo Lopez, Juan Manuel Madariaga, Lucia Mandon, Nicolas Mangold, Pierre-Yves Meslin, Anthony E. Nelson, Horton Newsom, Adriana L. Reyes-Newell, Scott Robinson, Fernando Rull, Shiv Sharma, Justin I. Simon, Pablo Sobron, Imanol Torre Fernandez, Arya Udry, Dawn Venhaus, Scott M. McLennan, Richard V. Morris, Bethany Ehlmann, US Geological Survey [Flagstaff], United States Geological Survey [Reston] (USGS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), DLR Institute of Optical Sensor Systems, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), McGill University = Université McGill [Montréal, Canada], Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Universidad de Valladolid [Valladolid] (UVa), University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Plancius Research LLC, Universidad de Málaga [Málaga] = University of Málaga [Málaga], University of Manitoba [Winnipeg], Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), University of Nevada [Las Vegas] (WGU Nevada), Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), The University of New Mexico [Albuquerque], University of Hawai‘i [Mānoa] (UHM), NASA Johnson Space Center (JSC), NASA, Search for Extraterrestrial Intelligence Institute (SETI), State University of New York at Stony Brook, Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), Division of Geological and Planetary Sciences [Pasadena], and California Institute of Technology (CALTECH)
- Subjects
LIBS ,Mars ,Multivariate regression ,Laser induced breakdown spectroscopy ,Regression ,Atomic and Molecular Physics, and Optics ,Analytical Chemistry ,[SDU]Sciences of the Universe [physics] ,Calibration ,Chemometrics ,Laser induced breakdown spectroscopy LIBS Mars Multivariate regression Regression Chemometrics Calibration ,Instrumentation ,Spectroscopy - Abstract
International audience; The SuperCam instrument on the Perseverance Mars 2020 rover uses a pulsed 1064 nm laser to ablate targets at a distance and conduct laser induced breakdown spectroscopy (LIBS) by analyzing the light from the resulting plasma. SuperCam LIBS spectra are preprocessed to remove ambient light, noise, and the continuum signal present in LIBS observations. Prior to quantification, spectra are masked to remove noisier spectrometer regions and spectra are normalized to minimize signal fluctuations and effects of target distance. In some cases, the spectra are also standardized or binned prior to quantification. To determine quantitative elemental compositions of diverse geologic materials at Jezero crater, Mars, we use a suite of 1198 laboratory spectra of 334 well-characterized reference samples. The samples were selected to span a wide range of compositions and include typical silicate rocks, pure minerals (e.g., silicates, sulfates, carbonates, oxides), more unusual compositions (e.g., Mn ore and sodalite), and replicates of the sintered SuperCam calibration targets (SCCTs) onboard the rover. For each major element (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O), the database was subdivided into five "folds" with similar distributions of the element of interest. One fold was held out as an independent test set, and the remaining four folds were used to optimize multivariate regression models relating the spectrum to the composition. We considered a variety of models, and selected several for further investigation for each element, based primarily on the root mean squared error of prediction (RMSEP) on the test set, when analyzed at 3 m. In cases with several models of comparable performance at 3 m, we incorporated the SCCT performance at different distances to choose the preferred model. Shortly after landing on Mars and collecting initial spectra of geologic targets, we selected one model per element. Subsequently, with additional data from geologic targets, some models were revised to ensure results that are more consistent with geochemical constraints. The calibration discussed here is a snapshot of an ongoing effort to deliver the most accurate chemical compositions with SuperCam LIBS.
- Published
- 2022
31. Effects of environmental factors on the monitoring of environmental radioactivity by airborne gamma-ray spectrometry
- Author
-
Hugo Raynal, Julien Amestoy, Marc Souhaut, Patrick Richon, Éric Pique, David Baratoux, Pieter van Beek, Pascal Chotard, Thomas Zambardi, Aude Delpuech, Solène Derrien, and Pierre-Yves Meslin
- Subjects
Radionuclide ,Health, Toxicology and Mutagenesis ,Thorium ,Potassium Radioisotopes ,chemistry.chemical_element ,Radon ,General Medicine ,Atmospheric sciences ,Pollution ,Spectrometry, Gamma ,Atmosphere ,Radioactivity ,Washout (aeronautics) ,chemistry ,Radiation Monitoring ,Background Radiation ,Soil Pollutants, Radioactive ,Environmental Chemistry ,Environmental radioactivity ,Environmental science ,Radiometric dating ,Precipitation ,Waste Management and Disposal ,Water content - Abstract
This study describes and discusses the results of a 14 month-long campaign (April 2019 to June 2020) aimed at characterizing and quantifying the influence of environmental factors (cosmic rays, rainfall events, soil moisture and atmospheric radon) on airborne radiometric surveys, which are used for mapping the concentrations of potassium (K), uranium (U) and thorium (Th), or for monitoring the natural radioactivity in the environment. A large NaI(Tl) airborne spectrometer (4 down + 1 up detectors of 4 L) was installed at a height of 50 m on a meteorological tower to simulate an airborne hover at the Pyrenean Platform for Observation of the Atmosphere (P2OA) in Lannemezan. The continuous, high frequency acquisition of gamma-rays was accompanied by measurements of rainfall intensity, soil moisture content, atmospheric radon activity and meteorological parameters. A semi-diurnal cycle of apparent 232Th and 40K was observed and explained by atmospheric thermal tides. Both diurnal and seasonal cycles are also evident in the gamma-ray signal, mostly due to variations of soil moisture at these timescales with a maximum during summer when surface soil moisture (0–5 cm depth) is the lowest. An increase of 25% vol. of the soil moisture content, representing the range of variation between the end of summer (18% vol.) and the beginning of spring (43% vol.) leads to a decrease of gamma-rays in the K and Th window by the same amount. Conversely, these results illustrate the potential of using airborne gamma-ray spectrometry to monitor soil moisture at hectometer scales. The washout of radon-222 progeny during rainfall events influences the count of gamma-rays in the U window by adding an atmospheric component to the soil component. The amplitude of the signal increase in the U window varies with the precipitation rate and reaches 30% for an average event. By clear weather, atmospheric radon-222 volumic activity influences the count rate in the U window by about ±3.8% per Bq m−3, which translates into an influence of 148%/Bq m−3/kg Bq−1 (U). This comprehensive, multi-compartment approach is necessary to optimize and improve the processing and analysis of airborne gamma-ray spectrometry data for high sensitivity environmental studies. These results show the importance of environmental factors on the variability of gamma-ray spectrometry and the importance of taking them into account to accurately map radionuclides activities.
- Published
- 2021
32. Analysis of carbon and nitrogen signatures with laser-induced breakdown spectroscopy; the quest for organics under Mars-like conditions
- Author
-
Tristan Dequaire, Cyril Szopa, Jérôme Lasne, William Rapin, Sylvestre Maurice, Maguy Jaber, Arnaud Buch, Patrice Coll, Olivier Gasnault, Pierre Beck, Agnes Cousin, Pierre-Yves Meslin, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire d'Archéologie Moléculaire et Structurale (LAMS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), IMPEC - LATMOS, Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), and Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Martian ,chemistry.chemical_classification ,010504 meteorology & atmospheric sciences ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Chemistry ,010401 analytical chemistry ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,chemistry.chemical_element ,Mars Exploration Program ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,Analytical Chemistry ,Abiogenic petroleum origin ,Astrobiology ,Meteorite ,13. Climate action ,Environmental chemistry ,Organic matter ,Laser-induced breakdown spectroscopy ,Spectroscopy ,Instrumentation ,Carbon ,0105 earth and related environmental sciences - Abstract
International audience; Organic matter has been continuously delivered by meteorites and comets to Mars since its formation, and possibly formed in situ by abiogenic and/or biogenic processes. This organic matter may be preserved from the harsh oxidizing environment of Mars in specific locations. Together with water, organic molecules are necessary to the emergence of life as we know it. Since the first martian landers, scientists have been searching for organics and until today, only one positive detection has been made by a Gas Chromatography Mass Spectrometer (GCMS) instrument onboard the Curiosity rover. In this article we investigate a complementary approach to guide the search for organic matter using ChemCam, the first Laser-Induced Breakdown Spectroscopy (LIBS) instrument on Mars. This experimental study focuses on the analysis of carbon and nitrogen LIBS signatures in organoclay samples and allows the determination of the critical level (Lc) and limit of detection (LoD) of these elements with LIBS under Mars-like conditions, giving new insights into the search of organic matter on Mars.
- Published
- 2017
33. Open System Alteration At Gale Crater, Using Chemcam, Onboard The Curiosity Rover
- Author
-
Nicolas Mangold, Agnès Cousin, Erwin Dehouck, Olivier Forni, Abigael Fraeman, Jens Frydenvang, Olivier Gasnault, Jeffrey Johnson, Laetitia Le Deit, Haridon, Jonas L., Stéphane Le Mouélic, Sylvestre Maurice, Scott Mclennan, Pierre-Yves Meslin, Newsom, Horton E., William Rapin, Frances Rivera-Hernandez, Wiens, Roger C., Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institute of Meteoritics [Albuquerque] (IOM), The University of New Mexico [Albuquerque], Los Alamos National Laboratory (LANL), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
International audience; We provide a summary of the chemical composition along the >300 m-thick pile of sedimentary rocks, encountered by Curiosity at Gale crater. The continuity in sedimentary deposition and chemical trends such as the high Chemical Index of Alteration indicate an environment of deposition that requires aqueous alteration in open system at the surface, over geologically long durations.
- Published
- 2019
34. Diagenetic Processes in Sedimentary Rocks At Gale Crater, Mars, Using Chemcam, Curiosity Rover
- Author
-
Haridon, Jonas L., Nicolas Mangold, Roger Wiens, Agnès Cousin, Gael David, Jeffrey Johnson, Abigail Fraeman, William Rapin, Jens Frydenvang, Erwin Dehouck, Susanne Schwenzer, Patrick Gasda, Nina Lanza, John Bridges, Briony Horgan, Christopher House, Pierre-Yves Meslin, Mark Salvatore, Olivier Gasnault, Sylvestre Maurice, Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), The Open University [Milton Keynes] (OU), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon)
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
International audience; We describe the chemistry of diagenetic features using the ChemCam instrument to understand the post-depositional history of aqueous sedimentary rocks at Gale crater. These new observations display the significant role played by groundwater circulation and diagenesis in the mobility and distribution of iron in the Vera Rubin Ridge, highlighted here by reducing fluids observed late in the sequence of diagenesis.
- Published
- 2019
35. Copper enrichments in the Kimberley formation in Gale crater, Mars: Evidence for a Cu deposit at the source
- Author
-
Walter Goetz, Marion Nachon, Jérémie Lasue, Laetitia Le Deit, William Rapin, Agnès Cousin, Pierre-Yves Meslin, B. C. Clark, Olivier Gasnault, Cécile Fabre, Nina Lanza, Olivier Forni, Sylvestre Maurice, Roger C. Wiens, Violaine Sautter, Nicolas Mangold, Valerie Payre, Rice University [Houston], GeoRessources, Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), Muséum national d'Histoire naturelle (MNHN), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), DLR Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Max-Planck-Institut für Sonnensystemforschung (MPS), Max-Planck-Gesellschaft, Los Alamos National Laboratory (LANL), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Space Science Institute [Boulder] (SSI), Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), and ANR-16-CE31-0012,MARS-PRIME,Environnement Primitif de Mars(2016)
- Subjects
010504 meteorology & atmospheric sciences ,Fracture (mineralogy) ,Geochemistry ,chemistry.chemical_element ,01 natural sciences ,Porphyry copper deposit ,Hydrothermal alteration ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,Impact crater ,Kimberley ,0103 physical sciences ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,geography ,geography.geographical_feature_category ,Bedrock ,Astronomy and Astrophysics ,Mars Exploration Program ,Gale crater ,Copper ,Igneous rock ,chemistry ,Copper deposit ,13. Climate action ,Space and Planetary Science ,ChemCam ,Sedimentary rock ,Geology - Abstract
International audience; Copper quantification with laser induced breakdown spectroscopy (LIBS) using a univariate calibration model enables the ChemCam instrument onboard the Curiosity rover to measure unusually elevated Cu concentrations in potassic sandstones and Mn-oxide-bearing fracture fills in the Kimberley region of Gale crater, Mars. Mostly, the copper phases occurring in sedimentary bedrock are associated with detrital silicates, including feldspars, pyroxenes and K-phyllosilicates, likely coming from a potassic igneous source near the northern crater rim, while those present in the fractures are likely adsorbed on the surface of manganese oxides. These two different mineralogical associations imply at least two distinct processes: Cu enrichment in bedrock at the source, likely during crystallization of the igneous silicates, and adsorption of Cu on Mn-oxides precipitated from groundwater that encountered oxidizing conditions within fractures in the bedrock. The potassic sediments enriched in copper may be evidence of a porphyry copper deposit or an impact-induced hydrothermal deposit in the source region.
- Published
- 2019
36. Disambiguating the soils of Mars
- Author
-
Giacomo Certini, Agnès Cousin, Riccardo Scalenghe, Yu-Yan Sara Zhao, Pierre-Yves Meslin, Suniti Karunatillake, Donald R. Hood, Certini G., Karunatillake S., Zhao Y.-Y.S., Meslin P.-Y., Cousin A., Hood D.R., and Scalenghe R.
- Subjects
010504 meteorology & atmospheric sciences ,Settore GEO/04 - Geografia Fisica E Geomorfologia ,Earth science ,Weathering ,Martian soil ,Regolith ,01 natural sciences ,0103 physical sciences ,World Reference Base for Soil Resources ,Cryosol ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,USDA soil taxonomy ,Martian ,Soil Taxonomy ,Gelisol ,Astronomy and Astrophysics ,Soil classification ,Mineral weathering ,Pedogenesis ,Settore AGR/14 - Pedologia ,Space and Planetary Science ,Soil water ,Environmental science ,WRB ,Settore M-GGR/01 - Geografia - Abstract
Anticipated human missions to Mars require a methodical understanding of the unconsolidated bulk sediment that mantles its surface, given its role as an accessible resource for water and as a probable substrate for food production. However, classifying martian sediment as soil has been pursued in an ad hoc fashion, despite emerging evidence from in situ missions for current and paleo-pedological processes. Here we find that in situ sediment at Gusev, Meridiani and Gale are consistent with pedogenesis related to comminuted basalts mixing with older phyllosilicates – perhaps of pluvial origin – and sulfates. Furthermore, a notable presence of hydrated amorphous phases indicates significant chemical weathering that mirrors pedogenesis at extreme environments on Earth. Effects of radiation and reactive oxygen species are also reminiscent of such soils at Atacama and Mojave deserts. Some related phases, like perchlorates and Fe-sulfates, may sustain brine-driven weathering in modern martian soils. Meanwhile, chemical diversity across in situ and regional soils suggests many different soil types and processes. But the two main soil classification systems – the World Reference Base for Soil Resources (WRB) and the U.S. Soil Taxonomy – only inadequately account for such variability. While WRB provides more process insight, it needs refinement to represent variability of martian soils even at the first level of categorical detail. That will provide a necessary reference for future missions when identifying optimal pedological protocols to systematically survey martian soil. Updating Earth-based soil classification systems for this purpose will also advance soil taxonomy as a research field.
- Published
- 2020
37. Background levels of methane in Mars’ atmosphere show strong seasonal variations
- Author
-
María Paz Zorzano, Mark T. Lemmon, Lance E. Christensen, Daniel P. Glavin, Álvaro Vicente-Retortillo, Christopher P. McKay, Jennifer L. Eigenbrode, Jorge Pla-Garcia, Brad Sutter, Christopher R. Webster, Henrik Kahanpää, Daniel Viúdez-Moreiras, John C. Pearson, Melissa G. Trainer, Christina L. Smith, Rafael Navarro-González, P. Douglas Archer, Paul R. Mahaffy, Michael H. Wong, Andrew Steele, Patrice Coll, Ashwin R. Vasavada, Christopher H. House, Donald M. Hassler, Richard W. Zurek, G. Flesch, Pierre-Yves Meslin, Javier Gómez-Elvira, John E. Moores, Caroline Freissinet, Susanne P. Schwenzer, German Martinez, Scot Rafkin, Alexander A. Pavlov, Stanley P. Sander, Ari-Matti Harri, Charles Malespin, Sushil K. Atreya, Joy A. Crisp, Didier Keymeulen, Raina V. Gough, Maria Genzer, Javier Martin-Torres, Michael D. Smith, Jet Propulsion Laboratory (JPL), California Institute of Technology (CALTECH)-NASA, NASA Goddard Space Flight Center (GSFC), Department of Climate and Space Sciences and Engineering (CLaSP), University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Department of Earth and Space Science and Engineering [York University - Toronto] (ESSE), York University [Toronto], NASA Ames Research Center (ARC), Department of Computer Science, Electrical and Space Engineering [Luleå], Luleå University of Technology (LUT), Instituto Andaluz de Ciencias de la Tierra (IACT), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universidad de Granada (UGR), Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Geophysical Laboratory [Carnegie Institution], Carnegie Institution for Science [Washington], Jacobs Technology ESCG, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Department of Chemistry and Biochemistry [Boulder], University of Colorado [Boulder], Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado [Boulder]-National Oceanic and Atmospheric Administration (NOAA), Department of Geosciences [PennState], College of Earth and Mineral Sciences, Pennsylvania State University (Penn State), Penn State System-Penn State System-Pennsylvania State University (Penn State), Penn State System-Penn State System, The Open University [Milton Keynes] (OU), School of Environment, Earth and Ecosystem Sciences [Milton Keynes], Faculty of Science, Technology, Engineering and Mathematics [Milton Keynes], The Open University [Milton Keynes] (OU)-The Open University [Milton Keynes] (OU), Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México (UNAM), Space Science Institute [Boulder] (SSI), Department of Space Studies [Boulder], Southwest Research Institute [Boulder] (SwRI), Finnish Meteorological Institute (FMI), Department of Atmospheric Sciences [College Station], Texas A&M University [College Station], NASA-California Institute of Technology (CALTECH), Carnegie Institution for Science, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), NASA Jet Propulsion Laboratory, Consejo Nacional de Ciencia y Tecnología (México), Canadian Space Agency, UK Space Agency, Ministerio de Economía y Competitividad (España), Universidad de Granada (UGR)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), IMPEC - LATMOS, Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universidad de Granada = University of Granada (UGR), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
Multidisciplinary ,010504 meteorology & atmospheric sciences ,Spectrometer ,Parts-per notation ,Atmosphere of Mars ,Seasonality ,Surface pressure ,medicine.disease ,Atmospheric sciences ,01 natural sciences ,[SDE.ES]Environmental Sciences/Environmental and Society ,Methane ,chemistry.chemical_compound ,Forum Articles ,chemistry ,Volume (thermodynamics) ,13. Climate action ,Martian surface ,0103 physical sciences ,medicine ,Environmental science ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
Variable levels of methane in the martian atmosphere have eluded explanation partly because the measurements are not repeatable in time or location.We report in situ measurements at Gale crater made over a 5-year period by the Tunable Laser Spectrometer on the Curiosity rover.The background levels of methane have a mean value 0.41 ± 0.16 parts per billion by volume (ppbv) (95% confidence interval) and exhibit a strong, repeatable seasonal variation (0.24 to 0.65 ppbv).This variation is greater than that predicted from either ultraviolet degradation of impact-delivered organics on the surface or from the annual surface pressure cycle.The large seasonal variation in the background and occurrences of higher temporary spikes (∼7 ppbv) are consistent with small localized sources of methane released from martian surface or subsurface reservoirs., The authors thank the reviewers for constructive comments that greatly improved the manuscript. The research described here was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Funding: Funding from NASA’s Planetary Science Division is acknowledged by authors C.R.W., P.R.M., S.K.A., G.J.F., C.M., C.P.M., M.H.W., M.G.T., A.S., D.A., C.H.H., R.V.G., A.P., J.L.E., D.P.G., J.C.P., D.K., L.E.C., J.P.-G., S.C.R.R., M.D.S., D.M.H., M.L., J.C., R.W.Z., and A.R.V. R.N.-G. acknowledges funding from the National Autonomous University of Mexico and Consejo Nacional de Ciencia y Tecnología. J.E.M. and C.L.S. acknowledge funding from the Canadian Space Agency MSL participating scientist program. S.P.Sc. acknowledges funding from the UK Space Agency. A.-M.H. acknowledges funding from the Finnish Academy under grant 310509. J.P.-G. acknowledges funding from the Spanish Ministry of Economy and Competitiveness under contract ESP2016-79612-C3-1-R. Author contributions: C.R.W. and P.R.M. performed TLS-SAM instrument design, build, and testing (IDBT); surface operations (SO); test-bed activities (TBA); data analysis (DA); data correlations (DC); and science interpretation (SI). G.J.F. and C.M. performed IDBT, SO, TBA, and DA. S.K.A., J.E.M., C.P.M., C.L.S., A.S., D.A., B.S., P.J.C., C.F., P.-Y.M., R.V.G., C.H.H., A.P., J.L.E., D.P.G., S.P.Sa., and R.W.Z. performed SI. J.C. and A.R.V. performed SO. J.C.P., D.K., and L.E.C. performed IDBT. G.M., J.M.-T., J.G.-E., M.-P.Z., M.G.T., S.P.Sc., R.N.-G., A.V.-R., H.K., D.V.-M., M.D.S., A.-M.H., M.G., D.M.H., and M.L. performed DC. J.P.-G. and S.C.R.R. performed DC and SI. Competing interests: No potential conflicts of interest exist for any of the listed authors. Data and materials availability: The data described in this paper are publicly available from NASA’s Planetary Data System (PDS) under an arrangement with the Mars Science Laboratory (MSL) project at http://pds-geosciences.wustl.edu/missions/msl/sam. htm, under the run numbers given in table S2.
- Published
- 2018
38. Understanding the signature of rock coatings in laser-induced breakdown spectroscopy data
- Author
-
R. L. Tokar, Horton E. Newsom, Nicolas Mangold, Richard Leveille, Craig Hardgrove, Benton C. Clark, Pierre-Yves Meslin, Agnes Cousin, Nathan T. Bridges, Dorothea Delapp, Mariek E. Schmidt, Noureddine Melikechi, R. Jackson, Roger C. Wiens, Samuel M. Clegg, Daniel A. Cooper, Rhonda A. McInroy, Patrick M. Pinet, Sylvestre Maurice, Nina Lanza, J. Blank, Matthew P. Deans, Marion Nachon, Ann Ollila, Ryan B. Anderson, A. Mezzacappa, Olivier Forni, Ronald A. Martinez, Jeff Berger, and Raymond E. Arvidson
- Subjects
Martian ,Basalt ,Desert varnish ,Mineralogy ,Astronomy and Astrophysics ,Weathering ,Mars Exploration Program ,engineering.material ,Coating ,Space and Planetary Science ,engineering ,Laser-induced breakdown spectroscopy ,Spectroscopy ,Geology - Abstract
Surface compositional features on rocks such as coatings and weathering rinds provide important information about past aqueous environments and water–rock interactions. The search for these features represents an important aspect of the Curiosity rover mission. With its unique ability to do fine-scale chemical depth profiling, the ChemCam laser-induced breakdown spectroscopy instrument (LIBS) onboard Curiosity can be used to both identify and analyze rock surface alteration features. In this study we analyze a terrestrial manganese-rich rock varnish coating on a basalt rock in the laboratory with the ChemCam engineering model to determine the LIBS signature of a natural rock coating. Results show that there is a systematic decrease in peak heights for elements such as Mn that are abundant in the coating but not the rock. There is significant spatial variation in the relative abundance of coating elements detected by LIBS depending on where on the rock surface sampled; this is due to the variability in thickness and spatial discontinuities in the coating. Similar trends have been identified in some martian rock targets in ChemCam data, suggesting that these rocks may have coatings or weathering rinds on their surfaces.
- Published
- 2015
39. Constraints on abundance, composition, and nature of X-ray amorphous components of soils and rocks at Gale crater, Mars
- Author
-
Erwin Dehouck, Pierre-Yves Meslin, Agnes Cousin, and Scott M. McLennan
- Subjects
Mineral ,Component (thermodynamics) ,Mineralogy ,Mars Exploration Program ,Amorphous solid ,Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,Hisingerite ,Rocknest ,Soil water ,Earth and Planetary Sciences (miscellaneous) ,Clay minerals ,Geology - Abstract
X-ray diffraction patterns of the three samples analyzed by Curiosity's Chemistry and Mineralogy (CheMin) instrument during the first year of the Mars Science Laboratory mission—the Rocknest sand, and the John Klein and Cumberland drill fines, both extracted from the Sheepbed mudstone—show evidence for a significant amorphous component of unclear origin. We developed a mass balance calculation program that determines the range of possible chemical compositions of the crystalline and amorphous components of these samples within the uncertainties of mineral abundances derived from CheMin data. In turn, the chemistry constrains the minimum abundance of amorphous component required to have realistic compositions (all oxides ≥ 0 wt %): 21–22 wt % for Rocknest and 15–20 wt % for Cumberland, in good agreement with estimates derived from the diffraction patterns (~27 and ~31 wt %, respectively). Despite obvious differences between the Rocknest sand and the Sheepbed mudstone, the amorphous components of the two sites are chemically very similar, having comparable concentrations of SiO2, TiO2, Al2O3, Cr2O3, FeOT, CaO, Na2O, K2O, and P2O5. MgO tends to be lower in Rocknest, although it may also be comparable between the two samples depending on the exact composition of the smectite in Sheepbed. The only unambiguous difference is the SO3 content, which is always higher in Rocknest. The observed similarity suggests that the two amorphous components share a common origin or formation process. The individual phases possibly present within the amorphous components include: volcanic (or impact) glass, hisingerite (or silica + ferrihydrite), amorphous sulfates (or adsorbed SO42−), and nanophase ferric oxides.
- Published
- 2014
40. Quantification of water content by laser induced breakdown spectroscopy on Mars
- Author
-
Susanne Schröder, Roger C. Wiens, Marion Nachon, William Rapin, Pierre Beck, Nathalie Thomas, Erwin Dehouck, Sylvestre Maurice, Pierre-Yves Meslin, Olivier Beyssac, Olivier Gasnault, Noureddine Melikechi, Agnes Cousin, Olivier Forni, Benjamin Rondeau, Christophe Drouet, Boris Chauviré, Steven C. Bender, Didier Laporte, N. Mangold, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Laboratoire Magmas et Volcans (LMV), Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut de Recherche pour le Développement et la société-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Planetary Science Institute [Tucson] (PSI), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Groupe de Recherche et d'Etudes du Processus Inflammatoire (GREPI), Université Joseph Fourier - Grenoble 1 (UJF), Optical Science Center for Applied Research (OSCAR), Delaware State University (DSU), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Institut de Recherche pour le Développement et la société-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut de Recherche pour le Développement et la société-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Groupe de Recherche et d'Etude du Processus Inflammatoire (GREPI), Centre National de la Recherche Scientifique (CNRS)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
- Subjects
Normalization (statistics) ,010504 meteorology & atmospheric sciences ,Hydrogen ,Calibration curve ,Matériaux ,Analytical chemistry ,Mars ,chemistry.chemical_element ,Mineralogy ,Hydration ,Laser-induced breakdown spectroscopy ,01 natural sciences ,law.invention ,Analytical Chemistry ,[SPI.MAT]Engineering Sciences [physics]/Materials ,law ,Calibration ,Instrumentation ,Spectroscopy ,0105 earth and related environmental sciences ,LIBS ,010401 analytical chemistry ,Water ,Mars Exploration Program ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Laser ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,chemistry ,13. Climate action ,ChemCam ,Carbon - Abstract
International audience; Laser induced breakdown spectroscopy (LIBS), as performed by the ChemCam instrument, provides a new technique to measure hydrogen at the surface of Mars. Using a laboratory replica of the LIBS instrument onboard the Curiosity rover, different types of hydrated samples (basalts, calcium and magnesium sulfates, opals and apatites) covering a range of targets observed on Mars have been characterized and analyzed. A number of factors related to laser parameters, atmospheric conditions and differences in targets properties can affect the standoff LIBS signal, and in particular the hydrogen emission peak. Dedicated laboratory tests were run to identify a normalization of the hydrogen signal which could best compensate for these effects and enable the application of the laboratory calibration to Mars data. We check that the hydrogen signal increases linearly with water content; and normalization of the hydrogen emission peak using to oxygen and carbon emission peaks (related to the breakdown of atmospheric carbon dioxide) constitutes a robust approach. Moreover, the calibration curve obtained is relatively independent of the samples types
- Published
- 2017
41. Retrieval of Water Vapor Column Abundance and Aerosol Properties from ChemCam Passive Sky Spectroscopy
- Author
-
Maria Genzer, Mark T. Lemmon, Sylvestre Maurice, Timothy H. McConnochie, Diana L. Blaney, James F. Bell, S. Bender, Michael J. Wolff, Jérémie Lasue, Lauren DeFlores, Olivier Gasnault, German Martinez, Osku Kemppinen, Michael D. Smith, Jeffrey R. Johnson, Roger C. Wiens, Ari-Matti Harri, Pierre Yves Meslin, Department of Atmospheric Sciences [College Station], Texas A&M University [College Station], Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Finnish Meteorological Institute (FMI), Aalto University, Jet Propulsion Laboratory (JPL), and NASA-California Institute of Technology (CALTECH)
- Subjects
Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,010504 meteorology & atmospheric sciences ,Opacity ,FOS: Physical sciences ,Astronomy and Astrophysics ,Scale height ,Mars Exploration Program ,Atmospheric sciences ,01 natural sciences ,Aerosol ,CRISM ,Atmospheric radiative transfer codes ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,13. Climate action ,Space and Planetary Science ,0103 physical sciences ,Radiative transfer ,010303 astronomy & astrophysics ,Water vapor ,ComputingMilieux_MISCELLANEOUS ,Astrophysics::Galaxy Astrophysics ,Physics::Atmospheric and Oceanic Physics ,Astrophysics - Earth and Planetary Astrophysics ,0105 earth and related environmental sciences - Abstract
We derive water vapor column abundances and aerosol properties from Mars Science Laboratory (MSL) ChemCam passive mode observations of scattered sky light. Each ChemCam passive sky observation acquires spectra at two different elevation angles. We fit these spectra with a discrete-ordinates multiple scattering radiative transfer model, using the correlated-k approximation for gas absorption bands. The retrieval proceeds by first fitting the continuum of the ratio of the two elevation angles to solve for aerosol properties, and then fitting the continuum-removed ratio to solve for gas abundances. The final step of the retrieval makes use of the observed CO2 absorptions and the known CO2 abundance to correct the retrieved water vapor abundance for the effects of the vertical distribution of scattering aerosols and to derive an aerosol scale height parameter. The ChemCam-retrieved water abundances show, with only a few exceptions, the same seasonal behavior and the same timing of seasonal minima and maxima as the TES, CRISM, and REMS-H data sets that we compare them to. However ChemCam-retrieved water abundances are generally lower than zonal and regional scale from-orbit water vapor data, while at the same time being significantly larger than pre-dawn REMS-H abundances. Pending further analysis of REMS-H volume mixing ratio uncertainties, the differences between ChemCam and REMS-H pre-dawn mixing ratios appear to be much too large to be explained by large scale circulations and thus they tend to support the hypothesis of substantial diurnal interactions of water vapor with the surface. Our preliminary aerosol results, meanwhile, show the expected seasonal pattern in dust particle size but also indicate a surprising inter-annual increase in water-ice cloud opacities., Comment: 64 pages with embedded figures; this is the accepted version of the manuscript; the meta-data version of the abstract has been shorted to meet arXiv rules
- Published
- 2017
- Full Text
- View/download PDF
42. Trace element geochemistry (Li, Ba, Sr, and Rb) usingCuriosity's ChemCam: Early results for Gale crater from Bradbury Landing Site to Rocknest
- Author
-
Ryan B. Anderson, Olivier Forni, Ann Ollila, Penelope L. King, Noureddine Melikechi, Josh Williams, B. L. Barraclough, Scott M. McLennan, M. Darby Dyar, Benton C. Clark, Dorothea Delapp, Jérémie Lasue, Eric Lewin, Anya Rosen-Gooding, Horton E. Newsom, Olivier Gasnault, J. G. Blank, John Campbell, John Bridges, Nina Lanza, Sylvestre Maurice, R. L. Tokar, Violaine Sautter, Nicolas Mangold, Agnes Cousin, Cécile Fabre, Pierre-Yves Meslin, S. Johnstone, Roger C. Wiens, Samuel M. Clegg, G. M. Perrett, and D. T. Vaniman
- Subjects
010504 meteorology & atmospheric sciences ,Trace element ,Geochemistry ,Mineralogy ,Mars Exploration Program ,010502 geochemistry & geophysics ,Feldspar ,01 natural sciences ,Mars rover ,Geophysics ,Bradbury Landing ,13. Climate action ,Space and Planetary Science ,Geochemistry and Petrology ,visual_art ,Rocknest ,Earth and Planetary Sciences (miscellaneous) ,visual_art.visual_art_medium ,Igneous differentiation ,Laser-induced breakdown spectroscopy ,Geology ,0105 earth and related environmental sciences - Abstract
The ChemCam instrument package on the Mars rover, Curiosity, provides new capabilities to probe the abundances of certain trace elements in the rocks and soils on Mars using the laser-induced breakdown spectroscopy technique. We focus on detecting and quantifying Li, Ba, Rb, and Sr in targets analyzed during the first 100 sols, from Bradbury Landing Site to Rocknest. Univariate peak area models and multivariate partial least squares models are presented. Li, detected for the first time directly on Mars, is generally low ( 100 ppm and >1000 ppm, respectively. These analysis locations tend to have high Si and alkali abundances, consistent with a feldspar composition. Together, these trace element observations provide possible evidence of magma differentiation and aqueous alteration.
- Published
- 2014
43. Mars methane detection and variability at Gale crater
- Author
-
Susanne P. Schwenzer, Christopher R. Webster, Tobias Owen, Mark T. Lemmon, Javier Martin-Torres, Sushil K. Atreya, Michael A. Mischna, John Bridges, P. Douglas Archer, G. Flesch, Patrice Coll, Kenneth A. Farley, Ralf Gellert, Alexander A. Pavlov, Daniel P. Glavin, Christopher P. McKay, Andrew Steele, Jennifer L. Eigenbrode, Paul R. Mahaffy, Timothy H. McConnochie, Rafael Navarro-González, John E. Moores, Charles Malespin, Pamela G. Conrad, Brad Sutter, Caroline Freissinet, María Paz Zorzano, Lance E. Christensen, and Pierre-Yves Meslin
- Subjects
Multidisciplinary ,Spectrometer ,Atmospheric methane ,Mars ,methane detection ,Mars Exploration Program ,Atmosphere of Mars ,Gale crater ,Methane ,Astrobiology ,chemistry.chemical_compound ,Interplanetary dust cloud ,Curiosity ,chemistry ,Carbonaceous chondrite ,Sample Analysis at Mars ,Environmental science - Abstract
Of water and methane on Mars The Curiosity rover has been collecting data for the past 2 years, since its delivery to Mars (see the Perspective by Zahnle). Many studies now suggest that many millions of years ago, Mars was warmer and wetter than it is today. But those conditions required an atmosphere that seems to have vanished. Using the Curiosity rover, Mahaffy et al. measured the ratio of deuterium to hydrogen in clays that were formed 3.0 to 3.7 billion years ago. Hydrogen escapes more readily than deuterium, so this ratio offers a snapshot measure of the ancient atmosphere that can help constrain when and how it disappeared. Most methane on Earth has a biological origin, so planetary scientists have keenly pursued its detection in the martian atmosphere as well. Now, Webster et al. have precisely confirmed the presence of methane in the martian atmosphere with the instruments aboard the Curiosity rover at Gale crater. Science , this issue p. 412 , p. 415 ; see also p. 370
- Published
- 2015
44. The SuperCam Remote Sensing Suite for MARS 2020: Nested and Co-Aligned LIBS, Raman, and VISIR Spectroscopies, and color micro-imaging
- Author
-
Thierry Fouchet, Roger Wiens, Sylvestre Maurice, Johnson, Jeffrey R., Samuel Clegg, Shiv Sharma, Fernando Rull, Franck Montmessin, Ryan Anderson, Olivier Beyssac, Lydie Bonal, Lauren Deflores, Gilles Dromart, William Fischer, Olivier Forni, Olivier Gasnault, Grotzinger, John P., Nicolas Mangold, Jesus Martinez-Frias, Scott Maclennan, Kevin Mccabe, Ph. Cais, Tony Nelson, Stanley Angel, Pierre Beck, Karim Benzerara, Sylvain Bernard, Bruno Bousquet, Nathan Bridges, Edward Cloutis, Cécile Fabre, Olivier Grasset, Nina Lanza, Jérémie Lasue, Stéphane Le Mouélic, Rich Leveille, Eric Lewin, Mcconnochie, Timothy H., Noureddine Melikechi, Pierre-Yves Meslin, Anupam Misra, Gilles Montagnac, Horton Newsom, Ann Ollila, Patrick Pinet, François Poulet, Pablo Sobron, NASA Goddard Space Flight Center (GSFC), Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), University of Hawai'i [Honolulu] (UH), Universidad de Valladolid [Valladolid] (UVa), IMPEC - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), United States Geological Survey [Reston] (USGS), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Institut de recherche pour le développement [IRD] : UR206-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Jet Propulsion Laboratory (JPL), California Institute of Technology (CALTECH)-NASA, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC), Department of Geosciences [Stony Brook], Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), Université de Bordeaux (UB), University of South Carolina [Columbia], Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Department of Geography [Winnipeg], University of Winnipeg, Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA), Canadian Space Agency (CSA), Institut des Sciences de la Terre (ISTerre), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut national des sciences de l'Univers (INSU - CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Joseph Fourier - Grenoble 1 (UJF), Delaware Investments, Hawaii Institute of Geophysics and Planetology (HIGP), University of Hawai‘i [Mānoa] (UHM), The University of New Mexico [Albuquerque], Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), SETI Institute, Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), PLANETO - LATMOS, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), NASA-California Institute of Technology (CALTECH), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Bordeaux (UB), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), and Pomies, Marie-Paule
- Subjects
[SDU.ASTR.IM] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] - Abstract
International audience; As chartered by the Science Definition Team, the Mars 2020 mission addresses four primary objectives: A. Characterize the processes that formed and modified the geologic record within an astrobiologically relevant ancient environment, B. Perform astrobiologically relevant investigations to determine habitability, search for materials with biosignature presentation potential, and search for evidence of past life, C. Assemble a returnable cache of samples and D. Contribute to preparation for human exploration of Mars. The SuperCam instrument, selected for the Mars 2020 rover, as a suite of four instruments, provides nested and co-aligned remote investigations: Laser Induced Breakdown Spectroscopy (LIBS), Raman spectroscopy and time-resolved fluorescence (TRF), visible and near-infrared spectroscopy (VISIR), and high resolution color imaging (RMI). SuperCam appeals broadly to the four Mars 2020 objectives.In detail, SuperCam will perform:1. Microscale mineral identification by combining LIBS elemental and VISIR mineralogical spectroscopies, especially targeting secondary minerals2. Determine the sedimental stratigraphy through color imaging and LIBS and VISIR spectroscopy3. Search for organics and bio-signatures with LIBS and Raman spectroscopy4. Quantify the volatile content of the rocks by LIBS spectroscopy to determine the degree of aquaeous alteration5. Characterize the texture of the rocks by color imaging to determine their alteration processes6. Characterize the rocks' coatings by LIBS spectroscopy7. Characterize the soil and its potential for biosignature preservation8. Monitor the odd-oxygen atmospheric chemistry.To meet these goals SuperCam will perform LIBS spectroscopy on 0.5 mm spot up to 7-meter distance, perform Raman and time-resolved fluoresence up to 12-m distance with a 0.8 mrad angular resolution, a 100 ns time gating in the 534-850 nm spectral range, acquire VISIR spectra in the range 0.4-0.85 μm with a resolution of 0.35 nm, and in the IR range over 1.3-2.6 μm, rich in mineral signatures, with a resolution of 20 nm, and provide RGB images with an angular resolution of 40 μrad over a FOV of 20 mrad.We will present the science performances of SuperCam and the forecasted operation plans.
- Published
- 2016
45. Search for Organic Matter at Mars with LIBS and Reflectance Complementary Measurements of the ChemCam Instrument Onboard the Curiosity Rover
- Author
-
Tristan Dequaire, Pierre-Yves Meslin, Jaber, M., William Rapin, Agnès Cousin, Olivier Gasnault, Pierre Beck, Olivier Forni, Cloutis, E., Sylvestre Maurice, Daniel Applin, Johnson, J. R., Nicolas Mangold, Cyril Szopa, Patrice Coll, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Archéologie Moléculaire et Structurale (LAMS), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Department of Geography [Winnipeg], University of Winnipeg, Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA), IMPEC - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), PLANETO - LATMOS, Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Cardon, Catherine, Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience; One of the priorities of the Mars Science Laboratory mission is the search for a past or present prebiotic chemistry. Among the possible indicators of such a chemistry, the organic molecules are key entities linked to the emergence and the development of life, as we know it on Earth. However, only rare evidences of the presence of such molecules (chlo-robenzene and other chlorinated hydrocarbons), in the Mars sedimentary rocks [1] and regolith [2] , were recently found at a very low concentration (150-300 ppbw in the Cumberland mudstone). Thus, one of the most pressing questions is to follow the search and identification of molecules currently present at Mars and their concentration. Onboard the NASA Curiosity currently operating on Mars in Gale crater, the ChemCam instrument (Chemistry and Camera) performs quasi-systematic analyses of the elementary composition of rocks and soils of the Mars surface around the rover. This in- strument is used to identify targets of interest to per- form contact science and drilling from a mineralogical point of view, and also gives chemical information that could be used to look for organics present in the soil.
- Published
- 2016
46. Diffusive Transport of Gases in Wet Porous Media. Application to Radon
- Author
-
Pierre M. Adler, Jean-Christophe Sabroux, Pierre-Yves Meslin, Structure et fonctionnement des systèmes hydriques continentaux (SISYPHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Université Pierre et Marie Curie - Paris 6 (UPMC)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
Chemistry ,Lattice Boltzmann methods ,Soil Science ,Mineralogy ,Percolation threshold ,04 agricultural and veterinary sciences ,15. Life on land ,010501 environmental sciences ,01 natural sciences ,Power law ,[SPI]Engineering Sciences [physics] ,Diffusion process ,Soil water ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,Saturation (chemistry) ,Porosity ,Porous medium ,0105 earth and related environmental sciences - Abstract
International audience; The prediction of macroscopic diffusion coefficients in dry and wet porous media still strongly relies on measurements, and numerous semi-empirical correlations have been proposed over the years to replace burdensome experimentations, but the range of validity of these correlations can be limited and is not even well-defined. Here, we present ab initio numerical calculations of the diffusion coefficient of two classes of porous media, namely consolidated and unconsolidated soils, where the water phase distribution is obtained by a lattice Boltzmann technique incorporating interfacial tension and wetting. We show that these reconstructed media can well represent two categories of soils generally encountered, namely undisturbed and repacked soils, whose diffusivities, to first order, exhibit two distinct dependencies on porosity under dry conditions, but a similar dependence on the water saturation level. We provide a theoretical support to the popular Buckingham law for dry undisturbed soils in the 0.2 to 0.45 porosity range investigated here. This semi-empirical correlation also compares well with our results on wet consolidated soils, although the dependence of the diffusion coefficient on the water saturation level does not seem to be a simple power law. These results, supported by available experiments on gases such as oxygen, hydrogen, or carbon dioxide, appear to be representative of large classes of porous media. The data and their correlations relative to radon are discussed. Finally, some discrepancy with experimental data regarding the value of the percolation threshold remains, which should be investigated further in the future. © Soil Science Society of America, 5585 Guilford Rd., Madison Wl 53711 USA All rights reserved.
- Published
- 2010
47. First detection of fluorine on Mars: Implications for Gale Crater's geochemistry
- Author
-
Michael J. Toplis, Nina Lanza, M. D. Dyar, Sylvestre Maurice, Rhonda E. McInroy, Marion Nachon, Stéphane Le Mouélic, John Bridges, Violaine Sautter, Roger C. Wiens, Samuel M. Clegg, Nicolas Mangold, Ann Ollila, Agnes Cousin, Olivier Forni, Olivier Gasnault, Michael Gaft, Pierre-Yves Meslin, Institut de recherche en astrophysique et planétologie (IRAP), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS), Laser Distance Spectrometry, Petah Tikva, Los Alamos National Laboratory (LANL), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Muséum national d'Histoire naturelle (MNHN), Chevron Energy Technology Company, Space Research Centre [Leicester], University of Leicester, Department of Astronomy, University of Massachusetts System (UMASS), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Centre National de la Recherche Scientifique (CNRS), Institute of Meteoritics [Albuquerque] (IOM), The University of New Mexico [Albuquerque], Mount Holyoke College, Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), and Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mineral ,Geochemistry ,Mineralogy ,chemistry.chemical_element ,Gale crater ,Mars Exploration Program ,Low calcium ,On board ,Geophysics ,chemistry ,13. Climate action ,Aluminosilicate ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,[SDU]Sciences of the Universe [physics] ,Fluorine ,General Earth and Planetary Sciences ,High calcium ,Geology - Abstract
International audience; Volatiles and especially halogens (F and Cl) have been recognized as important species in the genesis and melting of planetary magmas. Data from the Chemical Camera instrument on board the Mars Science Laboratory rover Curiosity now provide the first in situ analyses of fluorine at the surface of Mars. Two principal F-bearing mineral assemblages are identified. The first is associated with high aluminum and low calcium contents, in which the F-bearing phase is an aluminosilicate. It is found in conglomerates and may indicate petrologically evolved sources. This is the first time that such a petrologic environment is found on Mars. The second is represented by samples that have high calcium contents, in which the main F-bearing minerals are likely to be fluorapatites and/or fluorites. Fluorapatites are found in some sandstone and may be detrital, while fluorites are also found in the conglomerates, possibly indicating low-T alteration processes.
- Published
- 2015
48. A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars
- Author
-
J. P. Grotzinger, D. Y. Sumner, L. C. Kah, K. Stack, S. Gupta, L. Edgar, D. Rubin, K. Lewis, J. Schieber, N. Mangold, R. Milliken, P. G. Conrad, D. DesMarais, J. Farmer, K. Siebach, F. Calef, J. Hurowitz, S. M. McLennan, D. Ming, D. Vaniman, J. Crisp, A. Vasavada, K. S. Edgett, M. Malin, D. Blake, R. Gellert, P. Mahaffy, R. C. Wiens, S. Maurice, J. A. Grant, S. Wilson, R. C. Anderson, L. Beegle, R. Arvidson, B. Hallet, R. S. Sletten, M. Rice, J. Bell, J. Griffes, B. Ehlmann, R. B. Anderson, T. F. Bristow, W. E. Dietrich, G. Dromart, J. Eigenbrode, A. Fraeman, C. Hardgrove, K. Herkenhoff, L. Jandura, G. Kocurek, S. Lee, L. A. Leshin, R. Leveille, D. Limonadi, J. Maki, S. McCloskey, M. Meyer, M. Minitti, H. Newsom, D. Oehler, A. Okon, M. Palucis, T. Parker, S. Rowland, M. Schmidt, S. Squyres, A. Steele, E. Stolper, R. Summons, A. Treiman, R. Williams, A. Yingst, MSL Science Team, Osku Kemppinen, Nathan Bridges, Jeffrey R. Johnson, David Cremers, Austin Godber, Meenakshi Wadhwa, Danika Wellington, Ian McEwan, Claire Newman, Mark Richardson, Antoine Charpentier, Laurent Peret, Penelope King, Jennifer Blank, Gerald Weigle, Shuai Li, Kevin Robertson, Vivian Sun, Michael Baker, Christopher Edwards, Kenneth Farley, Hayden Miller, Megan Newcombe, Cedric Pilorget, Claude Brunet, Victoria Hipkin, Richard Léveillé, Geneviève Marchand, Pablo Sobrón Sánchez, Laurent Favot, George Cody, Lorenzo Flückiger, David Lees, Ara Nefian, Mildred Martin, Marc Gailhanou, Frances Westall, Guy Israël, Christophe Agard, Julien Baroukh, Christophe Donny, Alain Gaboriaud, Philippe Guillemot, Vivian Lafaille, Eric Lorigny, Alexis Paillet, René Pérez, Muriel Saccoccio, Charles Yana, Carlos Armiens-Aparicio, Javier Caride Rodríguez, Isaías Carrasco Blázquez, Felipe Gómez Gómez, Javier Gómez-Elvira, Sebastian Hettrich, Alain Lepinette Malvitte, Mercedes Marín Jiménez, Jesús Martínez-Frías, Javier Martín-Soler, F. Javier Martín-Torres, Antonio Molina Jurado, Luis Mora-Sotomayor, Guillermo Muñoz Caro, Sara Navarro López, Verónica Peinado-González, Jorge Pla-García, José Antonio Rodriguez Manfredi, Julio José Romeral-Planelló, Sara Alejandra Sans Fuentes, Eduardo Sebastian Martinez, Josefina Torres Redondo, Roser Urqui-O’Callaghan, María-Paz Zorzano Mier, Steve Chipera, Jean-Luc Lacour, Patrick Mauchien, Jean-Baptiste Sirven, Heidi Manning, Alberto Fairén, Alexander Hayes, Jonathan Joseph, Robert Sullivan, Peter Thomas, Audrey Dupont, Angela Lundberg, Noureddine Melikechi, Alissa Mezzacappa, Julia DeMarines, David Grinspoon, Günther Reitz, Benito Prats, Evgeny Atlaskin, Maria Genzer, Ari-Matti Harri, Harri Haukka, Henrik Kahanpää, Janne Kauhanen, Mark Paton, Jouni Polkko, Walter Schmidt, Tero Siili, Cécile Fabre, James Wray, Mary Beth Wilhelm, Franck Poitrasson, Kiran Patel, Stephen Gorevan, Stephen Indyk, Gale Paulsen, David Bish, Brigitte Gondet, Yves Langevin, Claude Geffroy, David Baratoux, Gilles Berger, Alain Cros, Claude d’Uston, Olivier Forni, Olivier Gasnault, Jérémie Lasue, Qiu-Mei Lee, Pierre-Yves Meslin, Etienne Pallier, Yann Parot, Patrick Pinet, Susanne Schröder, Mike Toplis, Éric Lewin, Will Brunner, Ezat Heydari, Cherie Achilles, Brad Sutter, Michel Cabane, David Coscia, Cyril Szopa, François Robert, Violaine Sautter, Stéphane Le Mouélic, Marion Nachon, Arnaud Buch, Fabien Stalport, Patrice Coll, Pascaline François, François Raulin, Samuel Teinturier, James Cameron, Sam Clegg, Agnès Cousin, Dorothea DeLapp, Robert Dingler, Ryan Steele Jackson, Stephen Johnstone, Nina Lanza, Cynthia Little, Tony Nelson, Richard B. Williams, Andrea Jones, Laurel Kirkland, Burt Baker, Bruce Cantor, Michael Caplinger, Scott Davis, Brian Duston, Donald Fay, David Harker, Paul Herrera, Elsa Jensen, Megan R. Kennedy, Gillian Krezoski, Daniel Krysak, Leslie Lipkaman, Elaina McCartney, Sean McNair, Brian Nixon, Liliya Posiolova, Michael Ravine, Andrew Salamon, Lee Saper, Kevin Stoiber, Kimberley Supulver, Jason Van Beek, Tessa Van Beek, Robert Zimdar, Katherine Louise French, Karl Iagnemma, Kristen Miller, Fred Goesmann, Walter Goetz, Stubbe Hviid, Micah Johnson, Matthew Lefavor, Eric Lyness, Elly Breves, M. Darby Dyar, Caleb Fassett, Laurence Edwards, Robert Haberle, Tori Hoehler, Jeff Hollingsworth, Melinda Kahre, Leslie Keely, Christopher McKay, Lora Bleacher, William Brinckerhoff, David Choi, Jason P. Dworkin, Melissa Floyd, Caroline Freissinet, James Garvin, Daniel Glavin, Daniel Harpold, David K. Martin, Amy McAdam, Alexander Pavlov, Eric Raaen, Michael D. Smith, Jennifer Stern, Florence Tan, Melissa Trainer, Arik Posner, Mary Voytek, Andrew Aubrey, Alberto Behar, Diana Blaney, David Brinza, Lance Christensen, Lauren DeFlores, Jason Feldman, Sabrina Feldman, Gregory Flesch, Insoo Jun, Didier Keymeulen, Michael Mischna, John Michael Morookian, Betina Pavri, Marcel Schoppers, Aaron Sengstacken, John J. Simmonds, Nicole Spanovich, Manuel de la Torre Juarez, Christopher R. Webster, Albert Yen, Paul Douglas Archer, Francis Cucinotta, John H. Jones, Richard V. Morris, Paul Niles, Elizabeth Rampe, Thomas Nolan, Martin Fisk, Leon Radziemski, Bruce Barraclough, Steve Bender, Daniel Berman, Eldar Noe Dobrea, Robert Tokar, Timothy Cleghorn, Wesley Huntress, Gérard Manhès, Judy Hudgins, Timothy Olson, Noel Stewart, Philippe Sarrazin, Edward Vicenzi, Mark Bullock, Bent Ehresmann, Victoria Hamilton, Donald Hassler, Joseph Peterson, Scot Rafkin, Cary Zeitlin, Fedor Fedosov, Dmitry Golovin, Natalya Karpushkina, Alexander Kozyrev, Maxim Litvak, Alexey Malakhov, Igor Mitrofanov, Maxim Mokrousov, Sergey Nikiforov, Vasily Prokhorov, Anton Sanin, Vladislav Tretyakov, Alexey Varenikov, Andrey Vostrukhin, Ruslan Kuzmin, Benton Clark, Michael Wolff, Oliver Botta, Darrell Drake, Keri Bean, Mark Lemmon, Susanne P. Schwenzer, Ella Mae Lee, Robert Sucharski, Miguel Ángel de Pablo Hernández, Juan José Blanco Ávalos, Miguel Ramos, Myung-Hee Kim, Charles Malespin, Ianik Plante, Jan-Peter Muller, Rafael Navarro-González, Ryan Ewing, William Boynton, Robert Downs, Mike Fitzgibbon, Karl Harshman, Shaunna Morrison, Onno Kortmann, Amy Williams, Günter Lugmair, Michael A. Wilson, Bruce Jakosky, Tonci Balic-Zunic, Jens Frydenvang, Jaqueline Kløvgaard Jensen, Kjartan Kinch, Asmus Koefoed, Morten Bo Madsen, Susan Louise Svane Stipp, Nick Boyd, John L. Campbell, Glynis Perrett, Irina Pradler, Scott VanBommel, Samantha Jacob, Tobias Owen, Hannu Savijärvi, Eckart Boehm, Stephan Böttcher, Sönke Burmeister, Jingnan Guo, Jan Köhler, César Martín García, Reinhold Mueller-Mellin, Robert Wimmer-Schweingruber, John C. Bridges, Timothy McConnochie, Mehdi Benna, Heather Franz, Hannah Bower, Anna Brunner, Hannah Blau, Thomas Boucher, Marco Carmosino, Sushil Atreya, Harvey Elliott, Douglas Halleaux, Nilton Rennó, Michael Wong, Robert Pepin, Beverley Elliott, John Spray, Lucy Thompson, Suzanne Gordon, Ann Ollila, Joshua Williams, Paulo Vasconcelos, Jennifer Bentz, Kenneth Nealson, Radu Popa, Jeffrey Moersch, Christopher Tate, Mackenzie Day, Raymond Francis, Emily McCullough, Ed Cloutis, Inge Loes ten Kate, Daniel Scholes, Susan Slavney, Thomas Stein, Jennifer Ward, Jeffrey Berger, John E. Moores, Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Department of Earth and Planetary Science [UC Berkeley] (EPS), University of California [Berkeley], University of California-University of California, The University of Tennessee [Knoxville], Department of Earth Science and Technology [Imperial College London], Imperial College London, ASU School of Earth and Space Exploration (SESE), Arizona State University [Tempe] (ASU), US Geological Survey [Santa Cruz], United States Geological Survey [Reston] (USGS), Princeton University, Department of Geological Sciences [Bloomington], Indiana University [Bloomington], Indiana University System-Indiana University System, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Geological Sciences [Providence], Brown University, NASA Goddard Space Flight Center (GSFC), NASA Ames Research Center (ARC), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Department of Geosciences [Stony Brook], Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), State University of New York (SUNY), NASA Johnson Space Center (JSC), NASA, Planetary Science Institute [Tucson] (PSI), Department of Physics [Guelph], University of Guelph, Space Remote Sensing Group (ISR-2), Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Center for Earth and Planetary Studies [Washington] (CEPS), Smithsonian National Air and Space Museum, Smithsonian Institution-Smithsonian Institution, Department of Earth and Space Sciences [Seattle], University of Washington [Seattle], Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Department of Geological Sciences [Austin], Jackson School of Geosciences (JSG), University of Texas at Austin [Austin]-University of Texas at Austin [Austin], Rensselaer Polytechnic Institute (RPI), Canadian Space Agency (CSA), NASA Headquarters, Institute of Meteoritics [Albuquerque] (IOM), The University of New Mexico [Albuquerque], University of Hawaii, Brock University [Canada], Cornell University [New York], Geophysical Laboratory [Carnegie Institution], Carnegie Institution for Science [Washington], Massachusetts Institute of Technology (MIT), Lunar and Planetary Institute [Houston] (LPI), GeoRessources, Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Carnegie Institution for Science, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), NWO-NSO: The role of perchlorates in the preservation of organic compounds on Mars, and Petrology
- Subjects
Geologic Sediments ,Salinity ,Extraterrestrial Environment ,Nitrogen ,General Science & Technology ,Iron ,Curiosity rover ,Mars ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Astrobiology ,MSL Science Team ,Exobiology ,MSL ,Martian ,Multidisciplinary ,fluvial-lacustrine environments ,Biosphere ,Water ,Phosphorus ,Mars Exploration Program ,15. Life on land ,Hydrogen-Ion Concentration ,Carbon ,Oxygen ,Planetary science ,Bays ,13. Climate action ,Rocknest ,Sample Analysis at Mars ,Sedimentary rock ,Oxidation-Reduction ,Geology ,Sulfur ,Hydrogen - Abstract
International audience; The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.
- Published
- 2014
49. Mars' surface radiation environment measured with the Mars science laboratory's curiosity rover
- Author
-
Donald M. Hassler, Cary Zeitlin, Robert F. Wimmer-Schweingruber, Bent Ehresmann, Scot Rafkin, Jennifer L. Eigenbrode, David E. Brinza, Gerald Weigle, Stephan Böttcher, Eckart Böhm, Soenke Burmeister, Jingnan Guo, Jan Köhler, Cesar Martin, Guenther Reitz, Francis A. Cucinotta, Myung-Hee Kim, David Grinspoon, Mark A. Bullock, Arik Posner, Javier Gómez-Elvira, Ashwin Vasavada, John P. Grotzinger, MSL Science Team, Osku Kemppinen, David Cremers, James F. Bell, Lauren Edgar, Jack Farmer, Austin Godber, Meenakshi Wadhwa, Danika Wellington, Ian McEwan, Claire Newman, Mark Richardson, Antoine Charpentier, Laurent Peret, Penelope King, Jennifer Blank, Mariek Schmidt, Shuai Li, Ralph Milliken, Kevin Robertson, Vivian Sun, Michael Baker, Christopher Edwards, Bethany Ehlmann, Kenneth Farley, Jennifer Griffes, Hayden Miller, Megan Newcombe, Cedric Pilorget, Melissa Rice, Kirsten Siebach, Katie Stack, Edward Stolper, Claude Brunet, Victoria Hipkin, Richard Léveillé, Geneviève Marchand, Pablo Sobrón Sánchez, Laurent Favot, George Cody, Andrew Steele, Lorenzo Flückiger, David Lees, Ara Nefian, Mildred Martin, Marc Gailhanou, Frances Westall, Guy Israël, Christophe Agard, Julien Baroukh, Christophe Donny, Alain Gaboriaud, Philippe Guillemot, Vivian Lafaille, Eric Lorigny, Alexis Paillet, René Pérez, Muriel Saccoccio, Charles Yana, Carlos Armiens‐Aparicio, Javier Caride Rodríguez, Isaías Carrasco Blázquez, Felipe Gómez Gómez, Sebastian Hettrich, Alain Lepinette Malvitte, Mercedes Marín Jiménez, Jesús Martínez-Frías, Javier Martín-Soler, F. Javier Martín-Torres, Antonio Molina Jurado, Luis Mora-Sotomayor, Guillermo Muñoz Caro, Sara Navarro López, Verónica Peinado-González, Jorge Pla-García, José Antonio Rodriguez Manfredi, Julio José Romeral-Planelló, Sara Alejandra Sans Fuentes, Eduardo Sebastian Martinez, Josefina Torres Redondo, Roser Urqui-O'Callaghan, María-Paz Zorzano Mier, Steve Chipera, Jean-Luc Lacour, Patrick Mauchien, Jean-Baptiste Sirven, Heidi Manning, Alberto Fairén, Alexander Hayes, Jonathan Joseph, Steven Squyres, Robert Sullivan, Peter Thomas, Audrey Dupont, Angela Lundberg, Noureddine Melikechi, Alissa Mezzacappa, Thomas Berger, Daniel Matthia, Benito Prats, Evgeny Atlaskin, Maria Genzer, Ari-Matti Harri, Harri Haukka, Henrik Kahanpää, Janne Kauhanen, Mark Paton, Jouni Polkko, Walter Schmidt, Tero Siili, Cécile Fabre, James Wray, Mary Beth Wilhelm, Franck Poitrasson, Kiran Patel, Stephen Gorevan, Stephen Indyk, Gale Paulsen, Sanjeev Gupta, David Bish, Juergen Schieber, Brigitte Gondet, Yves Langevin, Claude Geffroy, David Baratoux, Gilles Berger, Alain Cros, Claude d’Uston, Olivier Forni, Olivier Gasnault, Jérémie Lasue, Qiu-Mei Lee, Sylvestre Maurice, Pierre-Yves Meslin, Etienne Pallier, Yann Parot, Patrick Pinet, Susanne Schröder, Mike Toplis, Éric Lewin, Will Brunner, Ezat Heydari, Cherie Achilles, Dorothy Oehler, Brad Sutter, Michel Cabane, David Coscia, Cyril Szopa, Gilles Dromart, François Robert, Violaine Sautter, Stéphane Le Mouélic, Nicolas Mangold, Marion Nachon, Arnaud Buch, Fabien Stalport, Patrice Coll, Pascaline François, François Raulin, Samuel Teinturier, James Cameron, Sam Clegg, Agnès Cousin, Dorothea DeLapp, Robert Dingler, Ryan Steele Jackson, Stephen Johnstone, Nina Lanza, Cynthia Little, Tony Nelson, Roger C. Wiens, Richard B. Williams, Andrea Jones, Laurel Kirkland, Allan Treiman, Burt Baker, Bruce Cantor, Michael Caplinger, Scott Davis, Brian Duston, Kenneth Edgett, Donald Fay, Craig Hardgrove, David Harker, Paul Herrera, Elsa Jensen, Megan R. Kennedy, Gillian Krezoski, Daniel Krysak, Leslie Lipkaman, Michael Malin, Elaina McCartney, Sean McNair, Brian Nixon, Liliya Posiolova, Michael Ravine, Andrew Salamon, Lee Saper, Kevin Stoiber, Kimberley Supulver, Jason Van Beek, Tessa Van Beek, Robert Zimdar, Katherine Louise French, Karl Iagnemma, Kristen Miller, Roger Summons, Fred Goesmann, Walter Goetz, Stubbe Hviid, Micah Johnson, Matthew Lefavor, Eric Lyness, Elly Breves, M. Darby Dyar, Caleb Fassett, David F. Blake, Thomas Bristow, David DesMarais, Laurence Edwards, Robert Haberle, Tori Hoehler, Jeff Hollingsworth, Melinda Kahre, Leslie Keely, Christopher McKay, Lora Bleacher, William Brinckerhoff, David Choi, Pamela Conrad, Jason P. Dworkin, Melissa Floyd, Caroline Freissinet, James Garvin, Daniel Glavin, Daniel Harpold, Paul Mahaffy, David K. Martin, Amy McAdam, Alexander Pavlov, Eric Raaen, Michael D. Smith, Jennifer Stern, Florence Tan, Melissa Trainer, Michael Meyer, Mary Voytek, Robert C. Anderson, Andrew Aubrey, Luther W. Beegle, Alberto Behar, Diana Blaney, Fred Calef, Lance Christensen, Joy A. Crisp, Lauren DeFlores, Jason Feldman, Sabrina Feldman, Gregory Flesch, Joel Hurowitz, Insoo Jun, Didier Keymeulen, Justin Maki, Michael Mischna, John Michael Morookian, Timothy Parker, Betina Pavri, Marcel Schoppers, Aaron Sengstacken, John J. Simmonds, Nicole Spanovich, Manuel de la Torre Juarez, Christopher R. Webster, Albert Yen, Paul Douglas Archer, John H. Jones, Douglas Ming, Richard V. Morris, Paul Niles, Elizabeth Rampe, Thomas Nolan, Martin Fisk, Leon Radziemski, Bruce Barraclough, Steve Bender, Daniel Berman, Eldar Noe Dobrea, Robert Tokar, David Vaniman, Rebecca M. E. Williams, Aileen Yingst, Kevin Lewis, Laurie Leshin, Timothy Cleghorn, Wesley Huntress, Gérard Manhès, Judy Hudgins, Timothy Olson, Noel Stewart, Philippe Sarrazin, John Grant, Edward Vicenzi, Sharon A. Wilson, Victoria Hamilton, Joseph Peterson, Fedor Fedosov, Dmitry Golovin, Natalya Karpushkina, Alexander Kozyrev, Maxim Litvak, Alexey Malakhov, Igor Mitrofanov, Maxim Mokrousov, Sergey Nikiforov, Vasily Prokhorov, Anton Sanin, Vladislav Tretyakov, Alexey Varenikov, Andrey Vostrukhin, Ruslan Kuzmin, Benton Clark, Michael Wolff, Scott McLennan, Oliver Botta, Darrell Drake, Keri Bean, Mark Lemmon, Susanne P. Schwenzer, Ryan B. Anderson, Kenneth Herkenhoff, Ella Mae Lee, Robert Sucharski, Miguel Ángel de Pablo Hernández, Juan José Blanco Ávalos, Miguel Ramos, Charles Malespin, Ianik Plante, Jan-Peter Muller, Rafael Navarro-González, Ryan Ewing, William Boynton, Robert Downs, Mike Fitzgibbon, Karl Harshman, Shaunna Morrison, William Dietrich, Onno Kortmann, Marisa Palucis, Dawn Y. Sumner, Amy Williams, Günter Lugmair, Michael A. Wilson, David Rubin, Bruce Jakosky, Tonci Balic-Zunic, Jens Frydenvang, Jaqueline Kløvgaard Jensen, Kjartan Kinch, Asmus Koefoed, Morten Bo Madsen, Susan Louise Svane Stipp, Nick Boyd, John L. Campbell, Ralf Gellert, Glynis Perrett, Irina Pradler, Scott VanBommel, Samantha Jacob, Tobias Owen, Scott Rowland, Hannu Savijärvi, César Martín García, Reinhold Mueller-Mellin, John C. Bridges, Timothy McConnochie, Mehdi Benna, Heather Franz, Hannah Bower, Anna Brunner, Hannah Blau, Thomas Boucher, Marco Carmosino, Sushil Atreya, Harvey Elliott, Douglas Halleaux, Nilton Rennó, Michael Wong, Robert Pepin, Beverley Elliott, John Spray, Lucy Thompson, Suzanne Gordon, Horton Newsom, Ann Ollila, Joshua Williams, Paulo Vasconcelos, Jennifer Bentz, Kenneth Nealson, Radu Popa, Linda C. Kah, Jeffrey Moersch, Christopher Tate, Mackenzie Day, Gary Kocurek, Bernard Hallet, Ronald Sletten, Raymond Francis, Emily McCullough, Ed Cloutis, Inge Loes ten Kate, Raymond Arvidson, Abigail Fraeman, Daniel Scholes, Susan Slavney, Thomas Stein, Jennifer Ward, Jeffrey Berger, John E. Moores, NWO-NSO: The role of perchlorates in the preservation of organic compounds on Mars, Petrology, Southwest Research Institute [Boulder] (SwRI), Kiel University, NASA Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), German Aerospace Center (DLR), University of Nevada [Reno], Universities Space Research Association (USRA), Denver Museum of Nature and Science, NASA Headquarters, Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), GeoRessources, and Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS)
- Subjects
Extraterrestrial Environment ,Surface Properties ,Mars ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Cosmic ray ,Radiation Dosage ,Exploration of Mars ,Astrobiology ,Martian surface ,Exobiology ,galactic cosmic rays ,solar energetic particles ,Mars Science Laboratory’s Curiosity rover ,Humans ,Organic Chemicals ,Particle radiation ,Martian ,Radiation Assessment Detector (RAD) ,Multidisciplinary ,Mars Exploration Program ,Space Flight ,Radiation assessment detector ,13. Climate action ,Health threat from cosmic rays ,Deinococcus ,Cosmic Radiation - Abstract
International audience; The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for similar to 300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.
- Published
- 2014
50. Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere
- Author
-
Chris R, Webster, Paul R, Mahaffy, Gregory J, Flesch, Paul B, Niles, John H, Jones, Laurie A, Leshin, Sushil K, Atreya, Jennifer C, Stern, Lance E, Christensen, Tobias, Owen, Heather, Franz, Robert O, Pepin, Andrew, Steele, Cherie, Achilles, Christophe, Agard, José Alexandre, Alves Verdasca, Robert, Anderson, Ryan, Anderson, Doug, Archer, Carlos, Armiens-Aparicio, Ray, Arvidson, Evgeny, Atlaskin, Andrew, Aubrey, Burt, Baker, Michael, Baker, Tonci, Balic-Zunic, David, Baratoux, Julien, Baroukh, Bruce, Barraclough, Keri, Bean, Luther, Beegle, Alberto, Behar, James, Bell, Steve, Bender, Mehdi, Benna, Jennifer, Bentz, Gilles, Berger, Jeff, Berger, Daniel, Berman, David, Bish, David F, Blake, Juan J, Blanco Avalos, Diana, Blaney, Jen, Blank, Hannah, Blau, Lora, Bleacher, Eckart, Boehm, Oliver, Botta, Stephan, Böttcher, Thomas, Boucher, Hannah, Bower, Nick, Boyd, Bill, Boynton, Elly, Breves, John, Bridges, Nathan, Bridges, William, Brinckerhoff, David, Brinza, Thomas, Bristow, Claude, Brunet, Anna, Brunner, Will, Brunner, Arnaud, Buch, Mark, Bullock, Sönke, Burmeister, Michel, Cabane, Fred, Calef, James, Cameron, John, Campbell, Bruce, Cantor, Michael, Caplinger, Javier, Caride Rodríguez, Marco, Carmosino, Isaías, Carrasco Blázquez, Antoine, Charpentier, Steve, Chipera, David, Choi, Benton, Clark, Sam, Clegg, Timothy, Cleghorn, Ed, Cloutis, George, Cody, Patrice, Coll, Pamela, Conrad, David, Coscia, Agnès, Cousin, David, Cremers, Joy, Crisp, Alain, Cros, Frank, Cucinotta, Claude, d'Uston, Scott, Davis, Mackenzie, Day, Manuel, de la Torre Juarez, Lauren, DeFlores, Dorothea, DeLapp, Julia, DeMarines, David, DesMarais, William, Dietrich, Robert, Dingler, Christophe, Donny, Bob, Downs, Darrell, Drake, Gilles, Dromart, Audrey, Dupont, Brian, Duston, Jason, Dworkin, M Darby, Dyar, Lauren, Edgar, Kenneth, Edgett, Christopher, Edwards, Laurence, Edwards, Bethany, Ehlmann, Bent, Ehresmann, Jen, Eigenbrode, Beverley, Elliott, Harvey, Elliott, Ryan, Ewing, Cécile, Fabre, Alberto, Fairén, Ken, Farley, Jack, Farmer, Caleb, Fassett, Laurent, Favot, Donald, Fay, Fedor, Fedosov, Jason, Feldman, Sabrina, Feldman, Marty, Fisk, Mike, Fitzgibbon, Melissa, Floyd, Lorenzo, Flückiger, Olivier, Forni, Abby, Fraeman, Raymond, Francis, Pascaline, François, Caroline, Freissinet, Katherine Louise, French, Jens, Frydenvang, Alain, Gaboriaud, Marc, Gailhanou, James, Garvin, Olivier, Gasnault, Claude, Geffroy, Ralf, Gellert, Maria, Genzer, Daniel, Glavin, Austin, Godber, Fred, Goesmann, Walter, Goetz, Dmitry, Golovin, Felipe, Gómez Gómez, Javier, Gómez-Elvira, Brigitte, Gondet, Suzanne, Gordon, Stephen, Gorevan, John, Grant, Jennifer, Griffes, David, Grinspoon, John, Grotzinger, Philippe, Guillemot, Jingnan, Guo, Sanjeev, Gupta, Scott, Guzewich, Robert, Haberle, Douglas, Halleaux, Bernard, Hallet, Vicky, Hamilton, Craig, Hardgrove, David, Harker, Daniel, Harpold, Ari-Matti, Harri, Karl, Harshman, Donald, Hassler, Harri, Haukka, Alex, Hayes, Ken, Herkenhoff, Paul, Herrera, Sebastian, Hettrich, Ezat, Heydari, Victoria, Hipkin, Tori, Hoehler, Jeff, Hollingsworth, Judy, Hudgins, Wesley, Huntress, Joel, Hurowitz, Stubbe, Hviid, Karl, Iagnemma, Steve, Indyk, Guy, Israël, Ryan, Jackson, Samantha, Jacob, Bruce, Jakosky, Elsa, Jensen, Jaqueline Kløvgaard, Jensen, Jeffrey, Johnson, Micah, Johnson, Steve, Johnstone, Andrea, Jones, Jonathan, Joseph, Insoo, Jun, Linda, Kah, Henrik, Kahanpää, Melinda, Kahre, Natalya, Karpushkina, Wayne, Kasprzak, Janne, Kauhanen, Leslie, Keely, Osku, Kemppinen, Didier, Keymeulen, Myung-Hee, Kim, Kjartan, Kinch, Penny, King, Laurel, Kirkland, Gary, Kocurek, Asmus, Koefoed, Jan, Köhler, Onno, Kortmann, Alexander, Kozyrev, Jill, Krezoski, Daniel, Krysak, Ruslan, Kuzmin, Jean Luc, Lacour, Vivian, Lafaille, Yves, Langevin, Nina, Lanza, Jeremie, Lasue, Stéphane, Le Mouélic, Ella Mae, Lee, Qiu-Mei, Lee, David, Lees, Matthew, Lefavor, Mark, Lemmon, Alain, Lepinette Malvitte, Richard, Léveillé, Éric, Lewin-Carpintier, Kevin, Lewis, Shuai, Li, Leslie, Lipkaman, Cynthia, Little, Maxim, Litvak, Eric, Lorigny, Guenter, Lugmair, Angela, Lundberg, Eric, Lyness, Morten, Madsen, Justin, Maki, Alexey, Malakhov, Charles, Malespin, Michael, Malin, Nicolas, Mangold, Gérard, Manhes, Heidi, Manning, Geneviève, Marchand, Mercedes, Marín Jiménez, César, Martín García, Dave, Martin, Mildred, Martin, Jesús, Martínez-Frías, Javier, Martín-Soler, F Javier, Martín-Torres, Patrick, Mauchien, Sylvestre, Maurice, Amy, McAdam, Elaina, McCartney, Timothy, McConnochie, Emily, McCullough, Ian, McEwan, Christopher, McKay, Scott, McLennan, Sean, McNair, Noureddine, Melikechi, Pierre-Yves, Meslin, Michael, Meyer, Alissa, Mezzacappa, Hayden, Miller, Kristen, Miller, Ralph, Milliken, Douglas, Ming, Michelle, Minitti, Michael, Mischna, Igor, Mitrofanov, Jeff, Moersch, Maxim, Mokrousov, Antonio, Molina Jurado, John, Moores, Luis, Mora-Sotomayor, John Michael, Morookian, Richard, Morris, Shaunna, Morrison, Reinhold, Mueller-Mellin, Jan-Peter, Muller, Guillermo, Muñoz Caro, Marion, Nachon, Sara, Navarro López, Rafael, Navarro-González, Kenneth, Nealson, Ara, Nefian, Tony, Nelson, Megan, Newcombe, Claire, Newman, Horton, Newsom, Sergey, Nikiforov, Brian, Nixon, Eldar, Noe Dobrea, Thomas, Nolan, Dorothy, Oehler, Ann, Ollila, Timothy, Olson, Miguel Ángel, de Pablo Hernández, Alexis, Paillet, Etienne, Pallier, Marisa, Palucis, Timothy, Parker, Yann, Parot, Kiran, Patel, Mark, Paton, Gale, Paulsen, Alex, Pavlov, Betina, Pavri, Verónica, Peinado-González, Laurent, Peret, Rene, Perez, Glynis, Perrett, Joe, Peterson, Cedric, Pilorget, Patrick, Pinet, Jorge, Pla-García, Ianik, Plante, Franck, Poitrasson, Jouni, Polkko, Radu, Popa, Liliya, Posiolova, Arik, Posner, Irina, Pradler, Benito, Prats, Vasily, Prokhorov, Sharon Wilson, Purdy, Eric, Raaen, Leon, Radziemski, Scot, Rafkin, Miguel, Ramos, Elizabeth, Rampe, François, Raulin, Michael, Ravine, Günther, Reitz, Nilton, Rennó, Melissa, Rice, Mark, Richardson, François, Robert, Kevin, Robertson, José Antonio, Rodriguez Manfredi, Julio J, Romeral-Planelló, Scott, Rowland, David, Rubin, Muriel, Saccoccio, Andrew, Salamon, Jennifer, Sandoval, Anton, Sanin, Sara Alejandra, Sans Fuentes, Lee, Saper, Philippe, Sarrazin, Violaine, Sautter, Hannu, Savijärvi, Juergen, Schieber, Mariek, Schmidt, Walter, Schmidt, Daniel, Scholes, Marcel, Schoppers, Susanne, Schröder, Susanne, Schwenzer, Eduardo, Sebastian Martinez, Aaron, Sengstacken, Ruslan, Shterts, Kirsten, Siebach, Tero, Siili, Jeff, Simmonds, Jean-Baptiste, Sirven, Susie, Slavney, Ronald, Sletten, Michael, Smith, Pablo, Sobrón Sánchez, Nicole, Spanovich, John, Spray, Steven, Squyres, Katie, Stack, Fabien, Stalport, Thomas, Stein, Noel, Stewart, Susan Louise Svane, Stipp, Kevin, Stoiber, Ed, Stolper, Bob, Sucharski, Rob, Sullivan, Roger, Summons, Dawn, Sumner, Vivian, Sun, Kimberley, Supulver, Brad, Sutter, Cyril, Szopa, Florence, Tan, Christopher, Tate, Samuel, Teinturier, Inge, ten Kate, Peter, Thomas, Lucy, Thompson, Robert, Tokar, Mike, Toplis, Josefina, Torres Redondo, Melissa, Trainer, Allan, Treiman, Vladislav, Tretyakov, Roser, Urqui-O'Callaghan, Jason, Van Beek, Tessa, Van Beek, Scott, VanBommel, David, Vaniman, Alexey, Varenikov, Ashwin, Vasavada, Paulo, Vasconcelos, Edward, Vicenzi, Andrey, Vostrukhin, Mary, Voytek, Meenakshi, Wadhwa, Jennifer, Ward, Eddie, Weigle, Danika, Wellington, Frances, Westall, Roger Craig, Wiens, Mary Beth, Wilhelm, Amy, Williams, Joshua, Williams, Rebecca, Williams, Richard B, Williams, Mike, Wilson, Robert, Wimmer-Schweingruber, Mike, Wolff, Mike, Wong, James, Wray, Megan, Wu, Charles, Yana, Albert, Yen, Aileen, Yingst, Cary, Zeitlin, Robert, Zimdar, and María-Paz, Zorzano Mier
- Subjects
Atmosphere ,Martian ,chemistry.chemical_compound ,Multidisciplinary ,Meteorite ,chemistry ,Stable isotope ratio ,Sample Analysis at Mars ,Carbonate ,Mars Exploration Program ,Atmosphere of Mars ,Astrobiology - Abstract
Mars' Atmosphere from Curiosity The Sample Analysis at Mars (SAM) instrument on the Curiosity rover that landed on Mars in August last year is designed to study the chemical and isotopic composition of the martian atmosphere. Mahaffy et al. (p. 263 ) present volume-mixing ratios of Mars' five major atmospheric constituents (CO 2 , Ar, N 2 , O 2 , and CO) and isotope measurements of 40 Ar/ 36 Ar and C and O in CO 2 , based on data from one of SAM's instruments, obtained between 31 August and 21 November 2012. Webster et al. (p. 260 ) used data from another of SAM's instruments obtained around the same period to determine isotope ratios of H, C, and O in atmospheric CO 2 and H 2 O. Agreement between the isotopic ratios measured by SAM with those of martian meteorites, measured in laboratories on Earth, confirms the origin of these meteorites and implies that the current atmospheric reservoirs of CO 2 and H 2 O were largely established after the period of early atmospheric loss some 4 billion years ago.
- Published
- 2013
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.