8 results on '"Pickens CO"'
Search Results
2. Bacterial Superinfection Pneumonia in Patients Mechanically Ventilated for COVID-19 Pneumonia.
- Author
-
Pickens CO, Gao CA, Cuttica MJ, Smith SB, Pesce LL, Grant RA, Kang M, Morales-Nebreda L, Bavishi AA, Arnold JM, Pawlowski A, Qi C, Budinger GRS, Singer BD, and Wunderink RG
- Abstract
Rationale: Current guidelines recommend patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia receive empirical antibiotics for suspected bacterial superinfection on the basis of weak evidence. Rates of ventilator-associated pneumonia (VAP) in clinical trials of patients with SARS-CoV-2 pneumonia are unexpectedly low. Objectives: We conducted an observational single-center study to determine the prevalence and etiology of bacterial superinfection at the time of initial intubation and the incidence and etiology of subsequent bacterial VAP in patients with severe SARS-CoV-2 pneumonia. Methods: Bronchoscopic BAL fluid samples from all patients with SARS-CoV-2 pneumonia requiring mechanical ventilation were analyzed using quantitative cultures and a multiplex PCR panel. Actual antibiotic use was compared with guideline-recommended therapy. Measurements and Main Results: We analyzed 386 BAL samples from 179 patients with SARS-CoV-2 pneumonia requiring mechanical ventilation. Bacterial superinfection within 48 hours of intubation was detected in 21% of patients. Seventy-two patients (44.4%) developed at least one VAP episode (VAP incidence rate = 45.2/1,000 ventilator days); 15 (20.8%) initial VAPs were caused by difficult-to-treat pathogens. The clinical criteria did not distinguish between patients with or without bacterial superinfection. BAL-based management was associated with significantly reduced antibiotic use compared with guideline recommendations. Conclusions: In patients with SARS-CoV-2 pneumonia requiring mechanical ventilation, bacterial superinfection at the time of intubation occurs in <25% of patients. Guideline-based empirical antibiotic management at the time of intubation results in antibiotic overuse. Bacterial VAP developed in 44% of patients and could not be accurately identified in the absence of microbiologic analysis of BAL fluid.
- Published
- 2021
- Full Text
- View/download PDF
3. Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia.
- Author
-
Grant RA, Morales-Nebreda L, Markov NS, Swaminathan S, Querrey M, Guzman ER, Abbott DA, Donnelly HK, Donayre A, Goldberg IA, Klug ZM, Borkowski N, Lu Z, Kihshen H, Politanska Y, Sichizya L, Kang M, Shilatifard A, Qi C, Lomasney JW, Argento AC, Kruser JM, Malsin ES, Pickens CO, Smith SB, Walter JM, Pawlowski AE, Schneider D, Nannapaneni P, Abdala-Valencia H, Bharat A, Gottardi CJ, Budinger GRS, Misharin AV, Singer BD, and Wunderink RG
- Subjects
- Bronchoalveolar Lavage Fluid chemistry, Bronchoalveolar Lavage Fluid immunology, COVID-19 genetics, Cohort Studies, Humans, Interferon-gamma immunology, Interferons immunology, Interferons metabolism, Macrophages, Alveolar metabolism, Macrophages, Alveolar virology, Pneumonia, Viral genetics, RNA-Seq, SARS-CoV-2 immunology, Signal Transduction immunology, Single-Cell Analysis, T-Lymphocytes metabolism, Time Factors, COVID-19 immunology, COVID-19 virology, Macrophages, Alveolar immunology, Pneumonia, Viral immunology, Pneumonia, Viral virology, SARS-CoV-2 pathogenicity, T-Lymphocytes immunology
- Abstract
Some patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop severe pneumonia and acute respiratory distress syndrome
1 (ARDS). Distinct clinical features in these patients have led to speculation that the immune response to virus in the SARS-CoV-2-infected alveolus differs from that in other types of pneumonia2 . Here we investigate SARS-CoV-2 pathobiology by characterizing the immune response in the alveoli of patients infected with the virus. We collected bronchoalveolar lavage fluid samples from 88 patients with SARS-CoV-2-induced respiratory failure and 211 patients with known or suspected pneumonia from other pathogens, and analysed them using flow cytometry and bulk transcriptomic profiling. We performed single-cell RNA sequencing on 10 bronchoalveolar lavage fluid samples collected from patients with severe coronavirus disease 2019 (COVID-19) within 48 h of intubation. In the majority of patients with SARS-CoV-2 infection, the alveolar space was persistently enriched in T cells and monocytes. Bulk and single-cell transcriptomic profiling suggested that SARS-CoV-2 infects alveolar macrophages, which in turn respond by producing T cell chemoattractants. These T cells produce interferon-γ to induce inflammatory cytokine release from alveolar macrophages and further promote T cell activation. Collectively, our results suggest that SARS-CoV-2 causes a slowly unfolding, spatially limited alveolitis in which alveolar macrophages containing SARS-CoV-2 and T cells form a positive feedback loop that drives persistent alveolar inflammation.- Published
- 2021
- Full Text
- View/download PDF
4. Bacterial superinfection pneumonia in SARS-CoV-2 respiratory failure.
- Author
-
Pickens CO, Gao CA, Cuttica M, Smith SB, Pesce L, Grant R, Kang M, Morales-Nebreda L, Bavishi AA, Arnold J, Pawlowski A, Qi C, Budinger GS, Singer BD, and Wunderink RG
- Abstract
Background: Severe community-acquired pneumonia secondary to SARS-CoV-2 is a leading cause of death. Current guidelines recommend patients with SARS-CoV-2 pneumonia receive empirical antibiotic therapy for suspected bacterial superinfection, but little evidence supports these recommendations., Methods: We obtained bronchoscopic bronchoalveolar lavage (BAL) samples from patients with SARS-CoV-2 pneumonia requiring mechanical ventilation. We analyzed BAL samples with multiplex PCR and quantitative culture to determine the prevalence of superinfecting pathogens at the time of intubation and identify episodes of ventilator-associated pneumonia (VAP) over the course of mechanical ventilation. We compared antibiotic use with guideline-recommended care., Results: The 179 ventilated patients with severe SARS-CoV-2 pneumonia discharged from our hospital by June 30, 2020 were analyzed. 162 (90.5%) patients had at least one BAL procedure; 133 (74.3%) within 48 hours after intubation and 112 (62.6%) had at least one subsequent BAL during their hospitalization. A superinfecting pathogen was identified within 48 hours of intubation in 28/133 (21%) patients, most commonly methicillin-sensitive Staphylococcus aureus or Streptococcus species (21/28, 75%). BAL-based treatment reduced antibiotic use compared with guideline-recommended care. 72 patients (44.4%) developed at least one VAP episode. Only 15/72 (20.8%) of initial VAPs were attributable to multidrug-resistant pathogens. The incidence rate of VAP was 45.2/1000 ventilator days., Conclusions: With use of sensitive diagnostic tools, bacterial superinfection at the time of intubation is infrequent in patients with severe SARS-CoV-2 pneumonia. Treatment based on current guidelines would result in substantial antibiotic overuse. The incidence rate of VAP in ventilated patients with SARS-CoV-2 pneumonia are higher than historically reported.
- Published
- 2021
- Full Text
- View/download PDF
5. Alveolitis in severe SARS-CoV-2 pneumonia is driven by self-sustaining circuits between infected alveolar macrophages and T cells.
- Author
-
Grant RA, Morales-Nebreda L, Markov NS, Swaminathan S, Guzman ER, Abbott DA, Donnelly HK, Donayre A, Goldberg IA, Klug ZM, Borkowski N, Lu Z, Kihshen H, Politanska Y, Sichizya L, Kang M, Shilatifard A, Qi C, Argento AC, Kruser JM, Malsin ES, Pickens CO, Smith S, Walter JM, Pawlowski AE, Schneider D, Nannapaneni P, Abdala-Valencia H, Bharat A, Gottardi CJ, Budinger GS, Misharin AV, Singer BD, and Wunderink RG
- Abstract
Some patients infected with Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) develop severe pneumonia and the acute respiratory distress syndrome (ARDS) [1]. Distinct clinical features in these patients have led to speculation that the immune response to virus in the SARS-CoV-2-infected alveolus differs from other types of pneumonia [2]. We collected bronchoalveolar lavage fluid samples from 86 patients with SARS-CoV-2-induced respiratory failure and 252 patients with known or suspected pneumonia from other pathogens and subjected them to flow cytometry and bulk transcriptomic profiling. We performed single cell RNA-Seq in 5 bronchoalveolar lavage fluid samples collected from patients with severe COVID-19 within 48 hours of intubation. In the majority of patients with SARS-CoV-2 infection at the onset of mechanical ventilation, the alveolar space is persistently enriched in alveolar macrophages and T cells without neutrophilia. Bulk and single cell transcriptomic profiling suggest SARS-CoV-2 infects alveolar macrophages that respond by recruiting T cells. These T cells release interferon-gamma to induce inflammatory cytokine release from alveolar macrophages and further promote T cell recruitment. Our results suggest SARS-CoV-2 causes a slowly unfolding, spatially-limited alveolitis in which alveolar macrophages harboring SARS-CoV-2 transcripts and T cells form a positive feedback loop that drives progressive alveolar inflammation. This manuscript is accompanied by an online resource: https://www.nupulmonary.org/covid-19/., One Sentence Summary: SARS-CoV-2-infected alveolar macrophages form positive feedback loops with T cells in patients with severe COVID-19.
- Published
- 2020
- Full Text
- View/download PDF
6. Corrigendum: Detection of respiratory pathogens in clinical samples using metagenomic shotgun sequencing.
- Author
-
Qi C, Hountras P, Pickens CO, Walter JM, Kruser JM, Singer BD, Seed P, Green SJ, and Wunderink RG
- Published
- 2020
- Full Text
- View/download PDF
7. Detection of respiratory pathogens in clinical samples using metagenomic shotgun sequencing.
- Author
-
Qi C, Hountras P, Pickens CO, Walter JM, Kruser JM, Singer BD, Seed P, Green SJ, and Wunderink RG
- Subjects
- Adult, Aged, Aged, 80 and over, Bronchoalveolar Lavage Fluid microbiology, Female, Humans, Male, Middle Aged, Pilot Projects, Pneumonia, Bacterial diagnosis, Pneumonia, Bacterial etiology, Respiration, Artificial adverse effects, Young Adult, Bacteria genetics, Bacteria isolation & purification, Metagenomics, Pneumonia, Bacterial microbiology, Pneumonia, Ventilator-Associated diagnosis, Pneumonia, Ventilator-Associated microbiology
- Abstract
Purpose: In this pilot study, we used shotgun metagenome sequencing (SMS) strategy on bronchoalveolar lavage (BAL) samples from hospitalized patients with suspected ventilate-associated pneumonia (VAP) in order to explore its potential for improving detection of ventilator-associated-pneumonia (VAP) etiology., Methodology: In total, 67BAL samples from patients with VAP were tested with SMS strategy for detection of respiratory pathogens. Results of SMS and routine respiratory culture were compared., Results: SMS detected all pathogens recovered by cultivation approaches. In addition, putative pathogens other than the organisms recovered by culture were detected by SMS in culture-positive samples. In 40 of 45 (89 %) culture-negative samples, a potential pathogen was detected by SMS., Conclusion: This proof-of-concept study demonstrates that SMS is able to detect bacterial, fungal and viral organisms in BAL, including culture-negative cases.
- Published
- 2019
- Full Text
- View/download PDF
8. Typhoid Fever.
- Author
-
Groover JR
- Published
- 1878
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.