1. DocGenome: An Open Large-scale Scientific Document Benchmark for Training and Testing Multi-modal Large Language Models
- Author
-
Xia, Renqiu, Mao, Song, Yan, Xiangchao, Zhou, Hongbin, Zhang, Bo, Peng, Haoyang, Pi, Jiahao, Fu, Daocheng, Wu, Wenjie, Ye, Hancheng, Feng, Shiyang, Wang, Bin, Xu, Chao, He, Conghui, Cai, Pinlong, Dou, Min, Shi, Botian, Zhou, Sheng, Wang, Yongwei, Yan, Junchi, Wu, Fei, and Qiao, Yu
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Scientific documents record research findings and valuable human knowledge, comprising a vast corpus of high-quality data. Leveraging multi-modality data extracted from these documents and assessing large models' abilities to handle scientific document-oriented tasks is therefore meaningful. Despite promising advancements, large models still perform poorly on multi-page scientific document extraction and understanding tasks, and their capacity to process within-document data formats such as charts and equations remains under-explored. To address these issues, we present DocGenome, a structured document benchmark constructed by annotating 500K scientific documents from 153 disciplines in the arXiv open-access community, using our custom auto-labeling pipeline. DocGenome features four key characteristics: 1) Completeness: It is the first dataset to structure data from all modalities including 13 layout attributes along with their LaTeX source codes. 2) Logicality: It provides 6 logical relationships between different entities within each scientific document. 3) Diversity: It covers various document-oriented tasks, including document classification, visual grounding, document layout detection, document transformation, open-ended single-page QA and multi-page QA. 4) Correctness: It undergoes rigorous quality control checks conducted by a specialized team. We conduct extensive experiments to demonstrate the advantages of DocGenome and objectively evaluate the performance of large models on our benchmark., Comment: Homepage of DocGenome: https://unimodal4reasoning.github.io/DocGenome_page 22 pages, 11 figures
- Published
- 2024