1. Optimization of Yucca filamentosa fiber based graft copolymer through response surface methodology and evaluation of physico-chemical properties.
- Author
-
Kaur, Surjit and Jana, Mithu Maiti
- Subjects
- *
RESPONSE surfaces (Statistics) , *NATURAL fibers , *X-ray diffraction , *DESIGN techniques , *EXPERIMENTAL design - Abstract
The study of the physico-chemical modification of Yucca filamentosa (Yf) natural fiber by graft copolymerization with ethylmethacrylate using ferrous ammonium sulfate-potassium persulfate as a redox initiator has been reported in the article. Initially, six process parameters; reaction duration, reaction temperature, solvent amount, pH, FAS:KPS ratio, and monomer concentration were used in the study in a sequential experimental design technique, and the significant process variables affecting the yield of the graft copolymer were identified. The Resolution-V design method identified the significant parameters as the reaction temperature, amount of solvent, and the concentration of monomer. In second phase of the study, the screened variables were utilized in the development of a model through the technique of response surface methodology (RSM) for the prediction of the yields, and its optimization. The developed RSM model fitted well with the experimental data, and predicted for the optimal conditions of reactions as temperature 50 °C, solvent 100 ml, and the monomer 3.05 × 10−3 mol/L; at which the highest graft yield percentage obtained was 124.2%. The techniques of FTIR, SEM, and XRD were used for the characterization graft copolymers. Studies of the various physico-chemical properties showed that the produced graft copolymers were more resistant than the natural fibers. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF