22 results on '"Phuntumart V"'
Search Results
2. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans
- Author
-
Haas, B.J., Kamoun, S., Zody, M.C., Jiang, R.H.Y., Handsaker, R.E., Cano, L.M., Grabherr, M., Kodira, C.D., Raffaele, S., Torto-Alalibo, T., Bozkurt, T.O., Ah-Fong, A.M.V., Alvarado, L., Anderson, V.L., Armstrong, M.R., Avrova, A., Baxter, L., Beynon, J., Boevink, P.C., Bollmann, S.R., Bos, J.I.B., Bulone, V., Cai, G., Cakir, C., Carrington, J.C., Chawner, M., Conti, L., Costanzo, S., Ewan, R., Fahlgren, N., Fischbach, M.A., Fugelstad, J., Gilroy, E.M., Gnerre, S., Green, P.J., Grenville-Briggs, L.J., Griffith, J., Grunwald, N.J., Horn, K., Horner, N.R., Hu, C.H., Huitema, E., Jeong, D.H., Jones, A.M.E., Jones, J.D.G., Jones, R.W., Karlsson, E.K., Kunjeti, S.G., Lamour, K., Liu, Z., Ma, L., Maclean, D., Chibucos, M.C., McDonald, H., McWalters, J., Meijer, H.J.G., Morgan, W., Morris, P.F., Munro, C.A., O'Neill, K., Ospina-Giraldo, M., Pinzon, A., Pritchard, L., Ramsahoye, B., Ren, Q., Restrepo, S., Roy, S., Sadanandom, A., Savidor, A., Schornack, S., Schwartz, D.C., Schumann, U.D., Schwessinger, B., Seyer, L., Sharpe, T., Silvar, C., Song, J., Studholme, D.J., Sykes, S., Thines, M., van de Vondervoort, P.J.I., Phuntumart, V., Wawra, S., Weide, R., Win, J., Young, C., Zhou, S., Fry, W., Meyers, B.C., van West, P., Ristaino, J., Govers, F., Birch, P.R.J., Whisson, S.C., Judelson, H.S., Nusbaum, C., Haas, B.J., Kamoun, S., Zody, M.C., Jiang, R.H.Y., Handsaker, R.E., Cano, L.M., Grabherr, M., Kodira, C.D., Raffaele, S., Torto-Alalibo, T., Bozkurt, T.O., Ah-Fong, A.M.V., Alvarado, L., Anderson, V.L., Armstrong, M.R., Avrova, A., Baxter, L., Beynon, J., Boevink, P.C., Bollmann, S.R., Bos, J.I.B., Bulone, V., Cai, G., Cakir, C., Carrington, J.C., Chawner, M., Conti, L., Costanzo, S., Ewan, R., Fahlgren, N., Fischbach, M.A., Fugelstad, J., Gilroy, E.M., Gnerre, S., Green, P.J., Grenville-Briggs, L.J., Griffith, J., Grunwald, N.J., Horn, K., Horner, N.R., Hu, C.H., Huitema, E., Jeong, D.H., Jones, A.M.E., Jones, J.D.G., Jones, R.W., Karlsson, E.K., Kunjeti, S.G., Lamour, K., Liu, Z., Ma, L., Maclean, D., Chibucos, M.C., McDonald, H., McWalters, J., Meijer, H.J.G., Morgan, W., Morris, P.F., Munro, C.A., O'Neill, K., Ospina-Giraldo, M., Pinzon, A., Pritchard, L., Ramsahoye, B., Ren, Q., Restrepo, S., Roy, S., Sadanandom, A., Savidor, A., Schornack, S., Schwartz, D.C., Schumann, U.D., Schwessinger, B., Seyer, L., Sharpe, T., Silvar, C., Song, J., Studholme, D.J., Sykes, S., Thines, M., van de Vondervoort, P.J.I., Phuntumart, V., Wawra, S., Weide, R., Win, J., Young, C., Zhou, S., Fry, W., Meyers, B.C., van West, P., Ristaino, J., Govers, F., Birch, P.R.J., Whisson, S.C., Judelson, H.S., and Nusbaum, C.
- Abstract
Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement(1). To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world's population(1). Current annual worldwide potato crop losses due to late blight are conservatively estimated at $6.7 billion(2). Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars(3,4). Here we report the sequence of the P. infestans genome, which at similar to 240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for similar to 74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.
- Published
- 2009
3. Spatial organization of putrescine synthesis in plants.
- Author
-
Joshi K, Ahmed S, Ge L, Avestakh A, Oloyede B, Phuntumart V, Kalinoski A, and Morris PF
- Subjects
- Nicotiana genetics, Nicotiana metabolism, Arabidopsis genetics, Arabidopsis metabolism, Plant Proteins metabolism, Plant Proteins genetics, Plant Leaves metabolism, Plant Leaves genetics, Oryza genetics, Oryza metabolism, Gene Expression Regulation, Plant, Ornithine Decarboxylase metabolism, Ornithine Decarboxylase genetics, Carboxy-Lyases metabolism, Carboxy-Lyases genetics, Chloroplasts metabolism, Putrescine metabolism
- Abstract
Three plant pathways for the synthesis of putrescine have been described to date. These are the synthesis of putrescine from ornithine, by ornithine decarboxylase (ODC); the synthesis of putrescine from arginine by arginine decarboxylase, agmatine iminohydrolase (AIH) and N-carbamoylputrescine amidohydrolase (NLP1); and arginine decarboxylase and agmatinase. To address how these pathways are organized in plants, we have used transient expression analysis of these genes in the leaves of Nicotiana benthamiana. Brassicas do not have ODC, but the single ODC gene from rice and one of the soybean genes, were localized to the ER. Transient expression of the rice agmatinase gene showed that it was localized to the mitochondria. In A. thaliana there are five isoforms of AIH and three isoforms of NLP1. Stable GFP-tagged transformants of the longest isoforms of AIH and NLP1 showed that both proteins were localized to the ER, but in tissues with chloroplasts, the localization was concentrated to lamellae adjacent to chloroplasts. Transient expression analyses showed that four of the isoforms of AIH and all of the isoforms of NLP1 were localized to the ER. However, AIH.4 was localized to the chloroplast. Combining these results with other published data, reveal that putrescine synthesis is excluded from the cytoplasm and is spatially localized to the chloroplast, ER, and likely the mitochondria. Synthesis of putrescine in the ER may facilitate cell to cell transport via plasmodesmata, or secretion via vesicles. Differential expression of these pathways may enable putrescine-mediated activation of hormone-responsive genes., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
4. Comprehensive Investigation of Die-Back Disease Caused by Fusarium in Durian.
- Author
-
Pongpisutta R, Keawmanee P, Sanguansub S, Dokchan P, Bincader S, Phuntumart V, and Rattanakreetakul C
- Abstract
Durian ( Durio zibethinus L.) is an economically important crop in the southern and eastern parts of Thailand. The occurrence of die-back disease caused by plant pathogenic fungi poses a serious threat to the quality and quantity of durian products. However, the identification of causal agents has been a subject of mixed information and uncertainty. In this research, we conducted a comprehensive investigation of die-back disease in nine durian plantations located in Thailand. By analyzing a total of 86 Fusarium isolates obtained from infected tissues, we aimed to provide clarity and a better understanding of the fungal pathogens responsible for this economically significant disease. Through a combination of colony characteristics, microscopic morphology, and a multilocus sequence analysis (MLSA) of the internal transcribed spacer (ITS) region, translation elongation factor 1-α ( TEF1 - α ) gene, and RNA polymerase II gene ( RPB2 ) sequences, we were able to identify and categorize the isolates into three distinct groups, namely, Fusarium incarnatum , F. solani , and F. mangiferae. Koch's postulates demonstrated that only F. incarnatum and F. solani were capable of causing die-back symptoms. This research represents the first report of F. incarnatum as a causal agent of die-back disease in durian in Thailand. Additionally, this study uncovers the association of ambrosia beetles and F. solani , highlighting the potential involvement of E. similia in facilitating the spread of die-back disease caused by Fusarium in durian.
- Published
- 2023
- Full Text
- View/download PDF
5. Two Newly Identified Colletotrichum Species Associated with Mango Anthracnose in Central Thailand.
- Author
-
Rattanakreetakul C, Keawmanee P, Bincader S, Mongkolporn O, Phuntumart V, Chiba S, and Pongpisutta R
- Abstract
Anthracnose caused by Colletotrichum spp. is one of the major problems in mango production worldwide, including Thailand. All mango cultivars are susceptible, but Nam Dok Mai See Thong (NDMST) is the most vulnerable. Through a single spore isolation method, a total of 37 isolates of Colletotrichum spp. were obtained from NDMST showing anthracnose symptoms. Identification was performed using a combination of morphology characteristics, Koch's postulates, and phylogenetic analysis. The pathogenicity assay and Koch's postulates on leaves and fruit confirmed that all Colletotrichum spp. tested were causal agents of mango anthracnose. Multilocus analysis using DNA sequences of internal transcribed spacer (ITS) regions, β-tubulin ( TUB2 ), actin ( ACT ), and chitin synthase ( CHS-1 ) was performed for molecular identification. Two concatenated phylogenetic trees were constructed using either two-loci of ITS and TUB2 , or four-loci of ITS, TUB2 , ACT , and CHS-1. Both phylogenetic trees were indistinguishable and showed that these 37 isolates belong to C. acutatum , C. asianum , C. gloeosporioides , and C. siamense. Our results indicated that using at least two loci of ITS and TUB2, were sufficient to infer Colletotrichum species complexes. Of 37 isolates, C. gloeosporioides was the most dominant species (19 isolates), followed by C. asianum (10 isolates), C. acutatum (5 isolates), and C. siamense (3 isolates). In Thailand, C. gloeosporioides and C. acutatum have been reported to cause anthracnose in mango, however, this is the first report of C. asianum and C. siamense associated with mango anthracnose in central Thailand.
- Published
- 2023
- Full Text
- View/download PDF
6. Reversal of temperature responses to methylone mediated through bi-directional fecal microbiota transplantation between hyperthermic tolerant and naïve rats.
- Author
-
Goldsmith R, Aburahma A, Pachhain S, Choudhury SR, Phuntumart V, Larsen R, Ward CS, and Sprague JE
- Abstract
The synthetic cathinone ("bath salt") methylone induces a hyperthermia response and with chronic administration tolerance to this hyperthermia has been reported. The microbiome-gut-brain axis has been implicated in multiple bodily systems and pathologies, and intentional manipulation of the gut-microbiome has yielded clinically significant results. Here, we examined the effects of bi-directional Fecal Microbiota Transplantation (FMT) between methylone-induced hyperthermic tolerant (MHT) and methylone-naïve (MN) rats. Rats treated with methylone once per week developed tolerance to methylone-induced hyperthermia by the fourth week. Once tolerant, daily bi-directional FMT between the two groups were performed for seven days prior to the next methylone treatment. The FMT abated the developed tolerance in the MHT group. When treated with methylone for the first time following FMT, recipient MN rats displayed significant tolerance to hyperthermia despite it being their initial drug treatment. Post-FMT, MHT rats displayed elevations in norepinephrine and expression of UCP1, UCP3 and TGR5 in brown adipose tissue, with reductions in expression of TGR5 and UCP3 in skeletal muscle. The pre- and post-FMT methylone tolerance phenotypes of transplant recipients are concurrent with changes in the relative abundance of several classes of Proteobacteria, most evident for Gammaproteobacteria and Alphaproteobacteria. MHT recipients demonstrated a marked increase in the relative proportion of the Firmicutes class Erysipelotrichia. These findings suggest that transplantation of gut-microbiomes can confer phenotypic responses to a drug and that the microbiome may be playing a major role in sympathomimetic-mediated hyperthermia. Abbreviations: 3,4-methylenedioxymethamphetamine (MDMA); methylone-induced hyperthermic tolerant (MHT); methylone-naïve (MN); fecal microbiota transplantation (FMT); uncoupling protein (UCP); subcutaneous (sc); intraperitoneal (ip); brown adipose tissue (BAT); skeletal muscle (SKM); sympathetic nervous system (SNS); norepinephrine (NE); quantitative PCR (qRT-PCR); quantification cycle (Cq); High Performance Liquid Chromatography-Electrochemical Detection (HPLC-EC); amplicon sequence variants (ASVs); principal coordinates analysis (PCoA); permutational multivariate analysis (PERMANOVA)., Competing Interests: No potential conflict of interest was reported by the authors., (© 2022 Informa UK Limited, trading as Taylor & Francis Group.)
- Published
- 2022
- Full Text
- View/download PDF
7. Development and comparison of loop-mediated isothermal amplification with quantitative PCR for the specific detection of Saprolegnia spp.
- Author
-
Ghosh S, Straus DL, Good C, and Phuntumart V
- Subjects
- Saprolegnia classification, DNA Primers genetics, Electron Transport Complex IV genetics, Molecular Diagnostic Techniques, Nucleic Acid Amplification Techniques, Real-Time Polymerase Chain Reaction, Saprolegnia genetics
- Abstract
Saprolegniasis is an important disease in freshwater aquaculture, and is associated with oomycete pathogens in the genus Saprolegnia. Early detection of significant levels of Saprolegnia spp. pathogens would allow informed decisions for treatment which could significantly reduce losses. This study is the first to report the development of loop-mediated isothermal amplification (LAMP) for the detection of Saprolegnia spp. and compares it with quantitative PCR (qPCR). The developed protocols targeted the internal transcribed spacer (ITS) region of ribosomal DNA and the cytochrome C oxidase subunit 1 (CoxI) gene and was shown to be specific only to Saprolegnia genus. This LAMP method can detect as low as 10 fg of S. salmonis DNA while the qPCR method has a detection limit of 2 pg of S. salmonis DNA, indicating the superior sensitivity of LAMP compared to qPCR. When applied to detect the pathogen in water samples, both methods could detect the pathogen when only one zoospore of Saprolegnia was present. We propose LAMP as a quick (about 20-60 minutes) and sensitive molecular diagnostic tool for the detection of Saprolegnia spp. suitable for on-site applications., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2021
- Full Text
- View/download PDF
8. Potential Contribution of the Intestinal Microbiome to Phenethylamine-Induced Hyperthermia.
- Author
-
Aburahma A, Pachhain S, Choudhury SR, Rana S, Phuntumart V, Larsen R, and Sprague JE
- Subjects
- Animals, Hyperthermia, Phenethylamines, Rats, Thermogenesis, Gastrointestinal Microbiome
- Abstract
Phenethylamines (e.g., methamphetamine) are a common source of drug toxicity. Phenethylamine-induced hyperthermia (PIH) can activate a cascade of events that may result in rhabdomyolysis, coagulopathy, and even death. Here, we review recent evidence that suggests a potential link between the gut-brain axis and PIH. Within the preoptic area of the hypothalamus, phenethylamines lead to changes in catecholamine levels, that activate the sympathetic nervous system (SNS) and increase the peripheral levels of norepinephrine (NE), resulting in: (1) the loss of heat dissipation through α1 adrenergic receptor (α1-AR)-mediated vasoconstriction, (2) heat generation through β-AR activation and subsequent free fatty acid (FFA) activation of uncoupling proteins (UCPs) in brown and white adipose tissue, and (3) alteration of the gut microbiome and its link to the gut-brain axis. Recent studies have shown that phenethylamine derivatives can influence the composition of the gut microbiome and thus its metabolic potential. Phenethylamines increase the relative level of Proteuswhich has been linked to enhanced NE turnover. Bidirectional fecal microbial transplants (FMT) between PIH-tolerant and PIH-naïve rats demonstrated that the transplantation of gut microbiome can confer phenotypic hyperthermic and tolerant responses to phenethylamines. These phenethylamine-mediated changes in the gut microbiome were also associated with epigenetic changes in the mediators of thermogenesis. Given the significant role that the microbiome has been shown to play in the maintenance of body temperature, we outline current studies demonstrating the effects of phenethylamines on the gut microbiome and how these microbiome changes may mechanistically contribute to alterations in body temperature., (© 2021 S. Karger AG, Basel.)
- Published
- 2020
- Full Text
- View/download PDF
9. Gender differences in tolerance to the hyperthermia mediated by the synthetic cathinone methylone.
- Author
-
Goldsmith R, Pachhain S, Choudhury SR, Phuntumart V, Larsen R, and Sprague JE
- Abstract
The toxidrome associated with death from the synthetic cathinones includes hyperthermia as part of the sympathomimetic syndrome. Here, we examine the gender differences in the development of tolerance to the hyperthermia mediated by the synthetic cathinone methylone. In addition to temperature changes, expression differences in genes encoding the uncoupling proteins (UCP) 1 & 3, and TGR5 in skeletal muscle (SKM) and brown adipose tissue (BAT) were examined. Male and female rats were treated weekly with methylone (10 mg/kg). The females developed a tolerance to the methylone-induced hyperthermia by week two of drug exposure. By the third week, females displayed a hypothermic response to methylone. Conversely, males continued to display a hyperthermic response up to and including week four. At week four, the males demonstrated a significantly lower hyperthermia and a complete tolerance seen at week five with no significant hyperthermia. Tissue samples collected after treatment on the sixth week indicate that chronic exposure to methylone reduced UCP1 expression in SKM and BAT of the female rats. Only the females displayed increased TGR5 expression in BAT. UCP3 expression increased in both the SKM and BAT of the males and females. The differences between responses in male and female subjects further demonstrate the need for gender studies in the toxicology associated with drugs with abuse potential., (© 2019 Informa UK Limited, trading as Taylor & Francis Group.)
- Published
- 2019
- Full Text
- View/download PDF
10. The influence of the host microbiome on 3,4-methylenedioxymethamphetamine (MDMA)-induced hyperthermia and vice versa.
- Author
-
Ridge EA, Pachhain S, Choudhury SR, Bodnar SR, Larsen RA, Phuntumart V, and Sprague JE
- Subjects
- Animals, Fever chemically induced, Male, Proteus mirabilis drug effects, Rats, Rats, Sprague-Dawley, Receptors, G-Protein-Coupled metabolism, Uncoupling Protein 1 metabolism, Uncoupling Protein 3 metabolism, Fever microbiology, Hyperthermia, Induced, Microbiota drug effects, N-Methyl-3,4-methylenedioxyamphetamine pharmacology
- Abstract
Hyperthermia induced by 3,4-methylenedioxymethamphetamine (MDMA) can be life-threatening. Here, we investigate the role of the gut microbiome and TGR5 bile acid receptors in MDMA-mediated hyperthermia. Fourteen days prior to treatment with MDMA, male Sprague-Dawley rats were provided water or water treated with antibiotics. Animals that had received antibiotics displayed a reduction in gut bacteria and an attenuated hyperthermic response to MDMA. MDMA treated animals showed increased uncoupling protein 1 (UCP1) and TGR5 expression levels in brown adipose tissue and skeletal muscle while increased expression of UCP3 was observed only in skeletal muscle. Antibiotics prior to MDMA administration significantly blunted these increases in gene expression. Furthermore, inhibition of the TGR5 receptor with triamterene or of deiodinase II downstream of the TGR5 receptor with iopanoic acid also resulted in the attenuation of MDMA-induced hyperthermia. MDMA-treatment enriched the relative proportion of a Proteus mirabilis strain in the ceca of animals not pre-treated with antibiotics. These findings suggest a contributing role for the gut microbiota in MDMA-mediated hyperthermia and that MDMA treatment can trigger a rapid remodeling of the composition of the gut microbiome.
- Published
- 2019
- Full Text
- View/download PDF
11. Symbiont selection via alcohol benefits fungus farming by ambrosia beetles.
- Author
-
Ranger CM, Biedermann PHW, Phuntumart V, Beligala GU, Ghosh S, Palmquist DE, Mueller R, Barnett J, Schultz PB, Reding ME, and Benz JP
- Subjects
- Animals, Ethanol metabolism, Symbiosis physiology, Aspergillus physiology, Coleoptera microbiology, Ethanol pharmacology, Penicillium physiology, Symbiosis drug effects
- Abstract
Animal-microbe mutualisms are typically maintained by vertical symbiont transmission or partner choice. A third mechanism, screening of high-quality symbionts, has been predicted in theory, but empirical examples are rare. Here we demonstrate that ambrosia beetles rely on ethanol within host trees for promoting gardens of their fungal symbiont and producing offspring. Ethanol has long been known as the main attractant for many of these fungus-farming beetles as they select host trees in which they excavate tunnels and cultivate fungal gardens. More than 300 attacks by Xylosandrus germanus and other species were triggered by baiting trees with ethanol lures, but none of the foundresses established fungal gardens or produced broods unless tree tissues contained in vivo ethanol resulting from irrigation with ethanol solutions. More X. germanus brood were also produced in a rearing substrate containing ethanol. These benefits are a result of increased food supply via the positive effects of ethanol on food-fungus biomass. Selected Ambrosiella and Raffaelea fungal isolates from ethanol-responsive ambrosia beetles profited directly and indirectly by ( i ) a higher biomass on medium containing ethanol, ( ii ) strong alcohol dehydrogenase enzymatic activity, and ( iii ) a competitive advantage over weedy fungal garden competitors ( Aspergillus , Penicillium ) that are inhibited by ethanol. As ambrosia fungi both detoxify and produce ethanol, they may maintain the selectivity of their alcohol-rich habitat for their own purpose and that of other ethanol-resistant/producing microbes. This resembles biological screening of beneficial symbionts and a potentially widespread, unstudied benefit of alcohol-producing symbionts (e.g., yeasts) in other microbial symbioses., Competing Interests: The authors declare no conflict of interest., (Copyright © 2018 the Author(s). Published by PNAS.)
- Published
- 2018
- Full Text
- View/download PDF
12. Dual functioning of plant arginases provides a third route for putrescine synthesis.
- Author
-
Patel J, Ariyaratne M, Ahmed S, Ge L, Phuntumart V, Kalinoski A, and Morris PF
- Subjects
- Arabidopsis genetics, Arabidopsis metabolism, Arabidopsis Proteins genetics, Arabidopsis Proteins metabolism, Arginase genetics, Carboxy-Lyases genetics, Carboxy-Lyases metabolism, Chloroplasts genetics, Chloroplasts metabolism, Ornithine Decarboxylase genetics, Ornithine Decarboxylase metabolism, Oxidative Stress genetics, Oxidative Stress physiology, Plant Proteins genetics, Nicotiana genetics, Nicotiana metabolism, Arginase metabolism, Plant Proteins metabolism, Putrescine biosynthesis
- Abstract
Two biosynthetic routes are known for putrescine, an essential plant metabolite. Ornithine decarboxylase (ODC) converts ornithine directly to putrescine, while a second route for putrescine biosynthesis utilizes arginine decarboxylase (ADC) to convert arginine to agmatine, and two additional enzymes, agmatine iminohydrolase (AIH) and N-carbamoyl putrescine aminohydrolase (NLP1) to complete this pathway. Here we show that plants can use ADC and arginase/agmatinase (ARGAH) as a third route for putrescine synthesis. Transformation of Arabidopsis thaliana ADC2, and any of the arginases from A. thaliana (ARGAH1, or ARGHA2) or the soybean gene Glyma.03g028000 (GmARGAH) into a yeast strain deficient in ODC, fully complemented the mutant phenotype. In vitro assays using purified recombinant enzymes of AtADC1 and AtARGAH2 were used to show that these enzymes can function in concert to convert arginine to agmatine and putrescine. Transient expression analysis of the soybean genes (Glyma.06g007500, ADC; Glyma.03g028000 GmARGAH) and the A. thaliana ADC2 and ARGAH genes in leaves of Nicotiana benthamiana, showed that these proteins are localized to the chloroplast. Experimental support for this pathway also comes from the fact that expression of AtARGAH, but not AtAIH or AtNLP1, is co-regulated with AtADC2 in response to drought, oxidative stress, wounding, and methyl jasmonate treatments. Based on the high affinity of ARGAH2 for agmatine, its co-localization with ADC2, and typically low arginine levels in many plant tissues, we propose that these two enzymes can be major contributors to putrescine synthesis in many A. thaliana stress responses., (Published by Elsevier B.V.)
- Published
- 2017
- Full Text
- View/download PDF
13. Altered expression of polyamine transporters reveals a role for spermidine in the timing of flowering and other developmental response pathways.
- Author
-
Ahmed S, Ariyaratne M, Patel J, Howard AE, Kalinoski A, Phuntumart V, and Morris PF
- Subjects
- Arabidopsis growth & development, Arabidopsis metabolism, Arabidopsis physiology, Biological Transport physiology, Carrier Proteins physiology, Chloroplasts metabolism, Chloroplasts physiology, Flowers physiology, Gene Expression Regulation, Plant physiology, Oryza growth & development, Oryza metabolism, Oryza physiology, Transcriptome, Flowers growth & development, Spermidine physiology
- Abstract
Changes in the levels of polyamines are correlated with the activation or repression of developmental response pathways, but the role of polyamine transporters in the regulation of polyamine homeostasis and thus indirectly gene expression, has not been previously addressed. Here we show that the A. thaliana and rice transporters AtPUT5 and OsPUT1 were localized to the ER, while the AtPUT2, AtPUT3, and OsPUT3 were localized to the chloroplast by transient expression in N. benthamiana. A. thaliana plants that were transformed with OsPUT1 under the control the PUT5 promoter were delayed in flowering by 16days. In contrast, put5 mutants flowered four days earlier than WT plants. The delay of flowering was associated with significantly higher levels of spermidine and spermidine conjugates in the leaves prior to flowering. A similar delay in flowering was also noted in transgenic lines with constitutive expression of either OsPUT1 or OsPUT3. All three transgenic lines had larger rosette leaves, thicker flowering stems, and produced more siliques than wild type plants. In contrast, put5 plants had smaller leaves, thinner flowering stems, and produced fewer siliques. Constitutive expression of PUTs was also associated with an extreme delay in both plant senescence and maturation rate of siliques. These experiments provide the first genetic evidence of polyamine transport in the timing of flowering, and indicate the importance of polyamine transporters in the regulation of flowering and senescence pathways., (Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
14. The Immunoreactive Exo-1,3-β-Glucanase from the Pathogenic Oomycete Pythium insidiosum Is Temperature Regulated and Exhibits Glycoside Hydrolase Activity.
- Author
-
Keeratijarut A, Lohnoo T, Rujirawat T, Yingyong W, Kalambaheti T, Miller S, Phuntumart V, and Krajaejun T
- Subjects
- Antigens genetics, Antigens immunology, Antigens metabolism, Enzyme Activation, Gene Expression, Glucan 1,3-beta-Glucosidase genetics, Glucan 1,3-beta-Glucosidase immunology, Glycoside Hydrolases metabolism, Hydrolysis, Molecular Sequence Data, Peptide Fragments immunology, Peptide Fragments metabolism, Phylogeny, Pythium genetics, Pythium immunology, Transcription, Genetic, Glucan 1,3-beta-Glucosidase metabolism, Pythium metabolism, Temperature
- Abstract
The oomycete organism, Pythium insidiosum, is the etiologic agent of the life-threatening infectious disease called "pythiosis". Diagnosis and treatment of pythiosis is difficult and challenging. Novel methods for early diagnosis and effective treatment are urgently needed. Recently, we reported a 74-kDa immunodominant protein of P. insidiosum, which could be a diagnostic target, vaccine candidate, and virulence factor. The protein was identified as a putative exo-1,3-ß-glucanase (Exo1). This study reports on genetic, immunological, and biochemical characteristics of Exo1. The full-length exo1 coding sequence (2,229 bases) was cloned. Phylogenetic analysis showed that exo1 is grouped with glucanase-encoding genes of other oomycetes, and is far different from glucanase-encoding genes of fungi. exo1 was up-regulated upon exposure to body temperature, and its gene product is predicted to contain BglC and X8 domains, which are involved in carbohydrate transport, binding, and metabolism. Based on its sequence, Exo1 belongs to the Glycoside Hydrolase family 5 (GH5). Exo1, expressed in E. coli, exhibited ß-glucanase and cellulase activities. Exo1 is a major intracellular immunoreactive protein that can trigger host immune responses during infection. Since GH5 enzyme-encoding genes are not present in human genomes, Exo1 could be a useful target for drug and vaccine development against this pathogen.
- Published
- 2015
- Full Text
- View/download PDF
15. Kinetic and phylogenetic analysis of plant polyamine uptake transporters.
- Author
-
Mulangi V, Chibucos MC, Phuntumart V, and Morris PF
- Subjects
- Arabidopsis metabolism, Biological Transport, Cation Transport Proteins genetics, Cation Transport Proteins metabolism, Evolution, Molecular, Gene Transfer, Horizontal, Genetic Complementation Test, Kinetics, Leishmania major genetics, Leishmania major metabolism, Membrane Transport Proteins metabolism, Organ Specificity, Oryza metabolism, Plant Proteins genetics, Plant Proteins metabolism, Protozoan Proteins genetics, Protozoan Proteins metabolism, Putrescine metabolism, Saccharomyces cerevisiae genetics, Saccharomyces cerevisiae growth & development, Saccharomyces cerevisiae metabolism, Spermidine metabolism, Substrate Specificity, Time Factors, Trypanosoma cruzi genetics, Trypanosoma cruzi metabolism, Arabidopsis genetics, Membrane Transport Proteins genetics, Oryza genetics, Phylogeny, Polyamines metabolism
- Abstract
The rice gene Polyamine Uptake Transporter1 (PUT1) was originally identified based on its homology to the polyamine uptake transporters LmPOT1 and TcPAT12 in Leishmania major and Trypanosoma cruzi, respectively. Here we show that five additional transporters from rice and Arabidopsis that cluster in the same clade as PUT1 all function as high affinity spermidine uptake transporters. Yeast expression assays of these genes confirmed that uptake of spermidine was minimally affected by 166 fold or greater concentrations of amino acids. Characterized polyamine transporters from both Arabidopsis thaliana and Oryza sativa along with the two polyamine transporters from L. major and T. cruzi were aligned and used to generate a hidden Markov model. This model was used to identify significant matches to proteins in other angiosperms, bryophytes, chlorophyta, discicristates, excavates, stramenopiles and amoebozoa. No significant matches were identified in fungal or metazoan genomes. Phylogenic analysis showed that some sequences from the haptophyte, Emiliania huxleyi, as well as sequences from oomycetes and diatoms clustered closer to sequences from plant genomes than from a homologous sequence in the red algal genome Galdieria sulphuraria, consistent with the hypothesis that these polyamine transporters were acquired by horizontal transfer from green algae. Leishmania and Trypansosoma formed a separate cluster with genes from other Discicristates and two Entamoeba species. We surmise that the genes in Entamoeba species were acquired by phagotrophy of Discicristates. In summary, phylogenetic and functional analysis has identified two clades of genes that are predictive of polyamine transport activity.
- Published
- 2012
- Full Text
- View/download PDF
16. Functional analysis of OsPUT1, a rice polyamine uptake transporter.
- Author
-
Mulangi V, Phuntumart V, Aouida M, Ramotar D, and Morris P
- Subjects
- Biological Transport, Cells, Cultured, DNA, Complementary, Gene Expression Regulation, Plant, Genes, Plant, Genetic Engineering, Genetic Variation, Molecular Sequence Data, Phylogeny, Plant Roots genetics, Plant Roots metabolism, Putrescine metabolism, Spermidine metabolism, Stress, Physiological, Biogenic Polyamines metabolism, Oryza genetics, Oryza metabolism
- Abstract
Polyamines are nitrogenous compounds found in all eukaryotic and prokaryotic cells and absolutely essential for cell viability. In plants, they regulate several growth and developmental processes and the levels of polyamines are also correlated with the plant responses to various biotic and abiotic stresses. In plant cells, polyamines are synthesized in plastids and cytosol. This biosynthetic compartmentation indicates that the specific transporters are essential to transport polyamines between the cellular compartments. In the present study, a phylogenetic analysis was used to identify candidate polyamine transporters in rice. A full-length cDNA rice clone AK068055 was heterologously expressed in the Saccharomyces cerevisiae spermidine uptake mutant, agp2∆. Radiological uptake and competitive inhibition studies with putrescine indicated that rice gene encodes a protein that functioned as a spermidine-preferential transporter. In competition experiments with several amino acids at 25-fold higher levels than spermidine, only methionine, asparagine, and glutamine were effective in reducing uptake of spermidine to 60% of control rates. Based on those observations, this rice gene was named polyamine uptake transporter 1 (OsPUT1). Tissue-specific expression of OsPUT1 by semiquantitative RT-PCR showed that the gene was expressed in all tissues except seeds and roots. Transient expression assays in onion epidermal cells and rice protoplasts failed to localize to a cellular compartment. The characterization of the first plant polyamine transporter sets the stage for a systems approach that can be used to build a model to fully define how the biosynthesis, degradation, and transport of polyamines in plants mediate developmental and biotic responses.
- Published
- 2012
- Full Text
- View/download PDF
17. Expressed sequence tags reveal genetic diversity and putative virulence factors of the pathogenic oomycete Pythium insidiosum.
- Author
-
Krajaejun T, Khositnithikul R, Lerksuthirat T, Lowhnoo T, Rujirawat T, Petchthong T, Yingyong W, Suriyaphol P, Smittipat N, Juthayothin T, Phuntumart V, and Sullivan TD
- Subjects
- Humans, Molecular Sequence Data, Phylogeny, Plant Diseases parasitology, Pythiosis parasitology, Pythium classification, Pythium pathogenicity, Expressed Sequence Tags, Genetic Variation, Pythium genetics, Pythium isolation & purification, Virulence Factors genetics
- Abstract
Oomycetes are unique eukaryotic microorganisms that share a mycelial morphology with fungi. Many oomycetes are pathogenic to plants, and a more limited number are pathogenic to animals. Pythium insidiosum is the only oomycete that is capable of infecting both humans and animals, and causes a life-threatening infectious disease, called "pythiosis". In the majority of pythiosis patients life-long handicaps result from the inevitable radical excision of infected organs, and many die from advanced infection. Better understanding P. insidiosum pathogenesis at molecular levels could lead to new forms of treatment. Genetic and genomic information is lacking for P. insidiosum, so we have undertaken an expressed sequence tag (EST) study, and report on the first dataset of 486 ESTs, assembled into 217 unigenes. Of these, 144 had significant sequence similarity with known genes, including 47 with ribosomal protein homology. Potential virulence factors included genes involved in antioxidation, thermal adaptation, immunomodulation, and iron and sterol binding. Effectors resembling pathogenicity factors of plant-pathogenic oomycetes were also discovered, such as, a CBEL-like protein (possible involvement in host cell adhesion and hemagglutination), a putative RXLR effector (possibly involved in host cell modulation) and elicitin-like (ELL) proteins. Phylogenetic analysis mapped P. insidiosum ELLs to several novel clades of oomycete elicitins (ELIs), and homology modeling predicted that P. insidiosum ELLs should bind sterols. Most of the P. insidiosum ESTs showed homology to sequences in the genome or EST databases of other oomycetes, but one putative gene, with unknown function, was found to be unique to P. insidiosum. The EST dataset reported here represents the first steps in identifying genes of P. insidiosum and beginning transcriptome analysis. This genetic information will facilitate understanding of pathogenic mechanisms of this devastating pathogen., (Copyright © 2011 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2011
- Full Text
- View/download PDF
18. Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome.
- Author
-
Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, Kemen E, Thines M, Ah-Fong A, Anderson R, Badejoko W, Bittner-Eddy P, Boore JL, Chibucos MC, Coates M, Dehal P, Delehaunty K, Dong S, Downton P, Dumas B, Fabro G, Fronick C, Fuerstenberg SI, Fulton L, Gaulin E, Govers F, Hughes L, Humphray S, Jiang RHY, Judelson H, Kamoun S, Kyung K, Meijer H, Minx P, Morris P, Nelson J, Phuntumart V, Qutob D, Rehmany A, Rougon-Cardoso A, Ryden P, Torto-Alalibo T, Studholme D, Wang Y, Win J, Wood J, Clifton SW, Rogers J, Van den Ackerveken G, Jones JDG, McDowell JM, Beynon J, and Tyler BM
- Subjects
- Adaptation, Physiological, Amino Acid Sequence, Enzymes genetics, Gene Dosage, Genes, Host-Pathogen Interactions, Metabolic Networks and Pathways genetics, Molecular Sequence Data, Oomycetes pathogenicity, Oomycetes physiology, Phytophthora genetics, Polymorphism, Single Nucleotide, Proteins genetics, Selection, Genetic, Sequence Analysis, DNA, Spores physiology, Synteny, Virulence Factors genetics, Arabidopsis parasitology, Evolution, Molecular, Genome, Oomycetes genetics, Oomycetes growth & development, Plant Diseases parasitology
- Abstract
Many oomycete and fungal plant pathogens are obligate biotrophs, which extract nutrients only from living plant tissue and cannot grow apart from their hosts. Although these pathogens cause substantial crop losses, little is known about the molecular basis or evolution of obligate biotrophy. Here, we report the genome sequence of the oomycete Hyaloperonospora arabidopsidis (Hpa), an obligate biotroph and natural pathogen of Arabidopsis thaliana. In comparison with genomes of related, hemibiotrophic Phytophthora species, the Hpa genome exhibits dramatic reductions in genes encoding (i) RXLR effectors and other secreted pathogenicity proteins, (ii) enzymes for assimilation of inorganic nitrogen and sulfur, and (iii) proteins associated with zoospore formation and motility. These attributes comprise a genomic signature of evolution toward obligate biotrophy.
- Published
- 2010
- Full Text
- View/download PDF
19. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans.
- Author
-
Haas BJ, Kamoun S, Zody MC, Jiang RH, Handsaker RE, Cano LM, Grabherr M, Kodira CD, Raffaele S, Torto-Alalibo T, Bozkurt TO, Ah-Fong AM, Alvarado L, Anderson VL, Armstrong MR, Avrova A, Baxter L, Beynon J, Boevink PC, Bollmann SR, Bos JI, Bulone V, Cai G, Cakir C, Carrington JC, Chawner M, Conti L, Costanzo S, Ewan R, Fahlgren N, Fischbach MA, Fugelstad J, Gilroy EM, Gnerre S, Green PJ, Grenville-Briggs LJ, Griffith J, Grünwald NJ, Horn K, Horner NR, Hu CH, Huitema E, Jeong DH, Jones AM, Jones JD, Jones RW, Karlsson EK, Kunjeti SG, Lamour K, Liu Z, Ma L, Maclean D, Chibucos MC, McDonald H, McWalters J, Meijer HJ, Morgan W, Morris PF, Munro CA, O'Neill K, Ospina-Giraldo M, Pinzón A, Pritchard L, Ramsahoye B, Ren Q, Restrepo S, Roy S, Sadanandom A, Savidor A, Schornack S, Schwartz DC, Schumann UD, Schwessinger B, Seyer L, Sharpe T, Silvar C, Song J, Studholme DJ, Sykes S, Thines M, van de Vondervoort PJ, Phuntumart V, Wawra S, Weide R, Win J, Young C, Zhou S, Fry W, Meyers BC, van West P, Ristaino J, Govers F, Birch PR, Whisson SC, Judelson HS, and Nusbaum C
- Subjects
- Algal Proteins genetics, DNA Transposable Elements genetics, DNA, Intergenic genetics, Evolution, Molecular, Host-Pathogen Interactions genetics, Humans, Ireland, Molecular Sequence Data, Necrosis, Phenotype, Phytophthora infestans pathogenicity, Plant Diseases immunology, Solanum tuberosum immunology, Starvation, Genome genetics, Phytophthora infestans genetics, Plant Diseases microbiology, Solanum tuberosum microbiology
- Abstract
Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement. To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world's population. Current annual worldwide potato crop losses due to late blight are conservatively estimated at $6.7 billion. Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars. Here we report the sequence of the P. infestans genome, which at approximately 240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for approximately 74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.
- Published
- 2009
- Full Text
- View/download PDF
20. Inventory and comparative evolution of the ABC superfamily in the genomes of Phytophthora ramorum and Phytophthora sojae.
- Author
-
Morris PF and Phuntumart V
- Subjects
- ATP-Binding Cassette Transporters chemistry, Amino Acid Sequence, Bacterial Proteins genetics, Conserved Sequence, Eukaryotic Cells metabolism, Molecular Sequence Data, Phylogeny, Protein Structure, Tertiary, ATP-Binding Cassette Transporters genetics, Evolution, Molecular, Genome genetics, Multigene Family genetics, Phytophthora genetics
- Abstract
Automated and manual annotation of the ATP binding cassette (ABC) superfamily in the Phytophthora ramorum and P. sojae genomes has identified 135 and 136 members, respectively, indicating that this family is comparable in size to the Arabidopsis thaliana and rice genomes, and significantly larger than that of two fungal pathogens, Fusarium graminearum and Magnaporthe grisea. The high level of synteny between these oomycete genomes extends to the ABC superfamily, where 108 orthologues were identified by phylogenetic analysis. The largest subfamilies include those most often associated with multidrug resistance. The P. ramorum genome contains 22 multidrug resistance-associated protein (MRP) genes and 49 pleiotropic drug resistance (PDR) genes, while P. sojae contains 20 MRP and 49 PDR genes. Tandem duplication events in the last common ancestor appear to account for much of the expansion of these subfamilies. Recent duplication events in the PDR and ABCG families in both the P. ramorum and the P. sojae genomes indicate that selective expansion of ABC transporters may still be occurring. In other kingdoms, subfamilies define both domain arrangements and proteins having a common phylogenetic origin, but this is not the case for several subfamilies in oomycetes. At least one ABCG type transporter is derived from a PDR transporter, while transporters in the ABCB-half family cluster with transporters from bacterial, plant, and metazoan genomes. Additional examples of transporters that appear to be derived from horizontal transfer events from bacterial genomes include components of transporters associated with iron uptake and DNA repair.
- Published
- 2009
- Full Text
- View/download PDF
21. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis.
- Author
-
Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RH, Aerts A, Arredondo FD, Baxter L, Bensasson D, Beynon JL, Chapman J, Damasceno CM, Dorrance AE, Dou D, Dickerman AW, Dubchak IL, Garbelotto M, Gijzen M, Gordon SG, Govers F, Grunwald NJ, Huang W, Ivors KL, Jones RW, Kamoun S, Krampis K, Lamour KH, Lee MK, McDonald WH, Medina M, Meijer HJ, Nordberg EK, Maclean DJ, Ospina-Giraldo MD, Morris PF, Phuntumart V, Putnam NH, Rash S, Rose JK, Sakihama Y, Salamov AA, Savidor A, Scheuring CF, Smith BM, Sobral BW, Terry A, Torto-Alalibo TA, Win J, Xu Z, Zhang H, Grigoriev IV, Rokhsar DS, and Boore JL
- Subjects
- Algal Proteins genetics, Algal Proteins physiology, Genes, Hydrolases genetics, Hydrolases metabolism, Photosynthesis genetics, Phylogeny, Physical Chromosome Mapping, Phytophthora classification, Phytophthora physiology, Plant Diseases microbiology, Polymorphism, Single Nucleotide, Repetitive Sequences, Nucleic Acid, Sequence Analysis, DNA, Symbiosis, Toxins, Biological genetics, Biological Evolution, DNA, Algal genetics, Genome, Phytophthora genetics, Phytophthora pathogenicity
- Abstract
Draft genome sequences have been determined for the soybean pathogen Phytophthora sojae and the sudden oak death pathogen Phytophthora ramorum. Oömycetes such as these Phytophthora species share the kingdom Stramenopila with photosynthetic algae such as diatoms, and the presence of many Phytophthora genes of probable phototroph origin supports a photosynthetic ancestry for the stramenopiles. Comparison of the two species' genomes reveals a rapid expansion and diversification of many protein families associated with plant infection such as hydrolases, ABC transporters, protein toxins, proteinase inhibitors, and, in particular, a superfamily of 700 proteins with similarity to known oömycete avirulence genes.
- Published
- 2006
- Full Text
- View/download PDF
22. Heterologous expression of a pleiotropic drug resistance transporter from Phytophthora sojae in yeast transporter mutants.
- Author
-
Connolly MS, Sakihama Y, Phuntumart V, Jiang Y, Warren F, Mourant L, and Morris PF
- Subjects
- Amino Acid Sequence, Molecular Sequence Data, Mutation, Oomycetes genetics, Phytophthora cytology, Saccharomyces cerevisiae metabolism, Sequence Alignment, Transcription Factors, DNA-Binding Proteins genetics, Drug Resistance, Multiple, Fungal genetics, Gene Expression Regulation, Fungal, Membrane Transport Proteins genetics, Phytophthora genetics, Saccharomyces cerevisiae genetics, Saccharomyces cerevisiae Proteins genetics, Trans-Activators genetics
- Abstract
A system for the expression of an ATP binding cassette (ABC) transporter from the soybean pathogen Phytophthora sojae is described. Pdr1, an ABC transporter with homology to the pleiotropic drug resistance (PDR) family of transporters, was cloned by primer walking from a P. sojae genomic library. Reverse transcriptase PCR assays showed that the transcript disappeared after encystment of zoospores and was not detected in hyphal germlings in dilute salts, in hyphae growing in liquid V8 media, or in tissue extracts from infected hypocotyls. BLAST analysis of Pdr1 against the P. sojae EST database also revealed that this gene was present only in zoospore libraries. Comparison of the number of hits to Pdr1 with that of a set of housekeeping genes revealed that Pdr1 was expressed at rates two- to threefold higher than other transcripts. To test the hypothesis that Pdr1p functions as a broad substrate membrane transporter, Pdr1 was transformed into yeast mutants deficient in several drug resistance transporters. Yeast mutants transformed with Pdr1 possessed partial drug resistance against only 5 of 17 chemically distinct compounds. Thus, when expressed in yeast, this transporter has a significantly narrower substrate specificity in comparison to the yeast transporters, Pdr5p, Yorlp, and Snq2p.
- Published
- 2005
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.