Jean-Paul Rieu, Vincent Calvez, Philippe Gonzalo, Ivan Mikaelian, Christophe Anjard, Satomi Hirose, Olivier Cochet-Escartin, Mete Demircigil, Blandine Allais, Kenichi Funamoto, Biophysique (BIOPHYSIQUE), Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Graduate School of Biomedical Engineering (BME), Tohoku University [Sendai], Institute of Fluid Sciences [Sendai] (IFS), Centre de Recherche en Cancérologie de Lyon (UNICANCER/CRCL), Centre Léon Bérard [Lyon]-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard [Lyon], ANR-19-CE45-0002,ADHeC,Dynamique d'agregation dans des populaitons cellulaires hétérogènes(2019), VIDAL, Armelle, Dynamique d'agregation dans des populaitons cellulaires hétérogènes - - ADHeC2019 - ANR-19-CE45-0002 - AAPG2019 - VALID, Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), and Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
It is well known that eukaryotic cells can sense oxygen (O 2 ) and adapt their metabolism accordingly. It is less known that they can also move towards regions of higher oxygen level (aerotaxis). Using a self-generated hypoxic assay, we show that the social amoeba Dictyostelium discoideum displays a spectacular aerotactic behavior. When a cell colony is covered by a coverglass, cells quickly consume the available O 2 and the ones close to the periphery move directionally outward forming a dense ring keeping a constant speed and density. To confirm that O 2 is the main molecular player in this seemingly collective process, we combined two technological developments, porphyrin based O 2 sensing films and microfluidic O 2 gradient generators. We showed that Dictyostelium cells exhibit aerotactic and aerokinetic (increased speed at low O 2 ) response in an extremely low range of O 2 concentration (0-1.5%) indicative of a very efficient detection mechanism. The various cell behaviors under self-generated or imposed O 2 gradients were modeled with a very satisfactory quantitative agreement using an in silico cellular Potts model built on experimental observations. This computational model was complemented with a parsimonious ‘Go or Grow’ partial differential equation (PDE) model. In both models, we found that the collective migration of a dense ring can be explained by the interplay between cell division and the modulation of aerotaxis, without the need for cell-cell communication. Explicit wave solutions of the PDE model also informed about the relative contributions of division and directed motion on the collective speed.; It is well known that eukaryotic cells can sense oxygen (O2) and adapt their metabolism accordingly. It is less known that they can also move towards regions of higher oxygen level (aerotaxis). Using a self-generated hypoxic assay, we show that the social amoeba Dictyostelium discoideum displays a spectacular aerotactic behavior. When a cell colony is covered by a coverglass, cells quickly consume the available O2 and the ones close to the periphery move directionally outward forming a dense ring keeping a constant speed and density. To confirm that O2 is the main molecular player in this seemingly collective process, we combined two technological developments, porphyrin based O2 sensing films and microfluidic O2 gradient generators. We showed that Dictyostelium cells exhibit aerotactic and aerokinetic (increased speed at low O2) response in an extremely low range of O2 concentration (0-1.5%) indicative of a very efficient detection mechanism. The various cell behaviors under self-generated or imposed O2 gradients were modeled with a very satisfactory quantitative agreement using an in silico cellular Potts model built on experimental observations. This computational model was complemented with a parsimonious 'Go or Grow' partial differential equation (PDE) model. In both models, we found that the collective migration of a dense ring can be explained by the interplay between cell division and the modulation of aerotaxis, without the need for cell-cell communication. Explicit wave solutions of the PDE model also informed about the relative contributions of division and directed motion on the collective speed.