1. Sigma-1 Receptor Activation Suppresses Microglia M1 Polarization via Regulating Endoplasmic Reticulum-Mitochondria Contact and Mitochondrial Functions in Stress-Induced Hypertension Rats.
- Author
-
Ooi K, Hu L, Feng Y, Han C, Ren X, Qian X, Huang H, Chen S, Shi Q, Lin H, Wang J, Zhu D, Wang R, and Xia C
- Subjects
- Animals, Blood Pressure physiology, Calcium metabolism, Cell Polarity drug effects, Electroshock adverse effects, Endoplasmic Reticulum drug effects, Heart Rate physiology, Hypertension etiology, Hypertension physiopathology, Mitochondria drug effects, Phenazocine analogs & derivatives, Phenazocine pharmacology, Rats, Sympathetic Nervous System metabolism, Sympathetic Nervous System physiopathology, Sigma-1 Receptor, Endoplasmic Reticulum metabolism, Hypertension metabolism, Microglia metabolism, Mitochondria metabolism, Receptors, sigma agonists
- Abstract
Exposure to stress plays a detrimental role in the pathogenesis of hypertension via neuroinflammation pathways. Microglial neuroinflammation in the rostral ventrolateral medulla (RVLM) exacerbates stress-induced hypertension (SIH) by increasing sympathetic hyperactivity. Mitochondria of microglia are the regulators of innate immune response. Sigma-1R (σ-1R) localizes to the mitochondria-associated membranes (MAMs) and regulates endoplasmic reticulum (ER) and mitochondria communication, in part through its chaperone activity. The present study aims to investigate the protective role of σ-1R on microglial-mediated neuroinflammation. Stress-induced hypertension (SIH) was induced in rats using electric foot shocks and intermittent noise. Arterial blood pressure (ABP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were measured to evaluate the sympathetic nervous system (SNS) activities. SKF10047 (100 µM), an agonist of σ-1R, was administrated to rats, then σ-1R localization and MAM alterations were detected by immuno-electron microscopy. Mitochondrial calcium homeostasis was examined in primary microglia and/or BV-2 microglia cells. The effect of SKF10047 treatment on the mitochondrial respiratory function of cultured microglia was measured using a Seahorse Extracellular Flux Analyzer. Confocal microscopic images were performed to indicate mitochondrial dynamics. Stress reduces σ-1R's localization at the MAMs, leading to decreased ER-mitochondria contact and IP3R-GRP75-VDAC calcium transport complexes expression in the RVLM of rats. SKF10047 promotes the length and coverage of MAMs in the prorenin-treated microglia. Prorenin treatment increases mitoROS levels, and inhibits Ca
2+ signalling between the two organelles, therefore negatively affects ATP production in BV2 cells, and these effects are reversed by SKF10047 treatment. We found mitochondrial hyperfusion and microglial M1 polarization in prorenin-treated microglia. SKF10047 suppresses microglial M1 polarization and RVLM neuroinflammation, subsequently ameliorates sympathetic hyperactivity in stress-induced hypertensive rats. Sigma-1 receptor activation suppresses microglia M1 polarization and neuroinflammation via regulating endoplasmic reticulum-mitochondria contact and mitochondrial functions in stress-induced hypertension rats., (© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)- Published
- 2021
- Full Text
- View/download PDF