75 results on '"Peuportier, B."'
Search Results
2. Comparison of 16 national methods in the life cycle assessment of carbon storage in wood products in a reference building
- Author
-
Ouellet-Plamondon, C. M., Balouktsi, M., Delem, L., Foliente, G., Francart, N., Garcia-Martinez, A., Hoxha, E., Lützkendorf, T., Nygaard Rasmussen, F., Peuportier, B., Butler, J., Birgisdottir, H., Bragança, L., Dowdell, D., Dixit, M., Gomes, V., Gomes da Silva, M., Carlos Gómez, J., Kjendseth Wiik, M., Carmen Llatas Olivier, M., Mateus, R., Pulgrossi, L. M., Röck, M., Ruschi Mendes Saade, M., Passer, A., Satola, D., Seo, S., Soust-Verdaguer, B., Veselka, J., Volf, M., Zhang, X., Frischknecht, R., Ouellet-Plamondon, C. M., Balouktsi, M., Delem, L., Foliente, G., Francart, N., Garcia-Martinez, A., Hoxha, E., Lützkendorf, T., Nygaard Rasmussen, F., Peuportier, B., Butler, J., Birgisdottir, H., Bragança, L., Dowdell, D., Dixit, M., Gomes, V., Gomes da Silva, M., Carlos Gómez, J., Kjendseth Wiik, M., Carmen Llatas Olivier, M., Mateus, R., Pulgrossi, L. M., Röck, M., Ruschi Mendes Saade, M., Passer, A., Satola, D., Seo, S., Soust-Verdaguer, B., Veselka, J., Volf, M., Zhang, X., and Frischknecht, R.
- Abstract
Wood and bio-based construction products are perceived as a way to use renewable resources, to save energy and to mitigate greenhouse gas (GHG)-emissions during production and to store carbon during the entire service life of the building. This article compares the carbon footprint per kilogram of wood products (softwood beams, plywood, oriented strand board panel, and fibre board) from the perspective of the life cycle assessment methodology for greenhouse gas (GHG) emissions of practitioners from 16 countries participating in the IEA Annex 72. These materials are used in PAL6 softwood structure multi-residential building. This article aims at comparing the carbon footprint accounting methods from 16 countries for PAL6 multi-residential building. Each national team applied the reference study period (RSP), life cycle modules covered, modelling rules, the geographical scope of inventory data as well as the LCA database according to its specific national method. The results show that there are three types of methodology to assess a building with biogenic content (0/0, -1/+1, -1/+1*). The results were more variable plywood, oriented strand board, and fibreboard than the softwood beams due to the variability in the wood transformation processes among the countries. A net negative carbon balance was obtained for the softwood beam for the countries using -1/+1* with a clear assumption of the fraction of the carbon permanently stored at the end-of-life (EoL). The carbon storage is only possible if it is secured at the EoL. Participating countries apply different definitions of permanence and EoL scenarios. Guideline on assessing, monitoring, and legally reporting carbon storage at the EoL are needed, based on concertation between standard, life cycle assessment, wood industry, and climate experts.
- Published
- 2024
3. Comparison of 16 national methods in the life cycle assessment of carbon storage in wood products in a reference building
- Author
-
Ouellet-Plamondon, CM, Balouktsi, M, Delem, L, Foliente, G, Francart, N, Garcia-Martinez, A, Hoxha, E, Lützkendorf, T, Nygaard Rasmussen, F, Peuportier, B, Butler, J, Birgisdottir, H, Bragança, L, Dowdell, D, Dixit, M, Gomes, V, Gomes da Silva, M, Carlos Gómez, J, Kjendseth Wiik, M, Carmen Llatas Olivier, M, Mateus, R, Pulgrossi, LM, Röck, M, Ruschi Mendes Saade, M, Passer, A, Satola, D, Seo, S, Soust-Verdaguer, B, Veselka, J, Volf, M, Zhang, X, Frischknecht, R, Ouellet-Plamondon, CM, Balouktsi, M, Delem, L, Foliente, G, Francart, N, Garcia-Martinez, A, Hoxha, E, Lützkendorf, T, Nygaard Rasmussen, F, Peuportier, B, Butler, J, Birgisdottir, H, Bragança, L, Dowdell, D, Dixit, M, Gomes, V, Gomes da Silva, M, Carlos Gómez, J, Kjendseth Wiik, M, Carmen Llatas Olivier, M, Mateus, R, Pulgrossi, LM, Röck, M, Ruschi Mendes Saade, M, Passer, A, Satola, D, Seo, S, Soust-Verdaguer, B, Veselka, J, Volf, M, Zhang, X, and Frischknecht, R
- Abstract
Wood and bio-based construction products are perceived as a way to use renewable resources, to save energy and to mitigate greenhouse gas (GHG)-emissions during production and to store carbon during the entire service life of the building. This article compares the carbon footprint per kilogram of wood products (softwood beams, plywood, oriented strand board panel, and fibre board) from the perspective of the life cycle assessment methodology for greenhouse gas (GHG) emissions of practitioners from 16 countries participating in the IEA Annex 72. These materials are used in PAL6 softwood structure multi-residential building. This article aims at comparing the carbon footprint accounting methods from 16 countries for PAL6 multi-residential building. Each national team applied the reference study period (RSP), life cycle modules covered, modelling rules, the geographical scope of inventory data as well as the LCA database according to its specific national method. The results show that there are three types of methodology to assess a building with biogenic content (0/0, -1/+1, -1/+1*). The results were more variable plywood, oriented strand board, and fibreboard than the softwood beams due to the variability in the wood transformation processes among the countries. A net negative carbon balance was obtained for the softwood beam for the countries using -1/+1* with a clear assumption of the fraction of the carbon permanently stored at the end-of-life (EoL). The carbon storage is only possible if it is secured at the EoL. Participating countries apply different definitions of permanence and EoL scenarios. Guideline on assessing, monitoring, and legally reporting carbon storage at the EoL are needed, based on concertation between standard, life cycle assessment, wood industry, and climate experts.
- Published
- 2024
4. Model reduction and model predictive control of energy-efficient buildings for electrical heating load shifting
- Author
-
Robillart, M., Schalbart, P., Chaplais, F., and Peuportier, B.
- Published
- 2019
- Full Text
- View/download PDF
5. Comparison of 16 national methods in the life cycle assessment of carbon storage in wood products in a reference building.
- Author
-
Ouellet-Plamondon, C M, Balouktsi, M, Delem, L, Foliente, G, Francart, N, Garcia-Martinez, A, Hoxha, E, Lützkendorf, T, Nygaard Rasmussen, F, Peuportier, B, Butler, J, Birgisdottir, H, Bragança, L, Dowdell, D, Dixit, M, Gomes, V, Gomes da Silva, M, Carlos Gómez, J, Kjendseth Wiik, M, and Carmen Llatas Olivier, M
- Published
- 2024
- Full Text
- View/download PDF
6. Influence of simplification of life cycle inventories on the accuracy of impact assessment: application to construction products
- Author
-
Lasvaux, S., Schiopu, N., Habert, G., Chevalier, J., and Peuportier, B.
- Published
- 2014
- Full Text
- View/download PDF
7. Existing benchmark systems for assessing global warming potential of buildings – Analysis of IEA EBC Annex 72 cases
- Author
-
Rasmussen, F N, primary, Trigaux, D, additional, Alsema, E, additional, Balouktsi, M, additional, Birgisdóttir, H, additional, Bohne, R, additional, Dixit, M, additional, Dowdell, D, additional, Francart, N, additional, Frischknecht, R, additional, Foliente, G, additional, Lupisek, A, additional, Lützkendorf, T, additional, Malmqvist, T, additional, Garcia Martinez, A, additional, Ouellet-Plamondon, C, additional, Passer, A, additional, Peuportier, B, additional, Ramseier, L, additional, Satola, D, additional, Seo, S, additional, Szalay, Z, additional, and Wiik, M, additional
- Published
- 2022
- Full Text
- View/download PDF
8. Existing benchmark systems for assessing global warming potential of buildings : Analysis of IEA EBC Annex 72 cases
- Author
-
Rasmussen, F. N., Trigaux, D., Alsema, E., Balouktsi, M., Birgisdóttir, H., Bohne, R., Dixit, M., Dowdell, D., Francart, Nicolas, Frischknecht, R., Foliente, G., Lupisek, A., Lützkendorf, T., Malmqvist, Tove, Garcia Martinez, A., Ouellet-Plamondon, C., Passer, A., Peuportier, B., Ramseier, L., Satola, D., Seo, S., Szalay, Z., Wiik, M., Rasmussen, F. N., Trigaux, D., Alsema, E., Balouktsi, M., Birgisdóttir, H., Bohne, R., Dixit, M., Dowdell, D., Francart, Nicolas, Frischknecht, R., Foliente, G., Lupisek, A., Lützkendorf, T., Malmqvist, Tove, Garcia Martinez, A., Ouellet-Plamondon, C., Passer, A., Peuportier, B., Ramseier, L., Satola, D., Seo, S., Szalay, Z., and Wiik, M.
- Abstract
Life cycle assessment (LCA) is increasingly being used as a tool by the building industry and actors to assess the global warming potential (GWP) of building activities. In several countries, life cycle based requirements on GWP are currently being incorporated into building regulations. After the establishment of general calculation rules for building LCA, a crucial next step is to evaluate the performance of the specific building design. For this, reference values or benchmarks are needed, but there are several approaches to defining these. This study presents an overview of existing benchmark systems documented in seventeen cases from the IEA EBC Annex 72 project on LCA of buildings. The study characterizes their different types of methodological background and displays the reported values. Full life cycle target values for residential and non-residential buildings are found around 10-20 kg CO2e/m2/y, whereas reference values are found between 20-80 kg CO2e/m2/y. Possible embodied target- and reference values are found between 1-12 kg CO2e/m2/y for both residential and non-residential buildings. Benchmark stakeholders can use the insights from this study to understand the justifications of the background methodological choices and to gain an overview of the level of GWP performance across benchmark systems., QC 20230706
- Published
- 2022
- Full Text
- View/download PDF
9. Implications of using systematic decomposition structures to organize building LCA information: A comparative analysis of national standards and guidelines - IEA EBC ANNEX 72
- Author
-
Universidad de Sevilla. Departamento de Construcciones Arquitectónicas I (ETSA), Universidad de Sevilla. TEP986: Digital Architecture for Sustainability Lab (Datus-Lab), Universidad de Sevilla. TEP130: Arquitectura, Patrimonio y Sostenibilidad: Acústica, Iluminación, Óptica y Energía, Soust-Verdaguer, Bernardette, García Martínez, Antonio, Llatas, Carmen, Gómez de Cózar, Juan Carlos, Allacker, K., Trigaux, D., Alsema, E., Berg, B., Dowdell, D., Debacker, W., Frischknecht, R., Ramseier, L., Veselka, J., Volf, M., Hajek, P., Lupíšek, A., Malik, Z., Habert, G., Hollberg, A., Lasvaux, S., Peuportier, B., Pomponi, F., Wastiel, L., Gomes, V., Zara, O., Gomes, M., Gusson Baiocchi, A., Pulgrossi, L., Ouellet-Plamondon, Claudiane, Moncaster, A., Di Bari, R., Horn, R., Lenz, K., Balouktsi, M., Lützkendorf, T., Röck, M., Hoxha, E., Passer, A., Universidad de Sevilla. Departamento de Construcciones Arquitectónicas I (ETSA), Universidad de Sevilla. TEP986: Digital Architecture for Sustainability Lab (Datus-Lab), Universidad de Sevilla. TEP130: Arquitectura, Patrimonio y Sostenibilidad: Acústica, Iluminación, Óptica y Energía, Soust-Verdaguer, Bernardette, García Martínez, Antonio, Llatas, Carmen, Gómez de Cózar, Juan Carlos, Allacker, K., Trigaux, D., Alsema, E., Berg, B., Dowdell, D., Debacker, W., Frischknecht, R., Ramseier, L., Veselka, J., Volf, M., Hajek, P., Lupíšek, A., Malik, Z., Habert, G., Hollberg, A., Lasvaux, S., Peuportier, B., Pomponi, F., Wastiel, L., Gomes, V., Zara, O., Gomes, M., Gusson Baiocchi, A., Pulgrossi, L., Ouellet-Plamondon, Claudiane, Moncaster, A., Di Bari, R., Horn, R., Lenz, K., Balouktsi, M., Lützkendorf, T., Röck, M., Hoxha, E., and Passer, A.
- Abstract
The application of the Life Cycle Assessment (LCA) technique to a building requires the collection and organization of a large amount of data over its life cycle. The systematic decomposition method can be used to classify building components, elements and materials, overcome specific difficulties that are encountered when attempting to complete the life cycle inventory and increase the reliability and transparency of results. In this paper, which was developed in the context of the research project IEA EBC Annex 72, we demonstrate the implications of taking such approach and describe the results of a comparison among different national standards/guidelines that are used to conduct LCA for building decomposition. Methods: We initially identified the main characteristics of the standards/guidelines used by Annex participant countries. The "be2226" reference office building was used as a reference to apply the different national standards/guidelines related to building decomposition. It served as a basis of comparison, allowing us to identify the implications of using different systems/standards in the LCA practice, in terms of how these differences affect the LCI structures, LCA databases and the methods used to communicate results. We also analyzed the implications of integrating these standards/guidelines into Building Information Modelling (BIM) to support LCA. Results: Twelve national classification systems/standards/guidelines for the building decomposition were compared. Differences were identified among the levels of decomposition and grouping principles, as well as the consequences of these differences that were related to the LCI organization. In addition, differences were observed among the LCA databases and the structures of the results. Conclusions: The findings of this study summarize and provide an overview of the most relevant aspects of using a standardized building decomposition structure to conduct LCA. Recommendations are formulated on the basis of
- Published
- 2020
10. Comparison of the greenhouse gas emissions of a high-rise residential building assessed with different national LCA approaches - IEA EBC Annex 72
- Author
-
Frischknecht, R., Ramseier, L., Yang, W., Birgisdottir, H., Chae, Ch.U., Lützkendorf, T., Passer, A., Balouktsi, M., Berg, B., Bragança, L., Butler, J., Cellura, M., Dixit, M., Dowdell, D., Francart, Nicolas, García Martínez, A., Gomes, V., Gomes da Silva, M., Guimaraes, G., Hoxha, E., Kjendseth Wiik, M., König, H., Llatas, C., Longo, S., Lupíšek, A., Martel, J., Mateus, R., Nygaard Rasmussen, F., Ouellet-Plamondon, C., Peuportier, B., Pomponi, F., Pulgrossi, L., Röck, M., Satola, D., Soust Verdaguer, B., Szalay, Z., Truong Nhu, A., Veselka, J., Volf, M., Zara, O., Frischknecht, R., Ramseier, L., Yang, W., Birgisdottir, H., Chae, Ch.U., Lützkendorf, T., Passer, A., Balouktsi, M., Berg, B., Bragança, L., Butler, J., Cellura, M., Dixit, M., Dowdell, D., Francart, Nicolas, García Martínez, A., Gomes, V., Gomes da Silva, M., Guimaraes, G., Hoxha, E., Kjendseth Wiik, M., König, H., Llatas, C., Longo, S., Lupíšek, A., Martel, J., Mateus, R., Nygaard Rasmussen, F., Ouellet-Plamondon, C., Peuportier, B., Pomponi, F., Pulgrossi, L., Röck, M., Satola, D., Soust Verdaguer, B., Szalay, Z., Truong Nhu, A., Veselka, J., Volf, M., and Zara, O.
- Abstract
Introduction: The international research project IEA EBC Annex 72 investigates the life cycle related environmental impacts caused by buildings. The project aims inter alia to harmonise LCA approaches on buildings. Methods: To identify major commonalities and discrepancies among national LCA approaches, reference buildings were defined to present and compare the national approaches. A residential high-rise building located in Tianjin, China, was selected as one of the reference buildings. The main construction elements are reinforced concrete shear walls, beams and floor slabs. The building has an energy reference area of 4566 m2 and an operational heating energy demand of 250 MJ/m2a. An expert team provided information on the quantities of building materials and elements required for the construction, established a BIM model and quantified the operational energy demand. Results: The greenhouse gas emissions and environmental impacts of the building were quantified using 17 country-specific national assessment methods and LCA databases. Comparisons of the results are shown on the level of building elements as well as the complete life cycle of the building. Conclusions: The results of these assessments show that the main differences lie in the LCA background data used, the scope of the assessment and the reference study period applied. Despite the variability in the greenhouse gas emissions determined with the 17 national methods, the individual results are relevant in the respective national context of the method, data, tool and benchmark used. It is important that environmental benchmarks correspond to the particular LCA approach and database of a country in which the benchmark is applied. Furthermore, the results imply to include building technologies as their contribution to the overall environmental impacts is not negligible. Grant support: The authors thank the IEA for its organizational support and the funding organizations in the participating countries for, QC 20210407
- Published
- 2020
- Full Text
- View/download PDF
11. Comparison of the greenhouse gas emissions of a high-rise residential building assessed with different national LCA approaches – IEA EBC Annex 72
- Author
-
Universidad de Sevilla. Departamento de Construcciones Arquitectónicas I (ETSA), Universidad de Sevilla. TEP130: Arquitectura, Patrimonio y Sostenibilidad: Acústica, Iluminación, Óptica y Energía, Universidad de Sevilla. TEP986: Digital Architecture for Sustainability Lab (Datus-Lab), Frischknecht, R., Ramseier, L., Yang, W., Birgisdottir, H., Chae, Ch U., Lützkendorf, T., Passer, A., Balouktsi, M., Berg, B., Bragança, L., Butler, J., Cellura, M., Dixit, M., Dowdell, D., Francart, N., García Martínez, Antonio, Gomes, V., Gomes da Silva, M., Guimaraes, G., Hoxha, E., Kjendseth Wiik, M., König, H., Llatas, Carmen, Longo, S., Lupíšek, A., Martel, J., Mateus, R., Nygaard Rasmussen, F., Ouellet-Plamondon, Claudiane, Peuportier, B., Pomponi, F., Pulgrossi, L., Röck, M., Satola, D., Soust-Verdaguer, Bernardette, Szalay, Z., Truong Nhu, A., Veselka, J., Volf, M., Zara, O., Universidad de Sevilla. Departamento de Construcciones Arquitectónicas I (ETSA), Universidad de Sevilla. TEP130: Arquitectura, Patrimonio y Sostenibilidad: Acústica, Iluminación, Óptica y Energía, Universidad de Sevilla. TEP986: Digital Architecture for Sustainability Lab (Datus-Lab), Frischknecht, R., Ramseier, L., Yang, W., Birgisdottir, H., Chae, Ch U., Lützkendorf, T., Passer, A., Balouktsi, M., Berg, B., Bragança, L., Butler, J., Cellura, M., Dixit, M., Dowdell, D., Francart, N., García Martínez, Antonio, Gomes, V., Gomes da Silva, M., Guimaraes, G., Hoxha, E., Kjendseth Wiik, M., König, H., Llatas, Carmen, Longo, S., Lupíšek, A., Martel, J., Mateus, R., Nygaard Rasmussen, F., Ouellet-Plamondon, Claudiane, Peuportier, B., Pomponi, F., Pulgrossi, L., Röck, M., Satola, D., Soust-Verdaguer, Bernardette, Szalay, Z., Truong Nhu, A., Veselka, J., Volf, M., and Zara, O.
- Abstract
Introduction: The international research project IEA EBC Annex 72 investigates the life cycle related environmental impacts caused by buildings. The project aims inter alia to harmonise LCA approaches on buildings. Methods: To identify major commonalities and discrepancies among national LCA approaches, reference buildings were defined to present and compare the national approaches. A residential high-rise building located in Tianjin, China, was selected as one of the reference buildings. The main construction elements are reinforced concrete shear walls, beams and floor slabs. The building has an energy reference area of 4566 m2 and an operational heating energy demand of 250 MJ/m2 a. An expert team provided information on the quantities of building materials and elements required for the construction, established a BIM model and quantified the operational energy demand. Results: The greenhouse gas emissions and environmental impacts of the building were quantified using 17 country-specific national assessment methods and LCA databases. Comparisons of the results are shown on the level of building elements as well as the complete life cycle of the building. Conclusions: The results of these assessments show that the main differences lie in the LCA background data used, the scope of the assessment and the reference study period applied. Despite the variability in the greenhouse gas emissions determined with the 17 national methods, the individual results are relevant in the respective national context of the method, data, tool and benchmark used. It is important that environmental benchmarks correspond to the particular LCA approach and database of a country in which the benchmark is applied. Furthermore, the results imply to include building technologies as their contribution to the overall environmental impacts is not negligible
- Published
- 2020
12. Modelling of a Large Vertical Ground Heat Exchanger Integrated with a Heat Pump for Building Energy Simulation in China
- Author
-
Pei, L, primary, Schalbart, P, additional, and Peuportier, B, additional
- Published
- 2020
- Full Text
- View/download PDF
13. Comparison of the greenhouse gas emissions of a high-rise residential building assessed with different national LCA approaches – IEA EBC Annex 72
- Author
-
Frischknecht, R, primary, Ramseier, L, additional, Yang, W, additional, Birgisdottir, H, additional, Chae, Ch U, additional, Lützkendorf, T, additional, Passer, A, additional, Balouktsi, M, additional, Berg, B, additional, Bragança, L, additional, Butler, J, additional, Cellura, M, additional, Dixit, M, additional, Dowdell, D, additional, Francart, N, additional, García Martínez, A, additional, Gomes, V, additional, Gomes Da Silva, M, additional, Guimaraes, G, additional, Hoxha, E, additional, Wiik, M Kjendseth, additional, König, H, additional, Llatas, C, additional, Longo, S, additional, Lupíšek, A, additional, Martel, J, additional, Mateus, R, additional, Rasmussen, F Nygaard, additional, Ouellet-Plamondon, C, additional, Peuportier, B, additional, Pomponi, F, additional, Pulgrossi, L, additional, Röck, M, additional, Satola, D, additional, Verdaguer, B Soust, additional, Szalay, Z, additional, Nhu, A Truong, additional, Veselka, J, additional, Volf, M, additional, and Zara, O, additional
- Published
- 2020
- Full Text
- View/download PDF
14. Dynamic and consequential LCA aspects in multi-objective optimisation for NZEB design
- Author
-
Frossard, M, primary, Schalbart, P, additional, and Peuportier, B, additional
- Published
- 2020
- Full Text
- View/download PDF
15. Implications of using systematic decomposition structures to organize building LCA information: A comparative analysis of national standards and guidelines- IEA EBC ANNEX 72
- Author
-
Soust-Verdaguer, B, primary, García Martínez, A, additional, Llatas, C, additional, Gómez de Cózar, J.C., additional, Allacker, K, additional, Trigaux, D, additional, Alsema, E, additional, Berg, B, additional, Dowdell, D, additional, Debacker, W, additional, Frischknecht, R, additional, Ramseier, L, additional, Veselka, J, additional, Volf, M, additional, Hajek, P, additional, Lupíšek, A, additional, Malik, Z, additional, Habert, G, additional, Hollberg, A, additional, Lasvaux, S, additional, Peuportier, B, additional, Pomponi, F, additional, Wastiel, L, additional, Gomes, V, additional, Zara, O, additional, Gomes, M, additional, Gusson Baiocchi, A, additional, Pulgrossi, L, additional, Ouellet-Plamondon, C, additional, Moncaster, A, additional, Di Bari, R, additional, Horn, R, additional, Lenz, K, additional, Balouktsi, M, additional, Lützkendorf, T, additional, Röck, M, additional, Hoxha, E, additional, and Passer, A, additional
- Published
- 2020
- Full Text
- View/download PDF
16. Comparison of the environmental assessment of an identical office building with national methods
- Author
-
Frischknecht, R., Birgisdottir, H., Chae, C. -U, Lützkendorf, T., Passer, A., Alsema, E., Balouktsi, M., Berg, B., Dowdell, D., Garcia Martinez, A., Habert, G., Hollberg, A., König, H., Lasvaux, S., Llatas, C., Nygaard Rasmussen, F., Peuportier, B., Ramseier, L., Röck, M., Soust Verdaguer, B., Szalay, Z., Bohne, R. A., Braganca, L., Cellura, M., Chau, C. K., Dixit, M., Francart, Nicolas, Gomes, V., Huang, L., Longo, S., Lupišek, A., Martel, J., Mateus, R., Ouellet-Plamondon, C., Pomponi, F., Ryklová, P., Trigaux, D., Yang, W., Frischknecht, R., Birgisdottir, H., Chae, C. -U, Lützkendorf, T., Passer, A., Alsema, E., Balouktsi, M., Berg, B., Dowdell, D., Garcia Martinez, A., Habert, G., Hollberg, A., König, H., Lasvaux, S., Llatas, C., Nygaard Rasmussen, F., Peuportier, B., Ramseier, L., Röck, M., Soust Verdaguer, B., Szalay, Z., Bohne, R. A., Braganca, L., Cellura, M., Chau, C. K., Dixit, M., Francart, Nicolas, Gomes, V., Huang, L., Longo, S., Lupišek, A., Martel, J., Mateus, R., Ouellet-Plamondon, C., Pomponi, F., Ryklová, P., Trigaux, D., and Yang, W.
- Abstract
The IEA EBC Annex 72 focuses on the assessment of the primary energy demand, greenhouse gas emissions and environmental impacts of buildings during production, construction, use (including repair and replacement) and end of life (dismantling), i.e. during the entire life cycle of buildings. In one of its activities, reference buildings (size, materialisation, operational energy demand, etc.) were defined on which the existing national assessment methods are applied using national (if available) databases and (national/regional) approaches. The "be2226" office building in Lustenau, Austria was selected as one of the reference buildings. TU Graz established a BIM model and quantified the amount of building elements as well as construction materials required and the operational energy demand. The building assessment was carried out using the same material and energy demand but applying the LCA approach used in the different countries represented by the participating Annex experts. The results of these assessments are compared in view of identifying major discrepancies. Preliminary findings show that the greenhouse gas emissions per kg of building material differ up to a factor of two and more. Major differences in the building assessments are observed in the transports to the construction site (imports) and the construction activities as well as in the greenhouse gas emissions of the operational energy demand (electricity). The experts document their practical difficulties and how they overcame them. The results of this activity are used to better target harmonisation efforts., QC 20200417
- Published
- 2019
- Full Text
- View/download PDF
17. Towards holistic building optimization using a computing environment that enable interoperability between numerical tools
- Author
-
Fraisse, G., Souyri, B., Wurtz, F., Brunotte, X., Enciu, P., Peuportier, B., Robillart, M., Mohamed El Mankibi, Stathopoulos, N., Truchet, S., François, E., Shyam, Laboratoire Optimisation de la Conception et Ingénierie de l'Environnement (LOCIE), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Génie Electrique de Grenoble (G2ELab), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Cedrat, CEDRAT, Centre Efficacité Énergétique des Systèmes (CES), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire de Tribologie et Dynamique des Systèmes (LTDS), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Ecole Nationale d'Ingénieurs de Saint Etienne-Centre National de la Recherche Scientifique (CNRS), Service d'oncologie médicale (Centre Antoine Lacassagne, Nice), Centre de Lutte contre le Cancer Antoine Lacassagne [Nice] (UNICANCER/CAL), and UNICANCER-Université Côte d'Azur (UCA)-UNICANCER-Université Côte d'Azur (UCA)
- Subjects
[SPI]Engineering Sciences [physics] ,Life cycle Analysis ,Building ,Global optimization ,Interoperability ,Surrogate model - Abstract
International audience; Performance optimization has become a standard approach for the design and control of energy systems. The building sector doesn't escape this trend with very dynamic research activity on the subject. This allows designing more and more efficient buildings that contributes to limit the climate change's effects. Design of buildings is usually based on a sequential approach: reduction of demand improvement of energy efficiency and finally use of renewable energies. A holistic building design approach is more efficient since the optimum of a system can be different from the one obtained by separating its components. It is thus necessary to optimize the design by considering the building as a whole (envelope, system, occupants, and environment) and over its lifetime, particularly in the perspective of the climate change. In this context, there are significant difficulties linked to calculation time, dynamic simulations of the building (envelope and systems), taking into account the climate change, combinatorial explosion related to the decision parameters during the optimization, and inclusion of uncertainties ... It is therefore necessary to use specific methodologies such as the use of surrogate models or parallel computing. The optimization is obviously multi-criteria and the overall optimum must be obtained with a reasonable computing time for an engineering office for example. The performance functions (environment, financial, comfort, reliability ...) can be evaluated with different tools that must be interoperable. In this context, we present a methodology and an environment for the holistic optimization of buildings. This environment allows the interoperability of numerical tools used by engineering offices. Finally, two optimized multi-criteria design case studies (2 test functions and the real building "Les Roches Blanche" in Chambéry) are presented to illustrate the approach and the developed environment.
- Published
- 2018
18. Comparison of the environmental assessment of an identical office building with national methods
- Author
-
Frischknecht, R, primary, Birgisdottir, H, additional, Chae, C-U, additional, Lützkendorf, T, additional, Passer, A, additional, Alsema, E, additional, Balouktsi, M, additional, Berg, B, additional, Dowdell, D, additional, García Martínez, A, additional, Habert, G, additional, Hollberg, A, additional, König, H, additional, Lasvaux, S, additional, Llatas, C, additional, Nygaard Rasmussen, F, additional, Peuportier, B, additional, Ramseier, L, additional, Röck, M, additional, Soust Verdaguer, B, additional, Szalay, Z, additional, Bohne, R A, additional, Bragança, L, additional, Cellura, M, additional, Chau, C K, additional, Dixit, M, additional, Francart, N, additional, Gomes, V, additional, Huang, L, additional, Longo, S, additional, Lupíšek, A, additional, Martel, J, additional, Mateus, R, additional, Ouellet-Plamondon, C, additional, Pomponi, F, additional, Ryklová, P, additional, Trigaux, D, additional, and Yang, W, additional
- Published
- 2019
- Full Text
- View/download PDF
19. Simplified Methods for the Sizing of Active Solar Systems (ESM1 and ESM2, two OPSYS products)
- Author
-
Adnot, J., primary, Bourges, B., additional, Kadi, L., additional, and Peuportier, B., additional
- Published
- 1990
- Full Text
- View/download PDF
20. OPSYS Concerted Action for Solar System Model Development and Validation
- Author
-
Dutré, W. L., Debosscher, A., Lambrechts, K., Adnot, J., Peuportier, B., Bourges, B., De Geus, A., Bergmijer, P., Ostergaard-Jensen, S., Den Ouden, C., Palz, W., editor, and Steemers, T. C., editor
- Published
- 1988
- Full Text
- View/download PDF
21. Design and Validation of Simplified Methods for Sizing Active Solar Space Heating Systems
- Author
-
Adnot, J., Bourges, B., Peuportier, B., Dutre, W., Steemers, T. C., and Den Ouden, C., editor
- Published
- 1984
- Full Text
- View/download PDF
22. LIFE CYCLE ASSESSMENT APPLIED TO URBAN PROJECTS
- Author
-
Peuportier, B., Roux, Clément, Schalbart, P., Centre Efficacité Énergétique des Systèmes (CES), MINES ParisTech - École nationale supérieure des mines de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
[SDE]Environmental Sciences - Abstract
International audience; Cities contribute to a large extent to anthropogenic environmental impacts, and their population is growing. Sustainability requires to provide suitable spaces for dwelling and working, while preserving resources, human health, biodiversity and climate. In this context, the aim of our work is to better understand the systemic links between decisions made by urban designers and consequences like emissions of pollutants and related impacts. Urban developments are complex systems including many interacting elements: buildings, outside spaces, networks, and occupants. Temporal and spatial transfer of pollution should be avoided, as well as replacing some impacts by others (e.g. emitting less greenhouse gases but increasing health problems). Such complex issues are generally addressed using qualitative approaches. But the importance of risks would justify more efforts towards a more rational decision making process. The objective is then to develop tools helping such a process.
- Published
- 2016
23. Ecodesign of a 'plus-energy' house using stochastic occupancy model, life-cycle assessment and multi-objective optimisation
- Author
-
Recht, T., Schalbart, P., Peuportier, B., Centre Efficacité Énergétique des Systèmes (CES), MINES ParisTech - École nationale supérieure des mines de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
[SDE]Environmental Sciences - Abstract
International audience; Designing plus energy buildings, at lower environmental impact and lower cost, is a complex optimisation problem. In this context, this paper presents an ecodesign approach of a plus-energy house assisted by multicriteria optimisation. Illustrated by a real case, this approach uses a genetic algorithm to find a set of solutions as close as possible to the theoretical Pareto front, corresponding to the best compromises for the formulated problem. The solutions’ performance was evaluated using a dynamic building energy model (COMFIE), a life cycle analysis model (novaEQUER), and a construction cost database. In order to study the solutions’ robustness, the diversity of occupants’ behaviour was stochastically modelled. The proposed approach is thus contributing to the decision making process, beyond simple evaluation by simulation.
- Published
- 2016
24. LCA enhancement perspectives to facilitate scaling up from building to territory
- Author
-
Sibiude, G., Mailhac, A., Herfray, G., Schiopu, N., Lebert, A., Togo, G., Villien, P., Peuportier, B., Valean, C., Centre Scientifique et Technique du Bâtiment (CSTB), ITE EFFICACITY, parent, TH1 Villien (Architecture Agency), Centre Efficacité Énergétique des Systèmes (CES), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), and TPF ingénierie
- Subjects
LCA ,Systemic approach ,[SDE]Environmental Sciences ,Urban morphologies - Abstract
International audience; Environmental performance considerations in the construction sector extend from buildings to neighbourhoods, cities and territory. This transition implies a Life Cycle Assessment (LCA) adaptation to efficiently treat such complex systems. Indeed, performing environmental performance evaluations has already been done over the past few years but the existing LCA tools have to be improved regarding their userfriendliness to allow everyday urban planning stakeholders to use them. Providing keys to help the practice is a main subject to spread the large scale LCA evaluation and ensure a better urban planning trending to sustainable solutions. This objective is also motivated by local, national and European policies, particularly within the context of Paris COP21. The aim of this study is to explore enhancement perspectives to facilitate LCA scaling up from building to territory. This work is based on observations from case studies underlining operational issues due to the evaluation time consumption. The urban planning process is analysed to focus, at different stages, on operational responses that could be proposed considering objectives, stakeholders’ needs and potential drivers. In particular, for early stage decision making, an approach introducing urban typo-morphologies has been adopted to facilitate the comparison of large scale evaluations and scenarios. Such typo-morphologies, representing elemental bricks at building or block scale to build neighbourhoods or larger, have been widely described in the past. However, this work concentrates on the applicability of the approach to integrate this sort of description for environmental evaluation based on a multicomponent (buildings, energy, water, public spaces, transportation) description of the systems. Particularly, a focus has to be given to scaling up mechanism. Expert systems sets on heuristic rules could help exploiting a typo-morphologies database. This solution should ease the practice of urban environmental assessments.
- Published
- 2016
- Full Text
- View/download PDF
25. LIFE CYCLE ASSESSMENT AS A DESIGN AID TOOL FOR URBAN PROJECTS
- Author
-
Roux, Clément, Herfray, G., Schalbart, P., Peuportier, B., Centre Efficacité Énergétique des Systèmes (CES), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), ITE EFFICACITY, and parent
- Subjects
[SDE]Environmental Sciences ,dynamic simulation ,Life Cycle Assessment ,Urban projects ,Eco-design tool - Abstract
International audience; Sustainability is now targeted in nearly all urban projects, but life cycle assessment (LCA) is generally seen as too complex, so that more qualitative approaches are preferred. Indeed, the importance of environmental problems regarding e.g. climate change, human health, biodiversity and resource depletion justifies a more precise decision making process. A life cycle simulation tool has been developed to model urban projects including various buildings, streets, green and other public spaces, and networks (drinking water, waste water, district heating...). This tool, developed in an object oriented approach, associates dynamic building energy simulation and LCA, complemented with modules for open spaces and networks. A set of environmental indicators is evaluated, e.g. resource depletion, energy and water consumption, global warming, waste generation, toxicity. Several alternatives can be compared, constituting an urban design aid. Continuous improvement of the tool has been performed since the 90’s, expanding the boundaries from buildings to districts assessment. A dynamic model was recently introduced to take into account temporal variation of the electricity consumption in buildings and interaction with the electricity system. Results show the importance of this dynamic evaluation in the case of plus-energy buildings. This multidisciplinary approach allows comprehensive assessment of districts, constituting a decision support in early phases of urban projects. The assessment of a project in the Greater Paris Area is presented to illustrate this integrated approach.
- Published
- 2016
- Full Text
- View/download PDF
26. Éco-conception de maisons à énergie positive assistée par optimisation multicritère
- Author
-
Recht, T., Robillart, M., Garnier, Charles, Schalbart, P., Peuportier, B., Centre Efficacité Énergétique des Systèmes (CES), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), and Projet ADEME COMEPOS
- Subjects
bâtiment à énergie positive ,[SDE]Environmental Sciences ,robustesse des solutions ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,optimisation multicritère - Abstract
International audience; Designing plus energy buildings, at lower environmental impact and lower cost, is a complex optimisation problem. In this context, this communication presents an ecodesign approach assisted by multicriteria optimisation of plus-energy house. Illustrated by a real case, this approach uses a genetic algorithm to reach as much as possible the theoretical Pareto front, including solutions corresponding to the best compromise for the formulated problem. The solutions’ performance is evaluated using a dynamic thermal simulation model (COMFIE), a life cycle analysis mode (novaEQUER), and a cost database. A stochastic model was used to generate average occupancy scenarios in more realistic way than conventional approaches. The proposed approach is thus contributing to an aid in decision making, beyond simple evaluation by simulation.; Concevoir des bâtiments à énergie positive, à moindre impact environnemental et à moindre coût, constitue un problème d’optimisation complexe. Dans ce contexte, cette communication présente une démarche d’éco-conception de maisons à énergie positive assistée par optimisation multicritère. Illustrée sur un cas réel, cette démarche utilise un algorithme génétique pour approcher le plus efficacement possible le front de Pareto théorique, i.e. l’ensemble des solutions présentant les meilleurs compromis du problème formulé. La performance des solutions est évaluée par un modèle de simulation thermique dynamique (COMFIE), un modèle d’analyse de cycle de vie (novaEQUER) et des données de coûts de construction. Un modèle stochastique de comportement des occupants a permis de générer des scénarios moyens plus réalistes que les approches conventionnelles. La démarche proposée contribue ainsi à une aide à la décision, au-delà d’une simple évaluation par simulation.
- Published
- 2016
27. Étude d’un processus de garantie de performance énergétique : application à des logements collectifs
- Author
-
Ligier, S., Robillart, M., Schalbart, P., Peuportier, B., Centre Efficacité Énergétique des Systèmes (CES), MINES ParisTech - École nationale supérieure des mines de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
[SPI.ENERG]Engineering Sciences [physics]/domain_spi.energ ,[SDE]Environmental Sciences ,garantie de performance énergétique ,ajustement de modèles ,analyse de sensibilité - Abstract
International audience; La garantie de performance énergétique (GPE) est un levier essentiel pour le financement des bâtiments performants. L’objectif de ce travail est d’élaborer un processus fiable pour la GPE en définissant un objectif de performance intégrant des sources d’incertitudes ainsi que des possibilités d’ajustement sur des grandeurs relatives à l’occupation et au climat. La méthodologie suivie se divise en quatre étapes. Avant les travaux, les paramètres du modèle considérés a priori comme incertains sont caractérisés par une plage d’incertitude. Dans l’objectif d’identifier les paramètres les plus influents sur la consommation énergétique, une analyse de sensibilité est ensuite effectuée. Une loi de probabilité a priori est alors définie pour ces paramètres influents et une propagation des incertitudes et variabilités est réalisée permettant de définir un modèle d’ajustement et un seuil a priori de consommation dans une situation de référence. Après les travaux, la consommation réelle mesurée est ajustée pour tenir compte du climat et du comportement réel des occupants et peut être comparée à la valeur garantie.
- Published
- 2016
28. Identification de paramètres incertains influents en analyse de cycle de vie des bâtiments
- Author
-
Marie-Lise Pannier, Schalbart, P., Peuportier, B., Centre Efficacité Énergétique des Systèmes (CES), MINES ParisTech - École nationale supérieure des mines de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
[SDE]Environmental Sciences ,Bâtiment ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,Analyses de sensibilité ,Analyse de cycle de vie - Abstract
International audience; Les outils d’analyse de cycle de vie (ACV) des bâtiments sont utilisés pour orienter la conception vers des ensembles bâtis plus durables. Ils doivent donc être des outils d’aide à la décision robustes. Or, les praticiens d’ACV sont confrontés à de nombreux choix (méthodes, scénarios, paramètres…) induisant des incertitudes dans les sorties du modèle et potentiellement une remise en question des résultats. Dans ce cadre, l’influence des paramètres incertains doit être mieux connue. Trois types d’analyses de sensibilité (le criblage de Morris et les analyses de sensibilité locale et globale), offrant différents compromis coût calculatoire - précision, ont permis d’identifier les paramètres les plus influents pour une maison individuelle performante. Ces travaux, menés avec l’outil d’ACV novaEQUER ont souligné l’influence de la durée de vie du bâtiment, du mix de production d’électricité et des contributeurs majeurs de l’efficacité énergétique de l’enveloppe. Une meilleure compréhension de l’effet des paramètres influents contribue à réduire l’incertitude et à fiabiliser les résultats d’ACV des bâtiments.
- Published
- 2016
29. Analyse de cycle de vie conséquentielle appliquée à l’étude d’une maison individuelle
- Author
-
Roux, Clément, Schalbart, P., Peuportier, B., Centre Efficacité Énergétique des Systèmes (CES), MINES ParisTech - École nationale supérieure des mines de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
Analyse du cycle de vie ,Éco-conception ,[SDE]Environmental Sciences ,Bâtiments - Abstract
International audience; L’analyse du cycle de vie (ACV) est une méthode de plus en plus utilisée dans le secteur du bâtiment, en particulier pour l’aide à la conception Les études d’ACV sont classées en deux grandes familles : l’approche attributionnelle (ACV-A) et l’approche conséquentielle (ACV-C). Les études ACV-A allouent une responsabilité environnementale au cycle de vie du produit étudié (e.g. l’impact d’un bâtiment). L’ACV-C se focalise sur les conséquences environnementales d’une décision (e.g. décision de construire un nouveau bâtiment). Ceci influence la réalisation de l’étude, notamment au niveau des données utilisées et des techniques d’allocations employées (allocation ou extension du système). Cette communication propose une comparaison entre ACV-A et ACV-C sur un cas d’étude simple : une maison individuelle passive située près de Chambéry. Les différences entre les deux approches sont importantes et peuvent affecter le classement des variantes de conception. Les deux approches sont discutées en fonction de leur apport concernant un objectif d’éco-conception.
- Published
- 2016
30. Derivation of simplified control rules from an optimal strategy for electric heating in a residential building
- Author
-
Robillart, M., primary, Schalbart, P., additional, and Peuportier, B., additional
- Published
- 2017
- Full Text
- View/download PDF
31. Extraction of heating control rules from the dynamic programming method for load shifting in energy-efficient building
- Author
-
Robillart, M, Schalbart, P, Peuportier, B, Centre Efficacité Énergétique des Systèmes (CES), MINES ParisTech - École nationale supérieure des mines de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
load shifting ,optimal control ,[SPI]Engineering Sciences [physics] ,Rule extraction - Abstract
International audience; In France, 40 % of buildings are heated with electrical devices causing high peak load in winter. In this context, optimal strategies (under constraints related to comfort and maximum heating power) have been developed using the dynamic programming method in order to shift electricity consumption used for heating, taking advantage of the building thermal mass. However, this exact optimisation method is computationally intensive and can hardly be applied to real-time control. Complementary statistical techniques exist that allow for the extraction of logistic decision models from the optimal control simulation results. These rule extraction techniques model the relationship between explanatory variables and a response variable. In this study, a generalised linear model was used because it is able to mimic the general characteristics of the dynamic programming results with good precision and greatly reduced computational effort (150 times faster than the dynamic programming method).
- Published
- 2014
32. Illustration of methodological challenges in energy and environmental assessment of buildings
- Author
-
Fouquet, M., Lebert, A., Lasvaux, S., Peuportier, B., Roux, Clément, Guiot, T., Buhe, C., Souyri, B., Centre Scientifique et Technique du Bâtiment (CSTB), Laboratoire Optimisation de la Conception et Ingénierie de l'Environnement (LOCIE), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Centre Efficacité Énergétique des Systèmes (CES), MINES ParisTech - École nationale supérieure des mines de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
Life cycle assessment ,[SPI]Engineering Sciences [physics] ,energy efficient building ,time step ,renewable energy ,building environmental assessment - Abstract
International audience; A life cycle approach (LCA) is now commonly used for the environmental assessment of buildings. However, different methodological rules are currently found in the literature to estimate the energy and LCA balance for the use stage e.g. from an annual assessment to a one hour time step assessment. Another critical issue is related to the assessment of new low energy buildings equipped with on-site renewable energies. In this study, first, the consequences of using different Life Cycle Inventory (LCI) calculations for the electricity mix are analysed. Then, the consequences of using different allocation rules for the on-site renewable energy produced by PV panels are assessed. The results on a single individual house showed that the use phase results are very sensitive to the allocation rules. Regarding the temporal aspects, this study highlights the differences between dynamic and static approaches for both energy and LCA calculations. Finally, recommendations are given to improve the reliability of building LCA tools.
- Published
- 2014
33. Correlations in Life Cycle Impact Assessment methods (LCIA) and indicators for construction materials: What matters?
- Author
-
Lasvaux, S., primary, Achim, F., additional, Garat, P., additional, Peuportier, B., additional, Chevalier, J., additional, and Habert, G., additional
- Published
- 2016
- Full Text
- View/download PDF
34. Rapport d'activité 2012 de la Chaire ParisTech-Vinci Eco-conception des ensembles bâtis et des infrastructures. Document Mines ParisTech
- Author
-
Peuportier, B, Leurent, Fabien, Roger-Estrade, Jean, Laboratoire Ville, Mobilité, Transport (LVMT ), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Paris-Est Marne-la-Vallée (UPEM)-École des Ponts ParisTech (ENPC), and École des Ponts ParisTech (ENPC)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Paris-Est Marne-la-Vallée (UPEM)
- Subjects
[SHS.ARCHI]Humanities and Social Sciences/Architecture, space management - Abstract
no abstract
- Published
- 2013
35. Dynamic LCA applied to buildings and urban districts
- Author
-
Roux, Clément, Peuportier, B., Herfray, G., Centre Efficacité Énergétique des Systèmes (CES), MINES ParisTech - École nationale supérieure des mines de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
Dynamic Life-cycle assessment ,Electricity production ,[SDE]Environmental Sciences ,Consequential lifecycle assessment ,Buildings - Abstract
International audience; Existing Building LCA tools are based upon a static method, considering yearly average processes and impacts. This paper presents a dynamic method that has been developed to evaluate electricity-related impacts in buildings. Results on case studies show important discrepancy between the static and dynamic methods. This study is a first step towards the introduction of consequential LCA parameters in life-cycle assessment of buildings.
- Published
- 2013
36. Derivation of simplified control rules from an optimal strategy for electric heating in a residential building.
- Author
-
Robillart, M., Schalbart, P., and Peuportier, B.
- Subjects
ELECTRIC heating ,HOME heating & ventilation ,RULE extraction (Machine learning) ,DYNAMIC programming ,ENERGY management - Abstract
In France, 40% of buildings are heated with electrical devices causing high peak load in winter. In this context, advanced control systems could improve buildings energy management. More specifically, optimal strategies have been developed using a dynamic programming method in order to shift heating load, taking advantage of the building thermal mass. However, this optimization method is computationally intensive and can hardly be applied to real-time control. Statistical techniques can be used to derive near-optimal laws from the optimal control results. These rule extraction techniques model the relationship between explanatory variables and a response variable. This paper investigates the use of Beta regression model. This regression-based strategy was able to mimic the general characteristics of the optimization results with a small mean bias error (−6%) and greatly reduce computational effort (150 times faster). Given its simple mathematical formulation, it could be implemented in real-time building systems control. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
37. Relevance of a French simplified LCI database using building products industry data
- Author
-
Lasvaux, S., Schiopu, N., Peuportier, B., Chevalier, Jérome, Centre Scientifique et Technique du Bâtiment (CSTB), Centre Efficacité Énergétique des Systèmes (CES), MINES ParisTech - École nationale supérieure des mines de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
[SDE]Environmental Sciences - Abstract
International audience; In some Product Category Rules (PCR) defined to produce EDP according to ISO 14025, templates for reporting a reduced list of LCI flows can be provided e.g. ET Env. Declaration (Finland), INIES (France) etc.In the French EPD (called FDES), this template, not compulsory but hughly followed by the building industry, is included in the publicly EPD report available onlineObjective of the study : Assess the relevance of such reduced list of LCI flows in a French LCI database using industry data
- Published
- 2012
38. Training for renovated energy efficient social housing
- Author
-
Peuportier, B., Neumann, U., Jan-Olof Dalenbäck, Nesje, A., Csoknyai, T., Boonstra, C., CEP/Paris, Centre Énergétique et Procédés (CEP), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-MINES ParisTech - École nationale supérieure des mines de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
[SPI.OTHER]Engineering Sciences [physics]/Other ,renovation ,training ,social housing ,ComputingMilieux_MISCELLANEOUS ,energy efficiency - Abstract
International audience
- Published
- 2007
39. ENERGIE TOTALE PAR GAZEIFICATION DU BOIS
- Author
-
BARBAUD, J.C., primary, MARCHIO, D., additional, and PEUPORTIER, B., additional
- Published
- 1986
- Full Text
- View/download PDF
40. FURTHER DEVELOPMENT OF THE EUROPEAN VALIDATION OF SIMPLIFIED METHODS FOR SOLAR SPACE HEATING
- Author
-
ADNOT, J., primary, PEUPORTIER, B., additional, DUTRE, W., additional, and STEEMERS, T.C., additional
- Published
- 1986
- Full Text
- View/download PDF
41. European Methodology for the Evaluation of Environmental Impacts of Buildings'. Project REGENER
- Author
-
Peuportier, B, Kohler, N, Boonstra, C, BLANC SOMMEREUX, I, Hamadou, H, Pagani, Roberto, Gobin, C, and Kreider, J.
- Published
- 1997
42. Impact pathway analysis: A tool for improving environmental decision processes
- Author
-
Rabl, A., primary and Peuportier, B., additional
- Published
- 1995
- Full Text
- View/download PDF
43. Overview Of A Large Scale Monitoring Project Of Energy Positive Houses: Complementarity Between Simulations And Measurements
- Author
-
Goffart, J., Monika Woloszyn, Faure, X., Wurtz, F., Gondian, L., Buhé, C., Recht, T., Mora, L., Peuportier, B., Schalbart, P., Aymari, M., Ploix, S., Schneuwly, P., Wurtz, E., Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Laboratoire Optimisation de la Conception et Ingénierie de l'Environnement (LOCIE), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), CEA Tech Pays-de-la-Loire, CEA Tech en régions (CEA-TECH-Reg), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de Génie Electrique de Grenoble (G2ELab), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Département des Technologies Solaires (DTS), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de L'Energie Solaire (INES), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre Efficacité Énergétique des Systèmes (CES), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Institut de Mécanique et d'Ingénierie de Bordeaux (I2M), Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB)-École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Gestion et Conduite des Systèmes de Production (G-SCOP_GCSP ), Laboratoire des sciences pour la conception, l'optimisation et la production (G-SCOP), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), CEA, LITEN, Service bâtiment et systèmes thermiques, Le Bourget du Lac, France, Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), MINES ParisTech - École nationale supérieure des mines de Paris-PSL Research University (PSL), École Nationale Supérieure d'Arts et Métiers (ENSAM), HESAM Université (HESAM)-HESAM Université (HESAM)-Institut Polytechnique de Bordeaux-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), GCSP (G-SCOP_GCSP), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), CEA Tech Pays-de-la-Loire (DP2L), Mines Paris - PSL (École nationale supérieure des mines de Paris), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Arts et Métiers Sciences et Technologies, and HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDE.IE]Environmental Sciences/Environmental Engineering - Abstract
International audience; The present paper gives an overview of a French national project on building performance. Named COMEPOS, started in 2013, it focuses on « Positive Energy » detached houses. It consists in the design, construction, operation and evaluation of 20 inhabited and innovative houses. This collaborative project includes constructors, industrial and academic partners, the latter involved both in the monitoring and the use of building performance simulation at different stages of the building's life. The paper offers an overview of how simulation technics can be used, in coordination with measurements, concerning points like the optimization of the design, performance evaluation, fault detection, but also improving simulation of real-life situations, for example by improving the knowledge about the impact of occupants' behaviour.
44. Comparison of the environmental assessment of an identical office building with national methods
- Author
-
Frischknecht, R., Birgisdottir, H., Chae, C.-U., Lützkendorf, T., Passer, A., Alsema, E., Balouktsi, M., Berg, B., Dowdell, D., Garcia Martinez, A., Habert, G., Hollberg, A., König, H., Lasvaux, S., Llatas, C., Nygaard Rasmussen, F., Peuportier, B., Ramseier, L., Röck, M., Soust Verdaguer, B., Szalay, Z., Bohne, R. A., Braganca, L., Cellura, M., Chau, C. K., Dixit, M., Francart, N., Gomes, V., Huang, L., Longo, S., Lupišek, A., Martel, J., Mateus, R., Ouellet-Plamondon, C., Pomponi, F., Ryklová, P., Trigaux, D., and Yang, W.
- Subjects
13. Climate action ,11. Sustainability - Abstract
The IEA EBC Annex 72 focuses on the assessment of the primary energy demand, greenhouse gas emissions and environmental impacts of buildings during production, construction, use (including repair and replacement) and end of life (dismantling), i.e. during the entire life cycle of buildings. In one of its activities, reference buildings (size, materialisation, operational energy demand, etc.) were defined on which the existing national assessment methods are applied using national (if available) databases and (national/regional) approaches. The "be2226" office building in Lustenau, Austria was selected as one of the reference buildings. TU Graz established a BIM model and quantified the amount of building elements as well as construction materials required and the operational energy demand. The building assessment was carried out using the same material and energy demand but applying the LCA approach used in the different countries represented by the participating Annex experts. The results of these assessments are compared in view of identifying major discrepancies. Preliminary findings show that the greenhouse gas emissions per kg of building material differ up to a factor of two and more. Major differences in the building assessments are observed in the transports to the construction site (imports) and the construction activities as well as in the greenhouse gas emissions of the operational energy demand (electricity). The experts document their practical difficulties and how they overcame them. The results of this activity are used to better target harmonisation efforts.
45. Comparison of the greenhouse gas emissions of a high-rise residential building assessed with different national LCA approaches - IEA EBC Annex 72
- Author
-
Frischknecht, R., Ramseier, L., Yang, W., Birgisdottir, H., Chae, Ch U., Lützkendorf, T., Passer, A., Balouktsi, M., Berg, B., Bragança, L., Butler, J., Cellura, M., Dixit, M., Dowdell, D., Francart, N., García Martínez, A., Gomes, V., Gomes Da Silva, M., Guimaraes, G., Hoxha, E., Kjendseth Wiik, M., König, H., Llatas, C., Longo, S., Lupíšek, A., Martel, J., Mateus, R., Nygaard Rasmussen, F., Ouellet-Plamondon, C., Peuportier, B., Pomponi, F., Pulgrossi, L., Röck, M., Satola, D., Soust Verdaguer, B., Szalay, Z., Truong Nhu, A., Veselka, J., Volf, M., and Zara, O.
- Subjects
13. Climate action ,11. Sustainability ,7. Clean energy ,12. Responsible consumption - Abstract
Introduction: The international research project IEA EBC Annex 72 investigates the life cycle related environmental impacts caused by buildings. The project aims inter alia to harmonise LCA approaches on buildings. Methods: To identify major commonalities and discrepancies among national LCA approaches, reference buildings were defined to present and compare the national approaches. A residential high-rise building located in Tianjin, China, was selected as one of the reference buildings. The main construction elements are reinforced concrete shear walls, beams and floor slabs. The building has an energy reference area of 4566 m$^{2}$ and an operational heating energy demand of 250 MJ/m$^{2}$a. An expert team provided information on the quantities of building materials and elements required for the construction, established a BIM model and quantified the operational energy demand. Results: The greenhouse gas emissions and environmental impacts of the building were quantified using 17 country-specific national assessment methods and LCA databases. Comparisons of the results are shown on the level of building elements as well as the complete life cycle of the building. Conclusions: The results of these assessments show that the main differences lie in the LCA background data used, the scope of the assessment and the reference study period applied. Despite the variability in the greenhouse gas emissions determined with the 17 national methods, the individual results are relevant in the respective national context of the method, data, tool and benchmark used. It is important that environmental benchmarks correspond to the particular LCA approach and database of a country in which the benchmark is applied. Furthermore, the results imply to include building technologies as their contribution to the overall environmental impacts is not negligible. Grant support: The authors thank the IEA for its organizational support and the funding organizations in the participating countries for their financial support.
46. Implications of using systematic decomposition structures to organize building LCA information: A comparative analysis of national standards and guidelines - IEA EBC ANNEX 72
- Author
-
Soust-Verdaguer, B., García Martínez, A., Llatas, C., Gómez de Cózar, J.C., Allacker, K., Trigaux, D., Alsema, E., Berg, B., Dowdell, D., Debacker, W., Frischknecht, R., Ramseier, L., Veselka, J., Volf, M., Hajek, P., Lupíšek, A., Malik, Z., Habert, G., Hollberg, A., Lasvaux, S., Peuportier, B., Pomponi, F., Wastiel, L., Gomes, V., Zara, O., Gomes, M., Gusson Baiocchi, A., Pulgrossi, L., Ouellet-Plamondon, C., Moncaster, A., Di Bari, R., Horn, R., Lenz, K., Balouktsi, M., Lützkendorf, T., Röck, M., Hoxha, E., Passer, A., Soust-Verdaguer, B., García Martínez, A., Llatas, C., Gómez de Cózar, J.C., Allacker, K., Trigaux, D., Alsema, E., Berg, B., Dowdell, D., Debacker, W., Frischknecht, R., Ramseier, L., Veselka, J., Volf, M., Hajek, P., Lupíšek, A., Malik, Z., Habert, G., Hollberg, A., Lasvaux, S., Peuportier, B., Pomponi, F., Wastiel, L., Gomes, V., Zara, O., Gomes, M., Gusson Baiocchi, A., Pulgrossi, L., Ouellet-Plamondon, C., Moncaster, A., Di Bari, R., Horn, R., Lenz, K., Balouktsi, M., Lützkendorf, T., Röck, M., Hoxha, E., and Passer, A.
- Abstract
Introduction: The application of the Life Cycle Assessment (LCA) technique to a building requires the collection and organization of a large amount of data over its life cycle. The systematic decomposition method can be used to classify building components, elements and materials, overcome specific difficulties that are encountered when attempting to complete the life cycle inventory and increase the reliability and transparency of results. In this paper, which was developed in the context of the research project IEA EBC Annex 72, we demonstrate the implications of taking such approach and describe the results of a comparison among different national standards/guidelines that are used to conduct LCA for building decomposition. Methods: We initially identified the main characteristics of the standards/guidelines used by Annex participant countries. The “be2226” reference office building was used as a reference to apply the different national standards/guidelines related to building decomposition. It served as a basis of comparison, allowing us to identify the implications of using different systems/standards in the LCA practice, in terms of how these differences affect the LCI structures, LCA databases and the methods used to communicate results. We also analyzed the implications of integrating these standards/guidelines into Building Information Modelling (BIM) to support LCA. Results: Twelve national classification systems/standards/guidelines for the building decomposition were compared. Differences were identified among the levels of decomposition and grouping principles, as well as the consequences of these differences that were related to the LCI organization. In addition, differences were observed among the LCA databases and the structures of the results. Conclusions: The findings of this study summarize and provide an overview of the most relevant aspects of using a standardized building decomposition stru
47. Implications of using systematic decomposition structures to organize building LCA information: A comparative analysis of national standards and guidelines - IEA EBC ANNEX 72
- Author
-
Soust-Verdaguer, B., García Martínez, A., Llatas, C., Gómez de Cózar, J.C., Allacker, K., Trigaux, D., Alsema, E., Berg, B., Dowdell, D., Debacker, W., Frischknecht, R., Ramseier, L., Veselka, J., Volf, M., Hajek, P., Lupíšek, A., Malik, Z., Habert, G., Hollberg, A., Lasvaux, S., Peuportier, B., Pomponi, F., Wastiel, L., Gomes, V., Zara, O., Gomes, M., Gusson Baiocchi, A., Pulgrossi, L., Ouellet-Plamondon, C., Moncaster, A., Di Bari, R., Horn, R., Lenz, K., Balouktsi, M., Lützkendorf, T., Röck, M., Hoxha, E., Passer, A., Soust-Verdaguer, B., García Martínez, A., Llatas, C., Gómez de Cózar, J.C., Allacker, K., Trigaux, D., Alsema, E., Berg, B., Dowdell, D., Debacker, W., Frischknecht, R., Ramseier, L., Veselka, J., Volf, M., Hajek, P., Lupíšek, A., Malik, Z., Habert, G., Hollberg, A., Lasvaux, S., Peuportier, B., Pomponi, F., Wastiel, L., Gomes, V., Zara, O., Gomes, M., Gusson Baiocchi, A., Pulgrossi, L., Ouellet-Plamondon, C., Moncaster, A., Di Bari, R., Horn, R., Lenz, K., Balouktsi, M., Lützkendorf, T., Röck, M., Hoxha, E., and Passer, A.
- Abstract
Introduction: The application of the Life Cycle Assessment (LCA) technique to a building requires the collection and organization of a large amount of data over its life cycle. The systematic decomposition method can be used to classify building components, elements and materials, overcome specific difficulties that are encountered when attempting to complete the life cycle inventory and increase the reliability and transparency of results. In this paper, which was developed in the context of the research project IEA EBC Annex 72, we demonstrate the implications of taking such approach and describe the results of a comparison among different national standards/guidelines that are used to conduct LCA for building decomposition. Methods: We initially identified the main characteristics of the standards/guidelines used by Annex participant countries. The “be2226” reference office building was used as a reference to apply the different national standards/guidelines related to building decomposition. It served as a basis of comparison, allowing us to identify the implications of using different systems/standards in the LCA practice, in terms of how these differences affect the LCI structures, LCA databases and the methods used to communicate results. We also analyzed the implications of integrating these standards/guidelines into Building Information Modelling (BIM) to support LCA. Results: Twelve national classification systems/standards/guidelines for the building decomposition were compared. Differences were identified among the levels of decomposition and grouping principles, as well as the consequences of these differences that were related to the LCI organization. In addition, differences were observed among the LCA databases and the structures of the results. Conclusions: The findings of this study summarize and provide an overview of the most relevant aspects of using a standardized building decomposition stru
48. Multicriteria-Oriented Optimization of Building Energy Performances: The Annex 72 IEA-EBC Experience
- Author
-
Bruno Peuportier, Sonia Longo, E Riva Sanseverino, Benedek Kiss, Zsuzsa Szalay, Francesco Guarino, Harpa Birgisdottir, Rolf Frischknecht, T Recht, Maurizio Cellura, Francesco Montana, Centre Efficacité Énergétique des Systèmes (CES), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Jingzheng Ren, Montana F., Longo S., Birgisdottir H., Cellura M., Frischknecht R., Guarino F., Kiss B., Peuportier B., Recht T., Riva Sanseverino E., and Szalay Z.
- Subjects
Optimization ,Architectural engineering ,Settore ING-IND/11 - Fisica Tecnica Ambientale ,Computer science ,020209 energy ,Life cycle ,Perspective (graphical) ,Energy agency ,Energy performance ,Building energy ,02 engineering and technology ,010501 environmental sciences ,Environmental impacts ,01 natural sciences ,7. Clean energy ,[SPI]Engineering Sciences [physics] ,11. Sustainability ,0202 electrical engineering, electronic engineering, information engineering ,Buildings, Energy performance, Environmental impacts, Life cycle, Optimization ,Buildings ,Energy (signal processing) ,Selection (genetic algorithm) ,0105 earth and related environmental sciences - Abstract
International audience; This chapter describes the research experience of the International Energy Agency-Energy in Buildings and Communities Programme Annex 72 members on the application of multi-objective optimization processes for the selection of design or retrofit actions that allow for improving different aspects (energy, environmental, economic, etc.) of buildings in a life cycle perspective. Thirteen case studies were examined focussing on methodologies, applications and results and deriving generic conclusions and guidelines for building designers and decision-makers.
- Published
- 2021
- Full Text
- View/download PDF
49. Comparison of the greenhouse gas emissions of a high-rise residential building assessed with different national LCA approaches– IEA EBC Annex 72
- Author
-
Ricardo Mateus, N. Francart, M. Kjendseth Wiik, Rolf Frischknecht, A. Truong Nhu, O. Zara, M. Gomes Da Silva, B. Soust Verdaguer, W. Yang, Holger König, Brian Berg, Bruno Peuportier, Zsuzsa Szalay, L. Ramseier, Martin Volf, Endrit Hoxha, J. Butler, D. Dowdell, Maurizio Cellura, L. Pulgrossi, G. D. Guimarães, Francesco Pomponi, A. García Martínez, Claudiane Ouellet-Plamondon, J. Veselka, Antonín Lupíšek, Daniel Satola, Thomas Lützkendorf, Manish K. Dixit, Alexander Passer, Ch. U. Chae, Maria Balouktsi, Martin Röck, Sonia Longo, J. Martel, Harpa Birgisdottir, Carmen Llatas, Luís Bragança, Vanessa Gomes, F. Nygaard Rasmussen, Centre Efficacité Énergétique des Systèmes (CES), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Universidad de Sevilla. Departamento de Construcciones Arquitectónicas I (ETSA), Universidad de Sevilla. TEP130: Arquitectura, Patrimonio y Sostenibilidad: Acústica, Iluminación, Óptica y Energía, Universidad de Sevilla. TEP986: Digital Architecture for Sustainability Lab (Datus-Lab), Walbaum, Holger, Hollberg, Alexander, Thuvander, Liane, Femenias, Paula, Kurkowska, Izabela, Mjörnell, Kristina, Fudge, Colin, Frischknecht R., Ramseier L., Yang W., Birgisdottir H., Chae Ch.U., Lutzkendorf T., Passer A., Balouktsi M., Berg B., Braganca L., Butler J., Cellura M., Dixit M., Dowdell D., Francart N., Garcia Martinez A., Gomes V., Gomes da Silva M., Guimaraes G., Hoxha E., Kjendseth Wiik M., Konig H., Llatas C., Longo S., Lupisek A., Martel J., Mateus R., Nygaard Rasmussen F., Ouellet-Plamondon C., Peuportier B., Pomponi F., Pulgrossi L., Rock M., Satola D., Soust Verdaguer B., Szalay Z., Truong Nhu A., Veselka J., Volf M., Zara O., and Universidade do Minho
- Subjects
China ,High-rise residential buidings ,Economics ,020209 energy ,Context (language use) ,02 engineering and technology ,010501 environmental sciences ,01 natural sciences ,7. Clean energy ,Teknologi: 500 [VDP] ,12. Responsible consumption ,Life cycle related environmental ,[SPI]Engineering Sciences [physics] ,Engenharia e Tecnologia::Engenharia Civil ,Benchmark (surveying) ,Ação climática ,11. Sustainability ,0202 electrical engineering, electronic engineering, information engineering ,ddc:330 ,Shear wall ,Energias renováveis e acessíveis ,Buildings ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,International research ,Cidades e comunidades sustentáveis ,Settore ING-IND/11 - Fisica Tecnica Ambientale ,Scope (project management) ,LCA ,Annex 72 IEA ,Environmental economics ,environmental assessment, office building, LCA ,Tianjin ,Greenhouse gases ,13. Climate action ,Heating energy ,Greenhouse gas ,Assessment methods ,Environmental science - Abstract
Introduction: The international research project IEA EBC Annex 72 investigates the life cycle related environmental impacts caused by buildings. The project aims inter alia to harmonise LCA approaches on buildings. Methods: To identify major commonalities and discrepancies among national LCA approaches, reference buildings were defined to present and compare the national approaches. A residential high-rise building located in Tianjin, China, was selected as one of the reference buildings. The main construction elements are reinforced concrete shear walls, beams and floor slabs. The building has an energy reference area of 4566 m2 and an operational heating energy demand of 250 MJ/m2a. An expert team provided information on the quantities of building materials and elements required for the construction, established a BIM model and quantified the operational energy demand. Results: The greenhouse gas emissions and environmental impacts of the building were quantified using 17 country-specific national assessment methods and LCA databases. Comparisons of the results are shown on the level of building elements as well as the complete life cycle of the building. Conclusions: The results of these assessments show that the main differences lie in the LCA background data used, the scope of the assessment and the reference study period applied. Despite the variability in the greenhouse gas emissions determined with the 17 national methods, the individual results are relevant in the respective national context of the method, data, tool and benchmark used. It is important that environmental benchmarks correspond to the particular LCA approach and database of a country in which the benchmark is applied. Furthermore, the results imply to include building technologies as their contribution to the overall environmental impacts is not negligible. Grant support: The authors thank the IEA for its organizational support and the funding organizations in the participating countries for their financial support., IEA -International Energy Agency(undefined)
- Published
- 2020
- Full Text
- View/download PDF
50. Comparison of the environmental assessment of an identical office building with national methods
- Author
-
Brian Berg, F. Nygaard Rasmussen, Bruno Peuportier, Ricardo Mateus, Antonín Lupíšek, Damien Trigaux, Maurizio Cellura, C. K. Chau, Sonia Longo, Claudiane Ouellet-Plamondon, Maria Balouktsi, P. Ryklová, D. Dowdell, Sébastien Lasvaux, Guillaume Habert, L. Huang, Harpa Birgisdottir, E. Alsema, Rolf André Bohne, B. Soust Verdaguer, Manish K. Dixit, Martin Röck, Alexander Passer, Holger König, L. Ramseier, N. Francart, Vanessa Gomes, A. García Martínez, Rolf Frischknecht, W. Yang, Alexander Hollberg, Chang-U Chae, Thomas Lützkendorf, Carmen Llatas, Luís Bragança, J. Martel, Zsuzsa Szalay, Francesco Pomponi, Passer, A, Lutzkendorf, T, Habert, G, KrompKolb, H, Monsberger, M, Centre Efficacité Énergétique des Systèmes (CES), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Universidade do Minho, and Frischknecht R, Birgisdottir H, Chae Ch U , Lützkendorf, Passer A, Alsema E, Balouktsi M, Berg B, Dowdell D, García Martínez A, Habert A, Hollberg A, König H, Lasvaux, Llatas C, Nygaard Rasmussen F, Peuportier B, Ramseier L, Röck M, Soust Verdaguer B, Szalay Z, Bohne R A, Bragança L, Cellura M, Chau C K, Dixit M, Francart N, Gomes V, Huang L, Longo S, Lupíšek A, Martel J, Mateus R, Ouellet-Plamondon C, Pomponi F, Ryklová P, Trigaux D, Yang W
- Subjects
Primary energy ,Economics ,0211 other engineering and technologies ,Social Sciences ,Building material ,02 engineering and technology ,010501 environmental sciences ,engineering.material ,01 natural sciences ,Engenharia e Tecnologia::Engenharia Civil ,Annex 72 ,11. Sustainability ,021105 building & construction ,ddc:330 ,Production (economics) ,Environmental impact assessment ,0105 earth and related environmental sciences ,Settore ING-IND/11 - Fisica Tecnica Ambientale ,Comparative Analysis ,Science & Technology ,Energy demand ,Environmental assessment ,[SDE.IE]Environmental Sciences/Environmental Engineering ,business.industry ,LCA ,Arts & Humanities ,Environmental economics ,13. Climate action ,Greenhouse gas ,Assessment methods ,engineering ,Environmental science ,Electricity ,business ,Building life cycle assessment - Abstract
The IEA EBC Annex 72 focuses on the assessment of the primary energy demand, greenhouse gas emissions and environmental impacts of buildings during production, construction, use (including repair and replacement) and end of life (dismantling), i.e. during the entire life cycle of buildings. In one of its activities, reference buildings (size, materialisation, operational energy demand, etc.) were defined on which the existing national assessment methods are applied using national (if available) databases and (national/regional) approaches. The ?be2226? office building in Lustenau, Austria was selected as one of the reference buildings. TU Graz established a BIM model and quantified the amount of building elements as well as construction materials required and the operational energy demand. The building assessment was carried out using the same material and energy demand but applying the LCA approach used in the different countries represented by the participating Annex experts. The results of these assessments are compared in view of identifying major discrepancies. Preliminary findings show that the greenhouse gas emissions per kg of building material differ up to a factor of two and more. Major differences in the building assessments are observed in the transports to the construction site (imports) and the construction activities as well as in the greenhouse gas emissions of the operational energy demand (electricity). The experts document their practical difficulties and how they overcame them. The results of this activity are used to better target harmonisation efforts., IEA -International Association for the Evaluation of Educational Achievement(Slovenia)
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.