1. Research of the Photo-Optical Method Application for Measuring Selected Data on the Movement of a Parachute for Type M-282
- Author
-
Peter Kaľavský, Róbert Rozenberg, Peter Korba, Martin Kelemen, Matej Antoško, Jozef Sabo, and Milan Džunda
- Subjects
safety ,parachute ,vertical speed ,jump ,measurement ,testing ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Testing in the field of parachute technology provides space for the application of new and innovative methods of measuring operating and functional parameters. The main aim of the paper is to present the results of research for the verification of the photo-optical method of measuring the vertical speed of the M-282 parachutes, and for its use in testing, collecting, and investigating motion data in parachuting. As part of this measuring technology, twelve jumps were performed. It was verified that the experiment was completed for the M-282 parachute according to the regulation of SAE AS 8015B “Minimum Performance Standard Parachute Assemblies and Components”. An analysis of the influencing factors and quantification of their influence on the uncertainty of the measurement results was also performed. The results of the measurement achieved by using the photo-optical method were compared with the measurement with the electronic variometer FLYTEC 4030. The vertical speed of the M-282 parachute (4.655 m·s−1) defined by the photo-optical method is significantly similar to the vertical speed of the M-282 parachute (4.662 m·s−1) defined by FLYTEC 4030. We can state that the process of identifying the vertical speed of the parachute by the photo-optical method was correct. This is a suitable method of evaluating motion data in the operation of M-282 type parachutes. In the following research for generalization of the methodology, we assume the performance of more than 60 experimental jumps using different types of parachutes, digital sensors (cameras), and a photo-optical method to examine motion data and formulate recommendations for testing, investigative applications, individualized training programs, and aspects of parachuting injury prevention.
- Published
- 2021
- Full Text
- View/download PDF